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1 Introduction

The modern discipline of uncertainty quantification seeks to understand and
estimate the effect of approximated and unobserved factors on a system. A
physical system is described by a deterministic mathematical equation which
might have the form

L(u(x, t)) = f(x, t)

and which intends to model the behavior of the state variable u which is governed
by the operator L, the forcing term f and additional problem data such as
boundary or initial conditions. If the operator L blah blah some reference
will be good here, then for a given range of problem data it is theoretically
possible to determine the state function u.

In practice, however, there is a number of reasons to question whether such
deterministic models give sufficient justification to trust the answer. It may be
the case that the data of the physical system, such as the function f , is only
known at selected values, and is interpolated elsewhere. Physical parameters
such as temperature may only be known to a few digits of accuracy. The physics
that is embodied in the operator L may also be only approximately understood
or described. Finally, the process of determining the solution of the mathemat-
ical equation will generally involve finitely accurate arithmetic and iterations
that only produce approximate solutions. Thus, there may be a long and in-
volved process between the observation of physical data f and the determination
that the corresponding state has been computed to be u.

Cases are known in which small errors or changes in the problem specification
can result in disastrous changes in the computed solution. Since the equations
being solved may describe aircraft wings, building supports, or medical devices,
it is vital to demonstrate that the computational results are a reliable estimate
of the physical behavior to be expected.

The standard technique for studying the influence of uncertainty and error
on a mathematical model involves the use of what is termed noise. We may
represent this formally as a function η(x, t;ω); here, the ω indicates the depen-
dence of the noise on some unobservable underlying process. For a particular
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ω, we get a realization of the noise function, that is, a particular example of the
many kinds of possible noise. In the simplest sort of study, we might imagine
that this noise function represents uncertainty or error in the right hand side
f(x, t), so that we now consider the problem of solving a system of the form

L(u(x, t;ω)) = f(x, t) + η(x, t;ω)

The purpose of the ω argument is to indicate the underlying randomness of
the noise function. In order to study the influence of the noise on the resulting
perturbed state function u(x, t : ω), we really need to consider all the noise
functions possible over the range of ω. The standard way of doing this requires
that we propose a probability density function to be associated with ω. If such a
PDF can be supplied, it is possible to produce statistical moments that indicate
the effect of the noise. In particular, we may compute the expected value of the
solution under the influence of noise:

E(u(x, t;ω)) =

∫
Ω

u(x, t;ω)dΩ

The variance of the solution can be computed in a similar fashion. If we are able
to compute just these two quantities, then in contrast to the classical solution
of the deterministic problem, we now have a solution value that has averaged
the effects of all possible noise perturbations, as well as a measure of the typical
variation from that base solution that we can expect for the solution associated
with any particular single realization of the noise function.

2 White Noise

In signal analysis, noise is defined as a signal that does not carry information.
When thinking of the original physical system, noise is the unmeasurable, un-
observable, uncontrollable variations from the physical data we can observe. In
the mathematical model, we include a corresponding function η(x, t;ω) which
is intended to suggest that some elements of the model are not known precisely,
or must be allowed to vary.

Since this is a mathematical model, we are free to choose any representation
for these perturbations or unobservable quantities that we find appropriately
imitates the behaviors found in the physical model. The most common choice
is to choose a white noise function. The value of a white noise function at any
point is taken to be random, and to have expected value 0. Moreover, the values
of the function at any two distinct points are assumed to be independent and
uncorrelated. Such a noise function may seem the natural representation of
totally random variation.

The value that the noise function takes at any point and time is drawn from
some prescribed probability density function (PDF). A common choice is to
use a Gaussian PDF. Choosing the Gaussian PDF allows a nonzero probability
that the noise may, locally and momentarily, assume a value of arbitrarily large
modulus. Other choices for the PDF may be made, including a simple uniform
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density in [-1,+1], for instance, allowing control over the range and variance of
the values assumed locally by the noise.

Computationally, it is necessary to discretize the mathematical model. Such
quantities as the right hand side function f and the state variable u might now
be represented by mesh functions defined only at a grid of points (xi, tj), and
hence values of the noise function will also only be required at discrete points
in space and time. For convenience, we will assume a grid sizes of ∆x spatially
and ∆t temporally. In order to allow for consistent behavior as we vary the grid
sizes, we will expect the noise function at a point (xi, tj) to have the form

ηi,j = η(xi, tj) =
σ2

√
∆t
√

∆x
yi,j

where σ controls the variance, and the yi,j values might be independent Gaussian
samples with zero mean and unit variance. From this formula, it is easy to see
how to computationally represent a discretized version of white noise.

