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Resources

» Strang, G., Fix, G., An Analysis of the Finite Element Method 2nd
Edition, Wellesley-Cambridge Press, 2008

» FEniCS Book: Volume 84 of Springer Lecture Notes in
Computational Science and Engineering series:
Anders Logg, Kent-Andre Merdal, Garth Wells, “Automated
Solution of Differential Equations by the Finite Element Method”
ISBN: 978-3-642-23098-1 (Print) 978-3-642-23099-8 (Online)
http://launchpad.net/fenics-book/trunk/final/
+download/fenics-book-2011-10-27-final.pdf

» FreeFem++ Book:
http://www.freefem.org/ff++/ftp/freefem++doc.pdf

» Reference: Hecht, F. New development in freefem++. J. Numer.
Math. 20 (2012), no. 3-4, 251-265. 65Y15

» Zienkiewicz, O. C., The Finite Element Method in Engineering
Science, McGraw-Hill, 1971.
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History

» Roots of method found in math literature: Rayleigh-Ritz

» Popularized in the 1950s and 1960s by engineers based on
engineering insight with an eye toward computer implementation

» Winning idea: based on low-order piecewise polynomials with
increased accuracy coming from smaller pieces, not increasing
order.

» First use of the term “Finite element” in Clough, R. W., “The finite
element in plane stress analysis,” Proc. 2dn A.S.C.E. Conf. on
Elecronic Computation, Pittsburgh, PA, Sept. 1960.

» Strang and Fix, first 50 pages: introduction
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Generalized derivatives

Definition
The space of C*>°(Q) functions whose support is a compact subset of
Q is denoted Cg° ()

> If a function f is differentiable, then [, Lodx = — [, 92 for all
¢ e Cg°.

Definition

If f is a measurable function and if there is a measurable function g
satisfying [, gpdx = — [, f% for all ¢ € C3°, then g is said to be the
“generalized derivative” of f.



L2

Suppose Q is a “domain” in R”
> uel2(Q) < ||lul2 = [, |u? <oo
» L?(Q) is a Hilbert space with the inner product (u, v) = [, uv
» L[2(Q) is the completion of C(Q2) under the inner product || - ||.

» [2 contains functions that are measurable but continuous
nowhere.
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A seminorm is given by |u|2 = 3" [ |D¥ul2, where DX is any
derivative of total order k

H¥ is the completion of C* under the norm ||u||2 = 3K, |u|2
HY =2

In 1D, functions in H' are continuous, but derivatives are only
measurable.

In dimensions higher than 1, functions in H' may not be
continuous

Functions in H'(Q) have well-defined “trace” on 9%2.
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A 2-point BVP

5 (P02 ) + atou = 1)
u(0)=0 (BVP)
au
a(w) =0

» Shape of a rotating string
» Temperature distribution along a rod
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Theory

» Suppose f € L2 (finite energy)
» Define linear operator L : H3 — L2
» L:uw— ffrom (BVP)
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Theory

v

Suppose f € L2 (finite energy)
Define linear operator L : H3 — L2
» L:uw— ffrom (BVP)

Lis SPD

Lis 1-1

For each f € L2, (BVP) has a unique solution u € H2
ull2 < Cl[fllo

v

vV v v v
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A solution

Assume p > 0 and g > 0 are constants
» Orthonormal set of eigenvalues, eigenfunctions

An=p(n— 5)2 +q  us(x)= \/zsin(n - %)x

Za,,\/73|n %)x

Converges in L2 since ||f[|5 =Y " @ < oo
f need not satisfy b.c. pointwise!

