
Ujval Kapasi*, Elif Albuz*, Philippe Vandermersch*, Nathan Whitehead*, Frank Jargstorff*
San Jose Convention Center| Sept 22, 2010

*NVIDIA

NVIDIA CUDA Libraries

NVIDIA CUDA Libraries

— CUFFT

— CUBLAS

— CUSPARSE (Separate talk: Th 11AM)

— math.h

— CURAND

— NPP

— Thrust (Separate talks: Th 11AM, Th 2PM)

— CUSP

NVIDIA

Libraries

3rd Party

Libraries

Applications

CUDA C APIs

Goal: World Class Performance

 Accelerate building blocks required by algorithms widely

used in GPU computing

— Our team consists of algorithm experts and CUDA experts

 Heavily optimize the most commonly used routines

 Support all CUDA-capable hardware

— Optimized libraries with hardware launch

 Incorporate best practices from the field

— Published papers, open source software, academic partners, etc.

Further information

 http://www.nvidia.com/getcuda

Questions can be posted to the ―CUDA Programming and

Development‖ Forum

— http://forums.nvidia.com/index.php?showforum=71

 Directly approach our CUDA Library engineers right

after this talk

http://developer.nvidia.com/object/cuda_3_2_downloads.html
http://developer.nvidia.com/object/cuda_3_2_downloads.html
http://forums.nvidia.com/index.php?showforum=71

San Jose Convention Center| Sept 22, 2010

CUFFT Library

Introduction

NVIDIA CUDA Fast Fourier Transform Library is a GPU based

FFT library computing parallel FFTs on NVIDIA GPUs.

CUFFT Library Features

 Algorithms based on Cooley-Tukey and Bluestein

 Simple interface similar to FFTW

 Streamed asynchronous execution

 1D, 2D and 3D transforms of complex and real

data

 Double precision (DP) transforms

 1D transform sizes up to 128 million elements

 Batch execution for doing multiple transforms

 In-place and out-of-place transforms

N= N1*N2

N1

N2 N1

N2

T,T

Cooley-Tukey

1D-2D-3D Complex/Real

Use CUFFT in 3 easy steps

Step 1 –Allocate space on GPU memory

Step 2 – Create plan specifying transform configuration like

the size and type (real, complex, 1D, 2D and so on).

Step 3 –Execute the plan as many times as required, providing

the pointer to the GPU data created in Step 1.

Performance of Radix-2 (ECC on)

0

40

80

120

160

200

240

280

320

360

400

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Size 2N

Single-Precision Fermi CUFFT

0

10

20

30

40

50

60

70

80

90

100

110

120

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

G
fl
o
p
s

Size 2N

Double-Precision Fermi CUFFT

 Up to 8.8x performance advantage over MKL in both single- and double-precision

* MKL 10.1r1 on quad-Corei7 Nehalem @ 3.07GHz

* FFTW single-thread on same CPU

* CUFFT on Fermi C2050

gFLOPs gFLOPs

CUFFT

MKL

FFTW

New in 3.2 Release
 Optimized performance of Radix-3, -5, and -7

— Hence, acceleration of sizes (2a . 3b . 5c .7d)

 Bluestein algorithm improves performance and accuracy for

large prime transform sizes

— Up to 100,000x improvement in accuracy for large prime transforms

— Motivated by customer request

 Support large batches up to the available GPU memory

— i.e., up to 6GB on C2070

Radix-3 Performance in 3.2

0

20

40

60

80

100

120

140

160

180

200

220

240

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Size 3N

Radix 3 (SP) Fermi CUFFT

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Size 3N

Radix 3 (DP) Fermi CUFFT

 Up to 18x for single-precision and up to 15x for double-precision

 Similar acceleration for radix-5 and -7

* MKL 10.1r1 on quad-Corei7 Nehalem @ 3.07GHz

* FFTW single-thread on same CPU

* CUFFT on Fermi C2050

GFLOPS GFLOPS

-- CUFFT (ECC off)

 CUFFT (ECC on)

 MKL

Future Releases of CUFFT

Multi-GPU scaling ?

Further performance improvements ?

. . .

Suggestions?

?

San Jose Convention Center| Sept 22, 2010

CUBLAS Library

Cublas Features
 Implementation of BLAS (Basic Linear Algebra Subprograms)

 CUBLAS first release in Toolkit2.0 in 2008

 Divided in three categories

— Level1 (vector,vector):

 AXPY : y = alpha.x + y

 DOT : dot = x.y

— Level 2(matrix,vector),

 Vector multiplication by a General Matrix : GEMV

 Triangular solver : TRSV

— Level3(matrix,matrix)

 General Matrix Multiplication : GEMM

 Triangular Solver : TRSM

Cublas Features

 Support of 4 types :

— Float, Double, Complex, Double Complex

— Respective Prefixes : S, D, C, Z

 Example: SGEMM

 S: single precision (float)

 GE: general

 M: multiplication

 M: matrix output

 Contains 152 routines : S(37),D(37),C(41),Z(41)

CUBLAS Applications

 Building block for CUDA port of LAPACK

— CULA from EM Photonics

— MAGMA from University of Tennessee

 MATLAB acceleration

— Parallel Computing Toolbox from The Mathworks

— Jacket from AccelerEyes

 ANSYS, CAE simulation software

 LS-DYNA, developed by Livermore Software Technology, FEA

simulation

CUBLAS DGEMM Performance

0

50

100

150

200

250

300

350
G

F
L
O

P
S

Dimension (m = n = k)

