
J. Parallel Distrib. Comput. 69 (2009) 451–460
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Porting a high-order finite-element earthquake modeling application to NVIDIA
graphics cards using CUDA
Dimitri Komatitsch a,b,∗, David Michéa a, Gordon Erlebacher c
a Université de Pau et des Pays de l’Adour, CNRS & INRIA Magique-3D, Laboratoire de Modélisation et d’Imagerie en Géosciences UMR 5212, Avenue de l’Université,
64013 Pau Cedex, France
b Institut universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France
c Department of Scientific Computing, Florida State University, Tallahassee 32306, USA

a r t i c l e i n f o

Article history:
Received 30 June 2008
Received in revised form
25 October 2008
Accepted 16 January 2009
Available online 3 February 2009

Keywords:
GPGPU
CUDA
Speedup
Finite elements
Spectral methods

a b s t r a c t

We port a high-order finite-element application that performs the numerical simulation of seismic
wave propagation resulting from earthquakes in the Earth on NVIDIA GeForce 8800 GTX and GTX 280
graphics cards using CUDA. This application runs in single precision and is therefore a good candidate for
implementation on current GPU hardware, which either does not support double precision or supports it
but at the cost of reduced performance. We discuss and compare two implementations of the code: one
that has maximum efficiency but is limited to thememory size of the card, and one that can handle larger
problems but that is less efficient. We use a coloring scheme to handle efficiently summation operations
over nodes on a topology with variable valence. We perform several numerical tests and performance
measurements and show that in the best case we obtain a speedup of 25.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Over the past several years, non-graphical applications ported
to the GPUs have steadily grown more numerous [25]. Many
applications have been adapted to the GPU using one of several
specialty languages. These range from graphical languages such
as Cg, HLSL, GLSL, to languages that abstract away the graphics
component to ease the implementation of non-graphical code,
such as Brook, Scout [20], Sh, Rapidmind, and CUDA. CUDA
offers significant innovation and gives users a significant amount
of control over a powerful streaming/SIMD computer. Since
CUDA became available in 2007, the number of General-purpose
Processing on Graphical Processing Units (GPGPU) applications
has drastically increased. CUDA is being used to study physical
problems as diverse as molecular dynamics [2], fluid dynamics [4],
or astrophysical simulations [24].
Our research group has developed a software package, called

SPECFEM3D_GLOBE, for the three-dimensional numerical simula-

∗ Corresponding author at: Université de Pau et des Pays de l’Adour, CNRS& INRIA
Magique-3D, Laboratoire de Modélisation et d’Imagerie en Géosciences UMR 5212,
Avenue de l’Université, 64013 Pau Cedex, France.
E-mail addresses: dimitri.komatitsch@univ-pau.fr (D. Komatitsch),

davidmichea@gmail.com (D. Michéa), gerlebacher@fsu.edu (G. Erlebacher).
URLs: http://www.univ-pau.fr/∼dkomati1 (D. Komatitsch),

http://www.sc.fsu.edu/∼erlebach (G. Erlebacher).

0743-7315/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2009.01.006
tion of seismicwave propagation resulting fromearthquakes in the
Earth based on the so-called spectral-element method (SEM) [16,
19,17]. The SEM is similar to a finite-element method with high-
degree polynomial basis functions. The mesh of elements required
to cover the Earth is usually so large that calculations are very ex-
pensive in terms of CPU time and require a large amount of mem-
ory, at least a few terabytes. We therefore usually turn to parallel
programming with MPI [17,15], OpenMP, or both. Typical runs re-
quire a few hundred processors and a few hours of elapsed wall-
clock time. Current large runs require a few thousand processors,
typically 2000–4000, and two to five days of elapsed wall-clock
time [17,15]. It is therefore of interest to try to speed up the calcula-
tions on each node of such a parallel machine by turning to GPGPU.
We will see in the next section that a significant amount of work
has been devoted in the community to porting low-order finite-
element codes to GPU, but to our knowledge we are the first to
address the issue of porting amore complex higher-order spectral-
like finite-element technique.
Rather than attempt to solve the fully resolved problem using

both MPI and the GPU simultaneously, which we will consider in a
future study, we choose to investigate the potential for speedup on
a single CPU, with acceleration provided solely by the GPU. Such an
implementation can be very useful in the absence of a GPU cluster
for quick parameter studies, parametric explorations, and code
development. In the future the experience gained by this exercise
will provide the proper intuition to accelerate anMPI version of the

