Introduction to the finite element method

M. M. Sussman

sussmanm@math.pitt.edu

Office Hours: 11:10AM-12:10PM, Thack 622

May 12 – June 19, 2014

Resources

- Strang, G., Fix, G., An Analysis of the Finite Element Method 2nd Edition, Wellesley-Cambridge Press, 2008
- FEniCS Book: Volume 84 of Springer Lecture Notes in Computational Science and Engineering series: Anders Logg, Kent-Andre Merdal, Garth Wells, "Automated Solution of Differential Equations by the Finite Element Method" ISBN: 978-3-642-23098-1 (Print) 978-3-642-23099-8 (Online) http://launchpad.net/fenics-book/trunk/final/ +download/fenics-book-2011-10-27-final.pdf
 - +download/fenics-book-2011-10-27-final.pdf
- FreeFem++ Book: http://www.freefem.org/ff++/ftp/freefem++doc.pdf
- ▶ Reference: Hecht, F. New development in freefem++. J. Numer. Math. 20 (2012), no. 3-4, 251-265. 65Y15
- Zienkiewicz, O. C., The Finite Element Method in Engineering Science, McGraw-Hill, 1971.

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

History

- Roots of method found in math literature: Rayleigh-Ritz
- Popularized in the 1950s and 1960s by engineers based on engineering insight with an eye toward computer implementation
- Winning idea: based on low-order piecewise polynomials with increased accuracy coming from smaller pieces, not increasing order.
- ► First use of the term "Finite element" in Clough, R. W., "The finite element in plane stress analysis," *Proc. 2dn A.S.C.E. Conf. on Electronic Computation*, Pittsburgh, PA, Sept. 1960.
- Strang and Fix, first 50 pages: introduction

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

Generalized derivatives

Definition

The space of $C^{\infty}(\Omega)$ functions whose support is a compact subset of Ω is denoted $C^{\infty}_0(\Omega)$

If a function f is differentiable, then $\int_{\Omega} \frac{df}{dx} \phi dx = -\int_{\Omega} f \frac{d\phi}{dx}$ for all $\phi \in C_0^{\infty}$.

Definition

If f is a measurable function and if there is a measurable function g satisfying $\int_\Omega g\phi dx=-\int_\Omega f\frac{d\phi}{dx}$ for all $\phi\in C_0^\infty$, then g is said to be the "generalized derivative" of f.

Suppose Ω is a "domain" in \mathbb{R}^n

- $u \in L^2(\Omega) \Leftrightarrow ||u||_{L^2}^2 = \int_{\Omega} |u|^2 < \infty$
- ▶ $L^2(\Omega)$ is a Hilbert space with the inner product $(u, v) = \int_{\Omega} uv$
- ▶ $L^2(\Omega)$ is the completion of $C(\Omega)$ under the inner product $\|\cdot\|$.
- ► L² contains functions that are measurable but continuous nowhere.

H^k

- ▶ A seminorm is given by $|u|_k^2 = \sum \int |D^k u|^2$, where D^k is any derivative of total order k
- ► H^k is the completion of C^k under the norm $||u||_k^2 = \sum_{i=0}^k |u|_k^2$
- $H^0 = L^2$
- ► In 1D, functions in H¹ are continuous, but derivatives are only measurable.
- In dimensions higher than 1, functions in H¹ may not be continuous
- ▶ Functions in $H^1(\Omega)$ have well-defined "trace" on $\partial\Omega$.

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

A 2-point BVP

$$-\frac{d}{dx}\left(p(x)\frac{du}{dx}\right) + q(x)u = f(x)$$

$$u(0) = 0$$

$$\frac{du}{dx}(\pi) = 0$$
(BVP)

- Shape of a rotating string
- Temperature distribution along a rod

Theory

- ▶ Suppose $f \in L^2$ (finite energy)
- ▶ Define linear operator $L: H_B^2 \to L^2$
 - ▶ $L: u \mapsto f \text{ from (BVP)}$

Theory

- ▶ Suppose $f \in L^2$ (finite energy)
- ▶ Define linear operator $L: H_B^2 \to L^2$
 - ▶ $L: u \mapsto f \text{ from (BVP)}$
- ▶ L is SPD
- ► *L* is 1-1
- ▶ For each $f \in L^2$, (BVP) has a unique solution $u \in H^2_B$
- ▶ $||u||_2 \le C||f||_0$