DGEMM 3.2 DGEMM 3.1 DGEMM MKL 4 THREADS

*NVIDIA C2050, ECC on

*MKL 10.2.3 , i7 4 cores CPU @ 2.66Ghz

CUBLAS is more than

7 times faster than MKL

30% speedup vs 3.1

3.2 has only 8%

performance variation

versus 300% for 3.1

Performance GEMM summary

636

775

301 295

78 80
39 40

0

100

200

300

400

500

600

700

800

900

SGEMM CGEMM DGEMM ZGEMM

G
F
L
O

P
S

CUBLAS3.2

MKL 4THREADS

*NVIDIA C2050, ECC on

*MKL 10.2.3 , i7 4 cores CPU @ 2.66Ghz

Future plan

 Optimize TRSM, SYMM

 BLAS1 results returned in Device memory

 Scalar parameters alpha/beta passed by reference, residing

on host or device memory.

 Looking for feedback on

— Workloads that don’t fit within a single GPU

— Workloads that operate on small matrices

San Jose Convention Center| Sept 22, 2010

CUDA math.h Library

Features

math.h is industry proven, high performance, high accuracy

• C99 compatible math library, plus extras

• Basic ops: x+y, x*y, x/y, 1/x, sqrt(x), FMA (IEEE-754 accurate in single, double)

• Exponentials: exp, exp2, log, log2, log10, ...

• Trigonometry: sin, cos, tan, asin, acos, atan2, sinh, cosh, asinh, acosh, ...

• Special functions: lgamma, tgamma, erf, erfc

• Utility: fmod, remquo, modf, trunc, round, ceil, floor, fabs, ...

• Extras: rsqrt, rcbrt, exp10, sinpi, sincos, erfinv, erfcinv, ...

Improvements

• Continuous enhancements to performance and accuracy

• Changes based on customer feedback

CUDA 3.1 erfinvf (single precision)

accuracy

5.43 ulp → 2.69 ulp

performance

1.7x faster than CUDA 3.0

CUDA 3.2 1/x (double precision)

performance

1.8x faster than CUDA 3.1

San Jose Convention Center| Sept 22, 2010

CURAND Library

CURAND

 New library for random number generation (CUDA 3.2)

 Applications

— Physical sciences

— particle physics

— physical chemistry

— Finance

— risk analysis

— derivatives pricing

Features

• Library interface

– Pseudorandom generation

– Quasirandom generation

– Bits, uniform, normal, floats, doubles

• Kernel interface

– Inline generation, avoid memory altogether

Pictures

XORWOW Sobol’ 2D

Pictures
Sobol’ dimension mismatch

x y x y x y x y x y x y

x y z x y z x y z x y z

x x x x x x y y y y y y

Original memory layout

Revised memory layout

XORWOW Pseudorandom Number Generator

t = (x ˆ (x >> 2));

x = y;

y = z;

z = w;

w = v;

v = (v ˆ (v << 4)) ˆ

(t ˆ (t << 1));

d += 362437;

return d + v;

Single thread

XORWOW Pseudorandom Number Generator

Parallel threads

Customer Feedback To Drive New Features

• More base generators

– LCG, Mersenne Twister, rand48, ...

– XOR-256

• More distributions

– Log-normal, exponential, binomial, ...

• Performance optimizations

Which ones do you want?

What’s useful?

San Jose Convention Center| Sept 22, 2010

NPP Library

NVIDIA Performance Primitives (NPP)

• What is NPP?

• Performance

• Applications

• Roadmap

What is NPP?

• C library of functions (primitives)

– well optimized

– low level API:

• easy integration into existing code

• algorithmic building blocks

– actual operations execute on CUDA GPUs

• Approximately 350 image processing functions

• Approximately 100 signal processing functions

Image Processing Primitives

• Data exchange & initialization

– Set, Convert, CopyConstBorder, Copy,

Transpose, SwapChannels

• Arithmetic & Logical Ops

– Add, Sub, Mul, Div, AbsDiff

• Threshold & Compare Ops

– Threshold, Compare

• Color Conversion

– RGB To YCbCr (& vice versa), ColorTwist,

LUT_Linear

• Filter Functions

– FilterBox, Row, Column, Max, Min, Dilate,

Erode, SumWindowColumn/Row

• Geometry Transforms

– Resize , Mirror, WarpAffine/Back/Quad,

WarpPerspective/Back/Quad

• Statistics

– Mean, StdDev, NormDiff, MinMax,

Histogram, SqrIntegral, RectStdDev

• Segmentation

– Graph Cut

NPP Performance

• NPP vs highly optimized Intel CPU code (IPP)

• Majority of primitives 5x to 10x faster

• Up to 40x speedups

• HW:

– GPU: NVIDIA Tesla C2050

– CPU: Dual Socket Core™ i7 920 @ 2.67GHz

Applications

• NPP’s image processing primitives accelerate

video or still-image processing tasks.

• AccelerEyes’ Matlab Plug-in:

– ―Jacket 1.4 provides direct access to the NVIDIA

Performance Primitives or NPP enabling new Image

Processing functionality such as ERODE and DILATE.‖

NPP Roadmap

• NPP releases in lockstep with CUDA Toolkit:

– grow number of primitives (data initialization,

conversion, arithmetic, …)

– complete support for all data types and broad set of

image-channel configurations

– Asynchronous operation support

• NPP 3.2 adds 167 new functions:

– Mostly data-initialization/transfer and arithmetic

– New basic signal processing

Additional Information

• On the web:

– developer.nvidia.com/npp

• Feature requests:

– npp@nvidia.com

Q&A Session

THANK YOU