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:dimitri.komatitsch@univ-pau.fr
mailto:davidmichea@gmail.com
mailto:gerlebacher@fsu.edu
http://www.univ-pau.fr/~dkomati1
http://www.univ-pau.fr/~dkomati1
http://www.univ-pau.fr/~dkomati1
http://www.univ-pau.fr/~dkomati1
http://www.univ-pau.fr/~dkomati1
http://www.sc.fsu.edu/~erlebach
http://www.sc.fsu.edu/~erlebach
http://www.sc.fsu.edu/~erlebach
http://www.sc.fsu.edu/~erlebach
http://www.sc.fsu.edu/~erlebach
http://www.sc.fsu.edu/~erlebach
http://dx.doi.org/10.1016/j.jpdc.2009.01.006


452 D. Komatitsch et al. / J. Parallel Distrib. Comput. 69 (2009) 451–460
code using the graphics processors. Our seismic wave propagation
application is written in Fortran95 + MPI, but we wrote a serial
version in C for the tests to facilitate interfacing with CUDA, which
is currently easier from C.
A major issue in all finite-element codes, either low or high

order, is that dependencies arise from the summation of elemental
contributions at those global points shared among multiple mesh
elements, requiring atomic operations. We will show that use of
a mesh coloring technique allows us to overcome this difficulty
and obtain a speedup of 25x, consistent with speedups obtained by
many other researchers for other realistic applications in different
fields.
The remainder of the paper is organized as follows: We begin

with a description of similar problems ported to the GPU in
Section 2. The serial algorithm is discussed in Section 3, followed
by the CUDA implementation of the spectral-element algorithm in
Section 4. Within this section, we discuss an implementation that
runs fully on the GPU, including the coloring scheme that is needed
to avoid atomic operations. We also describe a version of our
algorithm capable of solving larger problems that cannot fit fully
on the GPU. Optimizationswe considered to improve efficiency are
treated in Section 5.We provide some numerical code validation in
Section 6, and analyze some performance results in Section 7. We
conclude in Section 8.

2. Related work

For a wide range of applications, depending on the algorithms
used and the ease of parallelization, applications ported to the
GPU have acquired speedups that range from 3x to 50x. Of
course, whether a specific speedup is considered impressive or not
depends strongly on how well the original code was optimized.
Algorithms such as finite-difference and finite-volume methods
are amenable to large accelerations due to their sparse structure.
On the other hand, dense methods such as spectral methods or
spectral finite-element methods are more difficult to accelerate
substantially, partly due to their dense matrices combined with
the small amount of fast memory on the graphics card. Thus, many
codes become bandwidth-limited. On the other hand, the local
nature of a finite-difference stencil allows smaller sections of the
domain to be treated at a given time, and there is therefore more
room to balance issues of bandwidth, computations, kernel size,
etc. [14,11].
Göddeke and his co-workers have successfully implemented

their finite-element algorithms on a CPU cluster enhanced by now
out-of-date GPUs. They program the GPUs at the shader level
to solve an implicit system using a multigrid algorithm [9]. In
the area of numerical modeling of seismic wave propagation, [1]
has recently successfully harnessed GPGPU to calculate seismic
reverse-time migration for the oil and gas industry using a finite-
difference method.
To date, there have been a few finite-element implementations

in CUDA, such as the volumetric finite-element method to support
the interactive rates demanded by tissue cutting and suturing
simulations duringmedical operations [29,30,25]. The acceleration
derives from a GPU implementation of a conjugate gradient
solver. The time-domain finite-element has been accelerated using
OpenGL on the graphics card [18]. The authors have achieved
a speedup of only two since the code is dominated by dense
vector/matrix operations.
To our knowledge, the first nonlinear finite-element code