Solution
SN A, _\/ﬁi ansin(n— 1)x
= T V24 pn-t2+q

v

Expand

v

v

v
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Variational form: minimization

» Solving Lu = f is equivalent to minimizing /(v) = (Lv, v) — 2(f, v)
= [, f(x)v(x)dx

> (Lv,v) = [;[—(pv') + qv]vadx
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Variational form: minimization

» Solving Lu = f is equivalent to minimizing /(v) = (Lv, v) — 2(f, v)
> (f,v) = [y f(x)v(x)adx

> (Lv,v) = [;[—(pv') + qv]vadx

> Integrating by parts: (Lv,v) = [ [p(V')? + qv?] dx — [pv'V]T

» v satisfies b.c.
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Variational form: minimization

» Solving Lu = f is equivalent to minimizing /(v) = (Lv, v) — 2(f, v)

fo x) dx

(Lv,v) = [y [-(pv') + qv]v dx

v

v

Integrating by parts: (Lv,v) = [, [p(V')? + qv?] dx — [pvV'V]§
v satisfies b.c.

I(v) = Jy Ip()(V'(x))? + a(x)v(x)? — 2f(x)v(x)] dx

v

v
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Variational form: stationary point

v

Solving Lu = f is equivalent to finding u so that (Lu, v) = (f, V)
for all v.

v

Integrating by parts: (Lu,v) = [ [pu'V' + quv]dx — [puv']3

v

Assume u and v satisfy b.c.

v

a(u,v) = [y [pu'v +quv]dx = (f,v)

v

Euler equation from minimization of /(u)
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Enlarge the search space

Enlarge space to any function that is /imit of functions in HZ in
the sense that /(v — v) — 0

Only need H'

Only the essential b.c. (v(0) = 0) survives!
Admissible space is H}

Solution function will satisfy both b.c.

v

vV v vv
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Why only essential b.c.?

viim) =1

wi(m =0

x=0 x=m

Fig. 1.2 Convergence in 3!, with »y(7) = 0 but v(x) # 0.

From Strang and Fix.
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Relaxing space of f

f can now come from H~'

Functions whose derivatives are L? (also written H°)
L:HL - HT

Dirac delta function!

vV v v v
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Rayleigh-Ritz method

v

Start from the (minimization) variational form

Replace H] with sequence of finite-dimensional subspaces
Shc HL

Elements of S" are called “trial” functions

Ritz approximation is minimizer u”

v

v

v

I(u™y < I(v) wvke sh
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Example: Eigenvectors as trial functions

Assume p, g > 0 are constants
> I(v) = [y [P(V))? + qv? — 2fv] dx

» Choose e|genfunct|on31 =1,2,. =1/h
¢j(x) = /5 sin(j — 3)x with e|genvalues N=p(-3)P+q

» Express vk = 21 hi(x)
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Example: Eigenvectors as trial functions

Assume p, g > 0 are constants

> I(v) = [y [P(V))? + qv? — 2fv] dx
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v

These are projections of true solution u = >""(f, ¢;)¢;/A;
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Example: Eigenvectors as trial functions

Assume p, g > 0 are constants

>

>

I(v) = [y Ip (V') + qv? — 2fv] dx

Choose eigenfunchons; =1,2,. =1/h
¢j(x) = /5 sin(j — 3)x with e|genvalues N=p(-3)P+q

Express vk = v¢;(x)

Plug in I(v¥) = 27 [(vf)2 — 2 Jy vy ax]

Minimize: v} = [ fg; dx/Ajforj=1,2,... N

Thus, u" = SV (F, ¢)6/ A

These are projections of true solution u = >""(f, ¢;)¢;/A;

Converges as fi/\; = fi/ 2.
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Example: Polynomials as trial functions

Assume p, g > 0 are constants
> Choose v/(x) = S, vix!
» vK(0) =0
I(vK) = Jo IP(3Z vix=")2 + q(3 vfxd)? — 2f 37 vixd] dx

Differentiating | w.r.t. vjk gives N x N system

v

v

KV =F

_ pijr™i- gr It j
where Kj = 55— +,+,+1 and Fj = [ fx/ dx

v

K is like the Hilbert matrix, very bad for n>12

v

Can be partially fixed using orthogonal polynomials
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FEM

» Strang and Fix discuss FEM in terms of minimization form

» Customary today to use stationary form

» a(u,v) = [, [pu'v' + quv]dx

(f,v) = [y fvdx

Find u € HL(0, ) so that a(u, v) = (f,v) for all v € H'(0, 7).
Choose a finite-dimensional subspace S" c HL(0, )