A solution

Assume p > 0 and $q \ge 0$ are constants

Orthonormal set of eigenvalues, eigenfunctions

$$\lambda_n = p(n - \frac{1}{2})^2 + q$$
 $u_n(x) = \sqrt{\frac{\pi}{2}} \sin(n - \frac{1}{2})x$

Expand

$$f(x) = \sum_{n=1}^{\infty} a_n \sqrt{\frac{\pi}{2}} \sin(n - \frac{1}{2})x$$

- ▶ Converges in L^2 since $||f||_0^2 = \sum_{n=0}^{\infty} a_n < \infty$
- f need not satisfy b.c. pointwise!
- Solution

$$u = \sum \frac{a_n}{\lambda_n} u_n = \sqrt{\frac{pi}{2}} \sum_{n=0}^{\infty} \frac{a_n \sin(n - \frac{1}{2})x}{p(n - \frac{1}{2})^2 + q}$$

Variational form: minimization

- ▶ Solving Lu = f is equivalent to minimizing I(v) = (Lv, v) 2(f, v)
- $(f,v) = \int_0^\pi f(x)v(x) \, dx$
- $(Lv, v) = \int_0^{\pi} [-(pv')' + qv]v \, dx$

Variational form: minimization

- ▶ Solving Lu = f is equivalent to minimizing I(v) = (Lv, v) 2(f, v)
- $(f,v) = \int_0^\pi f(x)v(x) \, dx$
- $(Lv, v) = \int_0^{\pi} [-(pv')' + qv]v \, dx$
- ▶ Integrating by parts: $(Lv, v) = \int_0^{\pi} [p(v')^2 + qv^2] dx [pv'v]_0^{\pi}$
- v satisfies b.c.

Variational form: minimization

- ▶ Solving Lu = f is equivalent to minimizing I(v) = (Lv, v) 2(f, v)
- $(f,v) = \int_0^\pi f(x)v(x) \, dx$
- $(Lv, v) = \int_0^{\pi} [-(pv')' + qv]v \, dx$
- ▶ Integrating by parts: $(Lv, v) = \int_0^{\pi} [p(v')^2 + qv^2] dx [pv'v]_0^{\pi}$
- v satisfies b.c.
- $I(v) = \int_0^{\pi} [p(x)(v'(x))^2 + q(x)v(x)^2 2f(x)v(x)] dx$

Variational form: stationary point

- Solving Lu = f is equivalent to finding u so that (Lu, v) = (f, v) for all v.
- ► Integrating by parts: $(Lu, v) = \int_0^{\pi} [p u'v' + q uv] dx [puv']_0^{\pi}$
- Assume u and v satisfy b.c.
- $a(u, v) = \int_0^{\pi} [p \, u' \, v' + q \, uv] \, dx = (f, v)$
- ▶ Euler equation from minimization of I(u)

Enlarge the search space

- ► Enlarge space to any function that is *limit* of functions in H_B^2 in the sense that $I(v v_k) \rightarrow 0$
- ▶ Only need H¹
- ▶ Only the essential b.c. $(\nu(0) = 0)$ survives!
- Admissible space is H_E¹
- Solution function will satisfy both b.c.

Why only essential b.c.?

Fig. 1.2 Convergence in $3C^1$, with $v'_N(\pi) = 0$ but $v'(\pi) \neq 0$.

Relaxing space of f

- ightharpoonup f can now come from H^{-1}
- ▶ Functions whose derivatives are L^2 (also written H^0)
- $\blacktriangleright \ L: H_E^1 \to H^{-1}$
- Dirac delta function!