ported to the GPU is in the area of surgical simulation [27]. The
finite-element cells are tetrahedra with first-order interpolants
and thus the overall solver is second-order accurate. The authors
achieve a speedup of 16x. The algorithm is implemented fully on
the GPU using both graphic and non-graphic APIs. The authors
decided not to use one of the existing higher-level languages such
as CUDA for NVIDIA graphics cards or CTM for ATI graphics cards.
The unique structure of the tetrahedra allows the storage of the
force at the nodes of a tetrahedra in four textures of a size equal
to the number of global nodes. Once these forces are calculated, a
pass through the global nodes combined with indirect addressing
allows the global forces to be calculated. In our code, a novel
coloring scheme decomposes the mesh into distinct subsets of
elements with no common vertices within a subset. The global
forces can thus be calculated in multiple blocks without any risk of
interaction. This simplifies the data structures tremendously, and
speeds up the code.
In [28], the authors invert a mass matrix with Jacobi iteration

using C# and aMicrosoft interface to theGPU. The remainder of the
code is solved on the GPU. Although the authors achieve a speedup
of close to 20x, the Jacobi method is intrinsically parallel, and has
a very slow convergence rate.
For real and relatively complex applications such as ours, it is

typically expected to obtain a speedup between 10x and 20xwhen
turning to GPGPU. For instance, for a wave-equation application,
i.e., solving the same physical equation as in this article, as well as
for other problems such as a rigid-body physics solver or matrix
numerics, NVIDIA itself reports speedups between 10x and 15x
([5], page 26 of the PDF presentation). Table 2 of [6] also measures
speedups around 10x to 15x for six real applications, and 44x for a
seventh. For other problems such as sorting, fast Fourier transform
and dense matrix multiplication algorithms, [11] have developed
cache-efficient algorithms on GPU and also obtained speedups
ranging between 2x and 10x.
Current GPGPU hardware supports quasi-IEEE-754 s23e8

single precision arithmetic, except for instance the fact that
denormalization is lacking and always rounds to zero [10]. A weak
point of some current graphics cards is their lack of hardware
support for 64 bit double precision arithmetic. RecentNVIDIAGPUs
such as the G200 series support double precision, but, according
to NVIDIA, with a peak speed of 90 Gflops [23], a full order of
magnitude lower than its peak speed of 988 Gflops in single
precision.
For some other finite-element applications, which involve the

resolution of large linear systems, people have been forced to turn
to mixed ‘single-double’ precision solvers or to emulate double
precision in software [10]. Our SEM code is sufficiently accurate in
single precision, see for instance [16] and benchmarks therein, as
well as the example in the section about numerical results below,
and therefore current hardware is sufficient.
It is worthmentioning that another approach, called ‘automatic

speculative thread extraction (ASTEX) technique for hybrid
multicore architectures’, has been developed by INRIA CAPS [26,
7] to port existing applications to GPGPU without the need to
modify source code. Runtime data is used to automatically extract
parts of an existing C code and provide speculative information
on data structure accesses to partition the code between general-
purpose cores and hardware accelerators such as GPUs, FPGAs or
coprocessors. The partitioning of the application source code is
then expressed through directives called HMPP. Another library,
called GPULib [21], is available for IDL,Matlab and Python based on
a similar idea: hiding the difficulty of programming GPUs directly
by providing a high-level library.

3. Serial algorithm

The SEM is a high-order finite-element algorithm in which
a domain is subdivided into cells within which variables are
approximated with high-order interpolation. We have adopted
the SEM to simulate numerically the propagation of seismic
waves resulting from earthquakes in the Earth [16]. It solves the
variational form of the elastic wave equation in the time domain
on a non-structured mesh of hexahedral elements called spectral
elements to compute the displacement vector of any point of
the medium under study, knowing the density and the speed of
pressure and shear waves (or equivalently, Lamé parameters) in
the rocks that compose it.