Find u" € 8" so that a(u”, v") = (f, v") for all v/ € S".
Functions v/ are called “test” functions.

v

vV v vv
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Stiffness matrix

v

Let {¢;}X, be a basis of S"
u'(x) = 3L ufi(x)

For each ¢;,

v

v

a(u", ¢7) = / Z[pu”¢,¢,+qu 4] dx

Y /0 PO, + qbidy) P dx
j
= Kju = KU

K is the “stiffness matrix”

v
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FEM: Piecewise linear functions

» Divide the interval [0, 7] into N subintervals, each of length
h=m/Nusing N+ 1points x; = (j—1)hforj=1,... N+ 1
» Construct N “hat” functions ¢;
> ¢j(xi) = Jj
» Piecewise linear
> ¢j(0)=0
» At most 2 ¢; are nonzero on any element.

T h G+h .
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Assembling the system

Take p=qg=1
» Elementwise computation, for e, = [xy_1, X¢]

K= [ ity -+ o0y o
=3 [ oidh + onoy o
¢ e
(t.6) == [ aif(x)dx
¢ Ve

» System becomes K"U" = b”
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H . . ! L/
First part: k1 = [, ¢
» For each element, there is a Left endpoint and a Right endpoint

fosi=g  [otn=—f  [omh=—f [ohoh=g

» For the first element, there is only a right endpoint
1 1 -1
()(s) = + ot
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More terms

» The second stiffness term is similar

h
(’f2):g e,
1 4 1

1 2

» If f is given by its nodal values f; = f(x;) then b = kxf;.
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Integration

In more complicated situations, it is better to compute the integrals
using Gauf3 integration. This involves a weighted sum over a few
points inside the element.
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Error and convergence

Theorem
Suppose that u minimizes I(v) over the full admissible space H}, and
S" is any closed subspace of HL. Then:

1.

The minimun of I(v") and the minimum of a(u — v",u — v"), as
v ranges over the subspace S", are achieved by the same
function u". Therefore

a(u—u' u—u") = mingscgra(u — v u— v
€

With respect to the energy inner product, u” is the projection of u
onto S". Equivalently, the error u — u" is orthogonal to S":

au—-u'vh=0 whesh

. The minimizing function satisfies

a(u" vy =(f,v")  whesh

. In particular, if S" is the whole space HL, then

a(u,v)=(f,v) VYveH.
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First error estimate (Cea)

» a(u—uv)=(f,v)—(f,v) =0
» a(u—uu—u")=alu—-u'u—-v)+alu—u'v—u"
» Since u — uis notin S,

au—uu—u)=alu-u"u-v)

v

Since p(x) > po > 0,
pollu — Ul < (Pl + l1gllc)llu = u"ll1]lu— Vi1

So that

v

Plloc + 1190
Pl + llqll lu
Po

Choose v to be the linear interpolant of u, so, from Taylor’s
theorem (integral form)

Ju—u"ly < — V|5 (Cea)

v

lu—u"ll+ < Chllull2
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Second error estimate (Nitsche)
» Let w and w" be the true and approximate solutions of
a(w,v) = (u—uhv)
» Clearly, |u— u"||? = a(w,u — u")
» And a(u — u", wh) =0
» So |ju—u"]? =a(u—u",w—wh

» By Cauchy-Schwarz,
|u—u? < /a(u—uhu—uh)/a(w—wh w— wh)

» Applying first estimate, ||u — u"||2 < C?H?||ul|2||w||2
» From definition of w, ||w|2 < C|lu — u"||

» Finally, ||[u — u"|| < CH?||ul|2
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Error estimate steps

1. Ceatells us the error ||u — u"||1 is smaller than the best
approximation error

2. Choice of element tells us approximation error is O(h) in || - ||1
3. Nitsche tells us to error is O(h?) in || - ||

These results are generally true!
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