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

Rayleigh-Ritz method

- Start from the (minimization) variational form
- ▶ Replace H_E^1 with sequence of finite-dimensional subspaces $S^h \subset H_E^1$
- ▶ Elements of S^h are called "trial" functions
- ► Ritz approximation is minimizer *u*^h

$$I(u^h) \leq I(v^k) \quad \forall v^k \in S^h$$

$$I(v) = \int_0^{\pi} [p(v')^2 + qv^2 - 2fv] dx$$

- ► Choose eigenfunctions $j=1,2,\ldots,N=1/h$ $\phi_j(x)=\sqrt{\frac{\pi}{2}}\sin(j-\frac{1}{2})x$ with eigenvalues $\lambda_j=p(j-\frac{1}{2})^2+q$
- Express $v^k = \sum_{1}^{N} v_j^h \phi_j(x)$

$$I(v) = \int_0^{\pi} [p(v')^2 + qv^2 - 2fv] dx$$

- ► Choose eigenfunctions $j=1,2,\ldots,N=1/h$ $\phi_j(x)=\sqrt{\frac{\pi}{2}}\sin(j-\frac{1}{2})x$ with eigenvalues $\lambda_j=p(j-\frac{1}{2})^2+q$
- Express $v^k = \sum_{1}^{N} v_j^h \phi_j(x)$
- ► Plug in $I(v^k) = \sum_{1}^{N} [(v_j^k)^2 \lambda_j 2 \int_0^{\pi} f v_j^k \phi_j \, dx]$

$$I(v) = \int_0^{\pi} [p(v')^2 + qv^2 - 2fv] dx$$

- ► Choose eigenfunctions $j=1,2,\ldots,N=1/h$ $\phi_j(x)=\sqrt{\frac{\pi}{2}}\sin(j-\frac{1}{2})x$ with eigenvalues $\lambda_j=p(j-\frac{1}{2})^2+q$
- Express $v^k = \sum_{1}^{N} v_j^h \phi_j(x)$
- ► Plug in $I(v^k) = \sum_{1}^{N} [(v_j^k)^2 \lambda_j 2 \int_0^{\pi} f v_j^k \phi_j \, dx]$
- Minimize: $v_j^k = \int_0^{\pi} f \phi_j \, dx / \lambda_j$ for $j = 1, 2, \dots, N$

$$I(v) = \int_0^{\pi} [p(v')^2 + qv^2 - 2fv] dx$$

- ► Choose eigenfunctions $j=1,2,\ldots,N=1/h$ $\phi_j(x)=\sqrt{\frac{\pi}{2}}\sin(j-\frac{1}{2})x$ with eigenvalues $\lambda_j=p(j-\frac{1}{2})^2+q$
- Express $v^k = \sum_{1}^{N} v_j^h \phi_j(x)$
- ► Plug in $I(v^k) = \sum_{1}^{N} [(v_j^k)^2 \lambda_j 2 \int_0^{\pi} f v_j^k \phi_j dx]$
- Minimize: $v_j^k = \int_0^{\pi} f \phi_j \, dx / \lambda_j$ for j = 1, 2, ..., N
- ▶ Thus, $u^h = \sum_{1}^{N} (f, \phi_j) \phi_j / \lambda_j$

$$I(v) = \int_0^{\pi} [p(v')^2 + qv^2 - 2fv] dx$$

- ► Choose eigenfunctions $j=1,2,\ldots,N=1/h$ $\phi_j(x)=\sqrt{\frac{\pi}{2}}\sin(j-\frac{1}{2})x$ with eigenvalues $\lambda_j=p(j-\frac{1}{2})^2+q$
- Express $v^k = \sum_{1}^{N} v_j^h \phi_j(x)$
- ▶ Plug in $I(v^k) = \sum_{1}^{N} [(v_j^k)^2 \lambda_j 2 \int_0^{\pi} f v_j^k \phi_j dx]$
- Minimize: $v_j^k = \int_0^{\pi} f \phi_j \, dx / \lambda_j$ for j = 1, 2, ..., N
- ▶ Thus, $u^h = \sum_{1}^{N} (f, \phi_j) \phi_j / \lambda_j$
- ▶ These are projections of true solution $u = \sum_{1}^{\infty} (f, \phi_j) \phi_j / \lambda_j$