D. Komatitsch et al. / J. Parallel Distrib. Comput. 69 (2009) 451–460 453
Fig. 1. (Left) A typical mesh slice extracted from our MPI spectral-element seismic wave simulation software package for the full Earth. The full mesh for the MPI version
contains hundreds or thousands of such mesh slices in order to mesh the full sphere (middle, in which each slice is shown with a different color and the top of each mesh
slice can be seen at the surface of the sphere). In this article we use only a single slice to make the code serial and to enable testing of speedup obtained with CUDA on the
GPU. Each so-called spectral element of the non-structured mesh contains 53 = 125 grid points not represented here, but represented in Fig. 2. (Right) Close-up on 2D cut
planes, showing that the mesh does not have a regular topology: it is non-structured.
We consider a linear anisotropic elastic rheology for the hetero-
geneous solid Earth, and therefore the seismic wave equation can
be written in the strong, i.e., differential, form

ρü = ∇ · σ + f,
σ = C : ε,

ε =
1
2
[∇u+ (∇u)T],

(1)

where u denotes the displacement vector, σ the symmetric,
second-order stress tensor, ε the symmetric, second-order strain
tensor, C the fourth-order stiffness tensor, ρ the density, and f an
external force. The double tensor contraction operation is denoted
by a colon, a superscript T denotes the transpose, and a dot over a
symbol indicates time differentiation. The physical domain of the
model is denoted byΩ and its outer boundary by Γ . The material
parameters of the solid, C and ρ, can be spatially heterogeneous.
We can then rewrite the system (1) in aweak, i.e., variational, form
by dotting it with an arbitrary test function w and integrating by
parts over the whole domain:∫
Ω

ρ w · ü dΩ +
∫
Ω

∇w : C : ∇u dΩ

=

∫
Ω

w · f dΩ +
∫
Γ

(σ · n̂) ·w dΓ . (2)

The free surface boundary condition, i.e., the fact that the
traction vector must be zero at the surface, is easily implemented
in the weak formulation since the integral of traction τ = σ · n̂
along the boundary simply vanishes when we set τ = 0 at the free
surface of the Earth.
This formulation is solved on a mesh of hexahedral elements in

3D, which honors both the free surface of the model and its main
internal discontinuities, i.e., its geological layers. The unknown
wave field is expressed in terms of Lagrange polynomials of degree
N = 4 onGauss–Lobatto–Legendre integration (GLL) points, which
results in a diagonalmassmatrix that leads to a simple explicit time
integration scheme [16]. As a result, themethod lends itself well to
calculations on large parallel machines with distributed memory.
We can rewrite the system (2) in matrix form as

Md̈+ Kd = F , (3)
where d is the displacement vector,M is the diagonal mass matrix,
K is the stiffnessmatrix, F is the source term, and a double dot over
a symbol denotes the second derivative with respect to time. For
detailed expressions of these matrices, see [16].
The full mesh for theMPI version of our code contains hundreds

or thousands of mesh slices in order to mesh the full sphere (Fig. 1,
middle). The typical mesh slice extracted from the full mesh to run
the serial version of the code is shown in Fig. 1 (left). Each spectral
element of the mesh is a deformed hexahedron that contains a
topologically-regular but non-evenly spaced grid of points used
for numerical integration based on some quadrature rule. In our
implementation of the SEM, we use polynomial basis functions of
degree N = 4; therefore the local grid is composed of five points
in each of the three spatial directions. The number of spectral
elements in each mesh slice is large, usually between 10,000 and
onemillion. Themesh is ‘unstructured’ in the finite-element sense,
i.e., its topology is not regular and cannot be described by simple
(i, j, k) addressing. Therefore, some form of indirect addressing
is called for, which implements a non-trivial mapping between
the mesh points and the mesh elements. Said differently, but
equivalently, the valence of a corner of a cube can be greater than
8, which is the maximum value in a regular mesh of hexahedra.
The need for indirect addressing implies that efficient algorithms
based on stencils, e.g., finite differences, that can take advantage of
cache reuse and optimize prefetch cannot be applied [14,11].
In the SEM algorithm, the time-advancement loop is serial,