White noise may seem the natural way to model uncertainty, and it is quite
easy to compute samples of discretized white noise computationally. However,
there are some features of white noise that can be regarded as drawbacks or
flaws. Perhaps the first problem to note occurs when we consider the noise
function associated with the undiscretized problem. If we fix our attention on a
single spatial location, the white noise at that point becomes purely a function
of time. The construction of the white noise function implies that the power
spectrum is a constant function of frequency, or, in other words, there is an
equal amount of energy associated with every octave. Should this be strictly
true, any nonzero white noise signal must have infinite energy. This, in turn,
means the sequence of white noise functions associated with an increasingly
refined temporal grid will have energy that grows unboundedly. Whether or
not this is a computational problem, it does indicate that there is necessarily a
weakness in the correspondence between the mathematical noise and whatever
physical phenomenon it is intended to model.

3 Colored Noise

Alternatives to white noise have been proposed; in particular, a family of power
law noise functions have been proposed; the name is meant to indicate the form
of the power density function. Many natural phenomena that can be modeled
by a time series exhibit behavior similar to what is termed 1/f noise or pink
noise. This is a noise signal whose power density function, over some significant
range, is proportional to the inverse of the frequency.

If we assume that the power density spectrum of a noise signal can be mod-
eled as 1/fα, then white noise has α = 0, pink noise has α = 1 and it turns
out that Brownian motion corresponds to α = 2. Pink noise thus lies “halfway”
between uncorrelated white noise and highly correlated Brownian motion. More-
over, we are free to consider other members of this power law noise family with
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α = 2
3 or α = 1.5, for instance, and the noise functions corresponding to the

range 0 ≤ α ≤ 2 is termed the family of colored noise functions.
In stochastic analysis, these alternative noise functions have the same role

as the standard white noise; however, for a given problem they might prove
more appropriate as an approximation to a disturbance whose power spectrum
is known, their spectral properties might prove more tractable or useful, and
their integrability may be an advantage. In any case, it is worthwhile to realize
that white noise is not the only noise function that can be chosen, and that
the choice of noise function can have an influence on the results of a stochastic
analysis.

In particular, we find it of interest to compare some of these power law
noise functions. The simplest thing to consider is the behavior of the variance
of the mean of realizations of a noise function associated with a particular
α. Somewhat more unpredictable is the influence on the expected value and
variance of state variables computed from a stochastic equation governed by
noise of the particular type. It may be enough, in this discussion, to note that
there are differences.

We turn now to the question of how, for a chosen value of α, it is possible
to generate a realization of a colored noise function.

4 Miro Tells The Story: Implementation of α
noise

We consider the algorithm of Kasdin [2] for generating discrete white noise.
The idea is to generate a white noise vector, by sampling from an underlying
zero-mean Gaussian distribution, then to take a convolution of that vector with
a ”weight” vector. Since discrete convolution has complexity O(N2), in the
implementation we replace the convolution with Fast Fourier Transform that
has complexity of O(N log(N)). The original code from Kasdin uses ”Numerical
Recipes” real Fourier Transform procedure, however, implement the algorithm
using MATLAB inbuild complex fft() function and thus we have to use same
scaling to match the output of the original Kasdin’s algorithm.

Algorithm: Coloured Noise Generator

Given N , the number of discrete points, σ, the standard deviation of the
zero-mean Gaussian distribution from which we sample and α, the algorithm
generates a noise vector η ∈ RN with frequency distribution 1

fα

- First we generate a vector of weights < hi >∈ R2N

hi =


1.0 i = 1,

hi−1
0.5α+(i−2)

i−1 2 ≤ i ≤ N,
0.0 N < i.

(1)

4



- Second generate a ”white” noise vector < ωi >∈ R2N , where each wi is
independently sampled from a Gaussian distribution with zero mean and
standard deviation σ.

- Compute < ĥi >,< ω̂i >∈ C2N as the Fast Fourier Transforms of < hi >
and < ωi > respectively.

- Let < f̂i >∈ C2N be the index wise product of f̂i = ĥiω̂i.

- Scale f̂1 = f̂1
2 , f̂N+1 = f̂N+1

2 and set f̂i = 0.0 for i > N + 1.