$$I(v) = \int_0^{\pi} [p(v')^2 + qv^2 - 2fv] dx$$

- ► Choose eigenfunctions $j=1,2,\ldots,N=1/h$ $\phi_j(x)=\sqrt{\frac{\pi}{2}}\sin(j-\frac{1}{2})x$ with eigenvalues $\lambda_j=p(j-\frac{1}{2})^2+q$
- Express $v^k = \sum_{1}^{N} v_j^h \phi_j(x)$
- ▶ Plug in $I(v^k) = \sum_{1}^{N} [(v_j^k)^2 \lambda_j 2 \int_0^{\pi} f v_j^k \phi_j dx]$
- Minimize: $v_j^k = \int_0^{\pi} f \phi_j \, dx / \lambda_j$ for j = 1, 2, ..., N
- ▶ Thus, $u^h = \sum_{1}^{N} (f, \phi_j) \phi_j / \lambda_j$
- ▶ These are projections of true solution $u = \sum_{1}^{\infty} (f, \phi_j) \phi_j / \lambda_j$
- ▶ Converges as $f_j/\lambda_j \approx f_j/j^2$.

Example: Polynomials as trial functions

- ► Choose $v^k(x) = \sum_{j=1}^N v_j^k x^j$
- $v^k(0) = 0$
- $I(v^k) = \int_0^{\pi} [\rho(\sum v_j^k j x^{j-1})^2 + q(\sum v_j^k x^j)^2 2f \sum v_j^k x^j] dx$
- ▶ Differentiating I w.r.t. v_i^k gives $N \times N$ system

$$KV = F$$

where
$$K_{ij}=rac{pij\pi^{i+j-1}}{i+j-1}+rac{q\pi^{i+j+1}}{i+j+1}$$
 and $F_j=\int_0^\pi fx^j\,dx$

- K is like the Hilbert matrix, very bad for n>12
- Can be partially fixed using orthogonal polynomials

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

FEM

- Strang and Fix discuss FEM in terms of minimization form
- Customary today to use stationary form
- $a(u, v) = \int_0^{\pi} [p \, u' \, v' + q \, uv] \, dx$
- $(f, v) = \int_0^\pi f v \, dx$
- ▶ Find $u \in H^1_E(0,\pi)$ so that a(u,v) = (f,v) for all $v \in H^1(0,\pi)$.
- ▶ Choose a finite-dimensional subspace $S^h \subset H^1_E(0,\pi)$
- ▶ Find $u^h \in S^h$ so that $a(u^h, v^h) = (f, v^h)$ for all $v^h \in S^h$.
- Functions v^h are called "test" functions.

Stiffness matrix

- ▶ Let $\{\phi_i\}_{i=1}^N$ be a basis of S^h
- $u^h(x) = \sum_{i=1}^n u_i^h \phi_i(x)$
- ▶ For each ϕ_i ,

$$a(u^h, \phi_i) = \int_0^{\pi} \sum_j [\rho \, u_j^h \phi_j' \phi_i' + q \, u_j^h \phi_j \phi_i] \, dx$$
$$= \sum_j (\int_0^{\pi} \rho \phi_i' \phi_j' + q \phi_i \phi_j) u_j^h \, dx$$
$$= K_{ij} u_j^h = K U^h$$

K is the "stiffness matrix"

FEM: Piecewise linear functions

- ▶ Divide the interval $[0, \pi]$ into N subintervals, each of length $h = \pi/N$ using N+1 points $x_j = (j-1)h$ for j = 1, ..., N+1
- ▶ Construct *N* "hat" functions ϕ_i

 - ► Piecewise linear
 - $\phi_{j}(0) = 0$
- ▶ At most 2 ϕ_j are nonzero on any element.

Assembling the system

Take p = q = 1

▶ Elementwise computation, for $e_{\ell} = [x_{\ell-1}, x_{\ell}]$

$$\mathcal{K}_{ij}^h = \int_0^\pi \phi_i' \phi_j' + \phi_i \phi_j \, dx$$

$$= \sum_\ell \int_{e_\ell} \phi_i' \phi_j' + \phi_i \phi_j \, dx$$
 $(f, \phi_i) = b_i = \sum_\ell \int_{e_\ell} \phi_i f(x) \, dx$

▶ System becomes $K^hU^h = b^h$

First part: $\kappa_1 = \int_{e_i} \phi'_i \phi'_i$

► For each element, there is a Left endpoint and a Right endpoint

$$\int_{e}\phi'_{L}\phi'_{L}=\frac{1}{h}\qquad \int_{e}\phi'_{L}\phi'_{R}=-\frac{1}{h}\qquad \int_{e}\phi'_{R}\phi'_{L}=-\frac{1}{h}\qquad \int_{e}\phi'_{R}\phi'_{R}=\frac{1}{h}$$