usually based on an explicit second-order finite-difference time
scheme [16]. The time spent in this loop, when running a
large number of iterations, typically between 5 × 103 and 105,
dominates the total cost, and is therefore the focus of our efforts.
The remainder of the code, which includes preprocessing and
postprocessing phases, has negligible cost. Since the mesh is static
and the algorithm is explicit, every iteration in the time loop has
identical cost in terms of both memory and computation time.
Some of the GLL points are located exactly on the faces, edges

or corners of a given spectral element and are shared with its
neighbors in the mesh, as illustrated in Fig. 2. Therefore, one can
also view the mesh as a set of global grid points with all the
multiples, i.e., the common points, counted only once. The number
of unique points in each mesh slice is very large, between 5 ×
105 and 106. In the SEM algorithm, mechanical forces computed
independently by each element at its 53 pointsmust be summed at
the same location of a global vector by all the elements that share
a given mesh point. This is called the ‘assembly process’ in finite-
element algorithms, and it implies an atomic sum since different



454 D. Komatitsch et al. / J. Parallel Distrib. Comput. 69 (2009) 451–460
Fig. 2. (Left) In a SEM mesh, 3D elements can share points on a face, an edge or a corner; (Right) in 2D, elements can share an edge or a corner. The GLL grid points inside
each element are non-evenly spaced but have been drawn evenly-spaced for clarity.
elements add to the samememory location of a global array. In any
parallel/threaded code, it is this step that has the greatest impact
on performance.
At each iteration of the serial time loop, there are three types

of operations performed, which will correspond to our three
CUDA kernels in Section 4.1. The SEM algorithm can therefore be
summarized as a serial loop over the time steps. At each time step,
one executes:

(1) anupdatewith nodependency of someglobal arrays composed
of the unique mesh points

(2) purely local calculations of the product of predefined deriva-
tivematriceswith a local copy of the displacement vector along
cut planes in the three directions (i, j and k) of a 3D spec-
tral element, followed by element-by-element products and
sums of arrays of dimension 53, which involve a quadruple loop
on the dimension of the local arrays, with no dependency be-
tween the elements, and finally a sum of these computed val-
ues into global arrays composed of unique grid points that can
be shared between neighboring spectral elements

(3) an update with no dependency of other global arrays
composed of the unique points of the mesh.

4. CUDA implementation

In this section, we present two implementations of our code
using CUDA. The first runs fully on the GPU, and is therefore
expected to generate the fastest speedup, but the problem size is
limited by the on-board GPU memory. The host calls a sequence
of kernels every time iteration (Fig. 3). This approach was also
adopted in [27]. All local and global arrays are stored on the GPU.
Pre-processing, i.e., mesh creation, and post-processing are the
responsibility of the CPU. Since these are cheap and only done once,
their cost is not considered herein. This version of the algorithm
is constrained by the memory size of the GPU. On an 8800 GTX
card with 768 MB, the maximum problem size occupies 724
MB of memory. We determined this experimentally by executing
successive cudaMalloc() statements with increments of 1 MB.
When the available memory of the CPU exceeds that of the GPU,
which is often the case, it is possible to solve larger problems but
it then becomes necessary to transfer information to the GPU at
every iteration. This data transfer between CPU and GPU decreases
the efficiency of the algorithm.We discuss such an approach in the
second version in Section 4.2.
In the glossary of Table 1 we briefly explain some of the terms

most commonly used in the context of graphics cards and CUDA
that are used several times in the rest of the article. Formore details
the reader is referred to [22].
Table 1
Glossary of some of the terms used in CUDA programming and referred to in this
article. For more details the reader is referred to [22].