- Let < fi >∈ C2N be the inverse Fourier Transform of < f̂i >, then the
computed solution is

ηi = 2<(fi), for 1 ≤ i ≤ N. (2)

We present the MATLAB code that generates 1
fα noise.

function [ eta ] = ff_alpha ( n, sigma, alpha )

hfa = zeros ( 2 * n, 1 );

hfa(1) = 1.0;

for i = 2 : n

hfa(i) = hfa(i-1) * ( 0.5 * alpha + ( i - 2 ) ) / ( i - 1 );

end

hfa(n+1:2*n) = 0.0;

wfa = [ sigma * randn( n, 1 ); zeros( n, 1 ); ];

[ fh ] = fft( hfa );

[ fw ] = fft( wfa );

fh = fh( 1:n + 1 );

fw = fw( 1:n + 1 );

fw = fh .* fw;

fw(1) = fw(1) / 2;

fw(end) = fw(end) / 2;

fw = [ fw; zeros(n-1,1); ];

eta = ifft( fw );

eta = 2*real( eta(1:n) );

end

5 Numerical Results

The first question that we can ask is what is the efficiency of the algorithm. One
of the main attractions of white noise is the simplicity of its implementation and
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Table 1: Pure Noise

Standard Deviation of the mean of pure noise ηi(N,α). σ = 1

α : N 10 250 500 1000 10000 20000 50000
0.0 1.05590 0.99566 1.00440 0.98595 0.99790 0.99756 1.00580
0.5 0.93257 0.89965 0.90187 0.89221 0.90449 0.90211 0.89132
1.0 0.81766 0.79623 0.80413 0.79190 0.80806 0.79518 0.79209
1.5 0.70664 0.69500 0.68337 0.69347 0.69348 0.69266 0.68989
2.0 0.59378 0.57871 0.57827 0.58321 0.58059 0.58184 0.58419

the very fast way to compute a large number of white noise vectors. We compare
the time it takes to compute 10, 000 pink-noise vectors vs the same number of
white noise vectors. On MATLAB 2009b with AMD 3.4Ghz CPU and Linux
operating system the colored-noise algorithm is approximately 13 times slower
than the simple white noise generator. Since in practical problems generating
noise is only a small part ofthe computation, the cost of 13 times will often be
absorbed into more time consuming parts. Nevertheless, one should still ask
if the price is worthy. So we try to investigate the statistical properties of 1

fα

noise for different values of α.
For the first study, we fix the standard deviation of the underlying Gaussian

distribution to be σ = 1. Then we consider the domain Ω = [0, 1] and we
select N uniformly distributed points, and for each α, we generate a number
of noise vectors η, ωi(N,α). Since each η, ωi(N,α) is an approximation to a
continuous η, ω(x, α), we have to account for the mesh density by scaling the

vectors by N
1−α
2 . For white noise (i.e. α = 0) we scale by N

1
2 , which leads

to a standard way of discretizing white noise (add reference here), and for

Brownian motion (i.e. α = 2) the scaling factor is N− 1
2 , which is known (add

more reference here). For each computed noise vector, the expected value of
the mean is zero, however, we wish to study the variation of the mean. For each
value of N and α, we generate 10, 000 sample noise vectors and we compute the
standard deviation of the mean. We present the results on Table 1. It is clear
that even though our sampling is based upon the same underlying Gaussian
distribution, the statistical properties of the noise for different values of α are
quite different. As α increases the noise has considerably lower variance.

Next we study the 1-D Laplace equation

uxx(x) = x+ η(α, ω), u(0) = 0, u(1) =
1

6
, (3)

where η(α) is 1
fα noise. The noise free solution is u(x) = 1

6x
3. We use finite

difference approximation for the Laplacian operator on an uniform mesh with
N + 1 points and we use Algorithm (reference the algorithm) to generate noise
and perturb the right hand side of the equation. For each N and α we solve
10, 000 equations and we gather statistics about the standard deviation of the
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Table 2: Additive Noise

Standard Deviation of the mean of the solution u(N,α). σ = 1

α : N 10 250 500 1000 10000 20000 50000
0.0 0.100660 0.092005 0.092463 0.092402 0.091159 0.090339 0.091812
0.5 0.089742 0.081129 0.082130 0.080622 0.081340 0.081260 0.081346
1.0 0.078451 0.072538 0.072242 0.072441 0.071642 0.072044 0.071774
1.5 0.068110 0.061172 0.061011 0.061572 0.062032 0.061570 0.061073
2.0 0.056753 0.051480 0.050756 0.050733 0.050878 0.051013 0.050569