For the first element, there is only a right endpoint

$$(h)(\kappa_1) = \begin{bmatrix} 1 & & \\ & & \\ & & \end{bmatrix} + \begin{bmatrix} 1 & -1 & \\ -1 & 1 & \\ & & \end{bmatrix} + \cdots + \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & -1 & 1 \end{bmatrix}$$

$$(\kappa_1) = \frac{1}{h} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix}$$

More terms

The second stiffness term is similar

$$(\kappa_2) = rac{h}{6} \left[egin{array}{ccccc} 4 & 1 & & & & \ 1 & 4 & 1 & & & \ & \ddots & \ddots & \ddots & \ & & 1 & 4 & 1 \ & & & 1 & 2 \end{array}
ight]$$

▶ If f is given by its nodal values $f_i = f(x_i)$ then $b = \kappa_2 f_i$.

Integration

In more complicated situations, it is better to compute the integrals using Gauß integration. This involves a weighted sum over a few points inside the element.

Topics

Background

Functions and spaces

Variational formulation

Rayleigh-Ritz method

Finite element method

Errors

Error and convergence

Theorem

Suppose that u minimizes I(v) over the full admissible space H_E^1 , and S^h is any closed subspace of H_E^1 . Then:

1. The minimum of $I(v^h)$ and the minimum of $a(u - v^h, u - v^h)$, as v^h ranges over the subspace S^h , are achieved by the same function u^h . Therefore

$$a(u-u^h,u-u^h)=min_{v^h\in S^h}a(u-v^h,u-v^h)$$

2. With respect to the energy inner product, u^h is the projection of u onto S^h . Equivalently, the error $u - u^h$ is orthogonal to S^h :

$$a(u-u^h,v^h)=0 \quad \forall v^h \in S^h$$

3. The minimizing function satisfies

$$a(u^h, v^h) = (f, v^h) \quad \forall v^h \in S^h$$

4. In particular, if S^h is the whole space H_E^1 , then

First error estimate (Cea)

- $a(u-u^h,v)=(f,v)-(f,v)=0$
- $a(u-u^h, u-u^h) = a(u-u^h, u-v) + a(u-u^h, v-u^h)$
- ▶ Since $u u^h$ is not in S^h ,

$$a(u-u^h,u-u^h)=a(u-u^h,u-v)$$

▶ Since $p(x) \ge p_0 > 0$,

$$p_0 \|u - u^h\|_1^2 \le (\|p\|_{\infty} + \|q\|_{\infty}) \|u - u^h\|_1 \|u - v\|_1$$

So that

$$\|u - u^h\|_1 \le \frac{\|p\|_{\infty} + \|q\|_{\infty}}{p_0} \|u - v\|_1$$
 (Cea)

 Choose v to be the linear interpolant of u, so, from Taylor's theorem (integral form)

$$||u - u^h||_1 \le Ch||u||_2$$

Second error estimate (Nitsche)

- Let w and w^h be the true and approximate solutions of $a(w, v) = (u u^h, v)$
- Clearly, $||u u^h||^2 = a(w, u u^h)$
- And $a(u u^h, w^h) = 0$
- So $||u u^h||^2 = a(u u^h, w w^h)$
- ▶ By Cauchy-Schwarz, $\|u-u^h\|^2 \le \sqrt{a(u-u^h,u-u^h)}\sqrt{a(w-w^h,w-w^h)}$
- ▶ Applying first estimate, $||u u^h||^2 \le C^2 h^2 ||u||_2 ||w||_2$
- ► From definition of w, $||w||_2 \le C||u u^h||$
- ► Finally, $||u u^h|| \le Ch^2 ||u||_2$

Error estimate steps

- 1. Cea tells us the error $\|u-u^h\|_1$ is smaller than the best approximation error
- 2. Choice of element tells us approximation error is O(h) in $\|\cdot\|_1$
- 3. Nitsche tells us to error is $O(h^2)$ in $\|\cdot\|$

These results are generally true!