Table 3: Computed Coefficients

Standard Deviation of the absolute value of individual Fourier coefficients u(N,α). σ = 1

α : k 1 2 3 7 15 25
0.0 0.060275 0.0193360 0.00478520 5.0207e− 04 9.2034e− 05 3.1170e− 05
0.5 0.054468 0.0155670 0.00302830 2.1487e− 04 3.0748e− 05 9.0569e− 06
1.0 0.049850 0.0124460 0.00194620 1.0256e− 04 1.0927e− 05 2.6943e− 06
1.5 0.043352 0.0096661 0.00136300 5.7020e− 05 4.8606e− 06 1.0156e− 06
2.0 0.037937 0.0070716 0.00092786 3.5221e− 05 2.7887e− 06 5.4937e− 07

mean of the solution. The results are given on Table 2. From the results, noise
for different values of α appears to act as scaled ”white” noise. It is natural
to ask, if we can match the behaviour of the solution for different α, by simply
”tweaking” the standard deviation σ. Indeed, we can make the variance of the
mean identical, however, the difference between η(0) and η(α > 0) is not only
in the total variance, but also in the frequency distribution of the noise. To
demonstrate that, we take the case of N = 50000 and we compute the Fourier
Transforms of the solution vectors associated with different values of α. Then
we consider the variance of the individual Fourier coefficients ûk. Due to the
eigenstructure of the Laplace operator, the lowest three frequencies contain the
bulk of the energy of the system and the effect of α on û1, û2 and û3 seems to be
that of near uniform scaling. However, when we look at the higher frequencies,
we see that the drop-rate as k increases is much higher for larger values of
α, which means that the solution is overall smoother. We conclude that for
different values of α, the effect of the noise onto the computed solution extends
beyond the simple scaling observed in Table 1.

Next we add the noise to the coefficient of the Laplace equation:

(1 + |η(x, α)|)uxx(x) = x, u(0) = 0, u(1) =
1

6
. (4)

Note that we take the absolute value of η(α) to prevent the left hand side from
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Table 4: Coefficient Noise Mean (absolute value)

Mean of the solution u(N,α). σ = 1

α : N 10 250 500 1000 10000 20000 50000
0.0 0.013989 0.0057368 0.0049075 0.003852 0.0013853 0.0012235 0.00074086
0.5 0.018178 0.0135610 0.0120650 0.010761 0.0078303 0.0068163 0.00608480
1.0 0.020341 0.0207380 0.0205360 0.020231 0.0198930 0.0192790 0.01895300
1.5 0.021252 0.0230670 0.0230830 0.023314 0.0231580 0.0230880 0.02320900
2.0 0.021330 0.0232460 0.0232770 0.023291 0.0232120 0.0233110 0.02335400

Table 5: Coefficient Noise Standard Deviation (absolute value)

Standard Deviation of the mean of the solution u(N,α). σ = 1

α : N 10 250 500 1000 10000 20000 50000
0.0 0.016823 0.012914 0.012201 0.010703 0.0061751 0.005965 0.0043796
0.5 0.016834 0.017617 0.016880 0.016391 0.0148880 0.013914 0.0131150
1.0 0.015286 0.017061 0.017248 0.017187 0.0175860 0.017433 0.0174830
1.5 0.013341 0.014550 0.014539 0.014610 0.0146610 0.014629 0.0146740
2.0 0.011676 0.012789 0.012741 0.012764 0.0129310 0.012764 0.0127850

becoming singular, while preserving the total energy of the noise. We present the
results from the simulations for both the mean and standard variation on Table
4 and Table 5. In this case, due to the non-linearity of the problem, we observe
dramatic difference in the mean of the solution for different values of α. When
α = 0 and α = 0.5, the mean of the solution seems to converge to zero, however,
for α ≥ 1 the solution seems to be approximately mesh independent. Similar
behaviour of convergence vs. independence can be observed for the standard
deviation. We can conclude, that for this non-linear example, the different
choice of α results in a solution uα(x) with completely different properties.

Another way to add noise to the coefficient of the Laplace equations is via
an exponential function(

1 + eη(x,α)
)
uxx(x) = x, u(0) = 0, u(1) =

1

6
. (5)

Then we do the same numerical experiments. In this case, the computed solution
has the same mean for all N and α (see Table 6), however, we again observe
a difference in the variance of the total solution as well the individual Fourier
coefficients. The results are given in Tables 7 and 8.

In all the previous examples we have kept the parameter σ = 1 constant. We
can select σ as a function of α and force the noise η(σ(α), α) to have uniform
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Table 6: Coefficient Noise Mean (exponential)

Mean of the solution u(N,α). σ = 1

α : N 10 250 500 1000 10000 20000 50000
0.0 0.018694 0.020815 0.020573 0.020793 0.020609 0.021526 0.020840
0.5 0.018892 0.020889 0.020770 0.021104 0.020502 0.020876 0.021065
1.0 0.018737 0.021071 0.020633 0.020854 0.021171 0.021109 0.020698
1.5 0.018719 0.020671 0.020726 0.021067 0.020876 0.020907 0.020951
2.0 0.019048 0.020853 0.020636 0.021118 0.021055 0.020900 0.020937

Table 7: Coefficient Noise Standard Deviation (exponential)

Standard Deviation of the mean of the solution u(N,α). σ = 1

α : N 10 250 500 1000 10000 20000 50000
0.0 0.030039 0.039493 0.040165 0.040671 0.041306 0.041433 0.041522
0.5 0.023397 0.033686 0.034719 0.035781 0.038358 0.038961 0.039535
1.0 0.016694 0.021828 0.022596 0.022971 0.024646 0.024954 0.025189
1.5 0.012837 0.014632 0.014739 0.014891 0.014810 0.014957 0.014780
2.0 0.010849 0.012404 0.012266 0.012388 0.012352 0.012383 0.012344

variances for the mean σ (η̄(σ(α), α)) = 1 for all values of α. To do that, we
need to divide σ by the corresponding value of Table 1. Afterwards, we use
the new ”normalized” noise as input to (5). From the results give on Tables 9
and 10, we can see that even when we adjust the parameter σ, we still obtain
solutions with significantly different statistical properties.

In another example we consider the steady state Burgers equation

µuxx − uux = 2µ− 2x3 + η(α), u(0) = 0, u(1) = 1, (6)

where η(α) is 1
fα noise. The exact noise-free solution is u(x) = x2. We take µ =

0.1 to increase the influence of the non-linear term uux and we adjust σ = 0.1.
Experimentally, we discovered that for larger σ, we would often generate noise
that will make (6) ill conditioned and the PDE solver would fail to converge to
a solution. Once again we observe very different results for both the standard
deviation of the mean of the computed solution and the distribution of the
corresponding Fourier frequencies.

6 Conclusion

While generating colored 1
fα noise is more expensive than simple white noise

(α = 0) we see that when applied to different problems, it can result solutions
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Table 8: Coefficient noise Computed Coefficients (exponential)

Standard Deviation of the absolute value of individual Fourier coefficients u(N,α). σ = 1

α : k 1 2 3 7 15 25
0.0 0.020852 0.0093093 0.0057344 0.00211260 0.00092783 0.00054521
0.5 0.021167 0.0089848 0.0055042 0.00202000 0.00088573 0.00052011
1.0 0.018968 0.0067651 0.0039406 0.00139180 0.00060170 0.00035156
1.5 0.013754 0.0052845 0.0029439 0.00101210 0.00043517 0.00025398
2.0 0.012037 0.0048039 0.0026727 0.00091579 0.00039355 0.00022966

Table 9: Coefficient Noise Standard Deviation (exponential, normalized)

Standard Deviation of the mean of the solution u(N,α). Normalized σ.

α : N 10 250 500 1000 10000 20000 50000
0.0 0.030075 0.039482 0.040174 0.040519 0.041319 0.041439 0.041509
0.5 0.024348 0.034147 0.035700 0.036520 0.038858 0.039202 0.039893
1.0 0.019082 0.024499 0.025135 0.025709 0.026972 0.027444 0.027896
1.5 0.015951 0.018241 0.018451 0.018433 0.018444 0.018524 0.018489
2.0 0.015240 0.017119 0.017083 0.017207 0.017128 0.017225 0.017088

Table 10: Coefficient noise Computed Coefficients (exponential, normalized)

Standard Deviation of the absolute value of individual
Fourier coefficients u(N,α). Normalized σ.

α : k 1 2 3 7 15 25
0.0 0.020885 0.0093097 0.0057336 0.0021121 0.00092758 0.00054506
0.5 0.021234 0.0090597 0.0055517 0.0020381 0.00089377 0.00052487
1.0 0.019847 0.0073978 0.0043265 0.0015375 0.00066599 0.00038935
1.5 0.016138 0.0065030 0.0036361 0.0012553 0.00054011 0.00031526
2.0 0.015621 0.0067478 0.0037445 0.0012849 0.00055230 0.00032232
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Table 11: Burgers Noise Standard Deviation

Standard Deviation of the mean of the solution u(N,α). σ = 0.1

α : N 50 250 500 1000 10000 20000 50000
0.0 0.058221 0.057232 0.057255 0.057214 0.056915 0.057207 0.057698
0.5 0.051579 0.050788 0.050580 0.050707 0.050992 0.050192 0.050302
1.0 0.044053 0.042991 0.042799 0.043647 0.043269 0.042761 0.042914
1.5 0.036970 0.036124 0.036351 0.036163 0.035946 0.036111 0.035990
2.0 0.029671 0.028895 0.028673 0.028770 0.029347 0.028970 0.028771

Table 12: Computed Frequency Coefficients (Burgers Equations)

Standard Deviation of the absolute value of individual
Fourier coefficients u(N,α). µ = 0.1, σ = 0.1

α : k 1 2 3 7 15 25
0.0 0.057698 0.0150620 0.0043334 5.0102e− 04 9.1792e− 05 3.1157e− 05
0.5 0.050302 0.0099157 0.0024933 2.1851e− 04 3.0771e− 05 9.0073e− 06
1.0 0.042914 0.0066314 0.0016356 1.1768e− 04 1.2587e− 05 3.0027e− 06
1.5 0.035990 0.0045863 0.0012406 8.7105e− 05 7.9024e− 06 1.6450e− 06
2.0 0.028771 0.0033501 0.0010229 7.2993e− 05 6.4266e− 06 1.3120e− 06
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with drastically different properties. It may be surprising to see that the choice
of a particular kind of noise function can have such an influence on the solution.
Given the number of examples of natural phenomena which seem to exhibit
colored noise, and the fact that white noise has some unrealistic features, par-
ticularly as the sampling interval is decreased, it is reasonable to consider the
use of colored noise when constructing and analyzing stochastic models.

Each of the examples presented here has considered a one-dimensional spatial
domain for which a noise function was generated by ff alpha, to be sampled
at N equally spaced points, with standard deviation σ and parameter α. It is
natural to consider the extension of this approach to cases in which the spatial
domain is multidimensional, and in which there is time evolution as well.

The simplest observation is that all the remarks about a 1D spatial interval
carry over unchanged to a system defined over a fixed 1D time interval.

If the domain is a product region of time and space, then standard Fourier
transform methods allow us to construct a multidimensional noise function as
the product of one dimensional noise functions; the component noise functions,
in turn, are each defined by a number of sample points Ni, a standard deviation
σi, and a value of αi, which are then input to a multiple-FFT version of the
algorithm ff alpha().

As far as the FFT computations are concerned, no distinction need be made
between time and space dimensions. On the other hand, there may be good
reasons to use different considerations for the value of σt and αt associated with
the time-wise noise component.

Some guidance in choosing the components of the noise parameters can be
gained from considering the 1D case. Suppose, for instance, that a 3D spatial
domain is being considered. Then the instantaneous energy of the noise signal,
with parameters αx, αy and αz, will be the same as that for a noise signal over

a 1D region with parameter α =
√
α2
x + α2

y + α2
z.

In the common case where there is no directional preference for the noise in
the spatial dimensions, it is natural to choose common values of σx and αx for
all spatial noise components.

References

[1] Martin Gardner, White and brown music, fractal curves and one-over-f
fluctuations, Scientific American, Volume 238, Number 4, April 1978, pages
16-32.

[2] Jeremy Kasdin, Discrete Simulation of Colored Noise and Stochastic Pro-
cesses and 1/fˆa Power Law Noise Generation, Proceedings of the IEEE,
Volume 83, Number 5, 1995, pages 802-827.

[3] Edoardo Milotti, 1/f noise: a pedagogical review, arXiv:physics/0204033.

[4] Sophocles Orfanidis, Introduction to Signal Processing, Prentice-
Hall, 1995.

12



[5] William Press, Flicker Noises in Astronomy and Elsewhere, Comments on
Astrophysics, Volume 7, Number 4, 1978, pages 103-119.

13