Term Explanation

Host The CPU

Device The GPU

Kernel A function executed in parallel on the device

Thread block A set of threads with common access to a shared memory
area — inside a block, threads can be synchronized

Grid A set of thread blocks — a kernel is executed on a grid of
thread blocks

Warp A group of 16 or 32 threads executed concurrently on a
multiprocessor of the GPU

Occupancy The ratio of the actual number of active warps on a
multiprocessor to the maximum number of active warps
allowed

Coalesced memory
accesses

Simultaneous GPU global memory accesses coalesced
into a single contiguous, aligned memory access

m-way bank
conflicts

Shared memory is divided into memory modules of equal
size, called banks, which can be accessed simultaneously.
Therefore, any memory read or write request made of n
addresses that fall in n distinct memory banks can be
performed simultaneously. A bank conflict occurs
whenever two addresses of a memory request fall within
the same memory bank, and the access is serialized. A
memory request with bank conflicts is split into as many
separate conflict-free requests as necessary, decreasing
the effective bandwidth by a factor equal to the number
m separate memory requests. The initial memory request
is then said to causem-way bank conflicts.

Constant memory A read-only region of device memory in which reads are
accelerated by a cache.

4.1. Implementation 1: Self-contained on the GPU

The code within a CUDA kernel is executed by all the threads
on different data (SIMD model). It is launched with several
parameters, among which:

- block_size: number of threads per block. Inside a block, threads
can share data through high speed shared memory; they can
also be synchronized.
- grid_size: number of blocks per grid. The blocks of a grid do not
share data and cannot be synchronized.

To carry out synchronization between two sets of blocks, it is
necessary to execute them in separate calls to a given kernel or
in separate kernels. We express the three steps of the spectral-
element algorithm described at the end of Section 3 as three
separate kernels, as illustrated in Fig. 3.
The local calculations inside the elements dominate the

computation time (kernel 2, see Fig. 4). Each 125-point element
is completely independent of the others. We assign one thread



D. Komatitsch et al. / J. Parallel Distrib. Comput. 69 (2009) 451–460 455
Fig. 3. Implementation of the main serial time-loop of our spectral-element method on the host for the two versions of our CUDA algorithm. The white boxes are executed
on the CPU, while the filled boxes are launched on the GPU.
per point. Thus each CUDA block has 128 threads because using a
multiple of the 32-thread warp size is best, and represents a single
element.
Benchmarks of the three steps of the serial spectral-element

code described at the end of Section 3 indicate that part 2
dominates the computational cost. The fraction of time spent in
the various algorithm sections is roughly 6% in part 1, 88% in part 2,
and 6% in part 3. Therefore, most optimization efforts should focus
on kernel 2, which implements part 2 of the algorithm. Kernels 1
(Fig. 5) and 3, which implement the update of the global arrays,
aremuch simpler and probably already optimal or close to optimal
because their occupancy is 100%, memory accesses are perfectly
coalesced thanks to choosing blocks of a size that is a multiple of
128 rather than 125, and they are bandwidth-limited since they
mostly perform memory accesses and little calculation. Therefore,
in what follows, wemostly focus on the analysis of kernel 2. Kernel
3 is similar in structure and properties to kernel 1 and is therefore
not presented.
The structure of our spectral-element solver imposes two node

numbering systems. Each element has 53 nodes. On the other hand,
all the nodes of the mesh are also numbered globally, as explained
in Section 3. Each global point of the mesh belongs to one or more
spectral elements, depending onwhether that mesh point is inside
an element and therefore not shared, or on a face, edge or corner,
in which case it can be shared. Out of the 53 = 125 points of a
given spectral element, 33 = 27 are interior points that cannot
be shared, and the 98 others, i.e., the majority may be shared.
Each global node can therefore correspond to any number of local
nodes depending on the valence of that node. For eachmesh point,
one must sum the contributions computed independently by each
spectral element to a potentially shared global location in the array
of global mesh points. We consider two approaches to handle
this issue.

4.1.1. Global array update: Mesh coloring
The key challenge in the global update is to ensure that

contributions from two local nodes, associated with an identical
global node, do not update some global value from different
warps. This led us to the concept of coloring, which has
successfully been used previously in the context of finite elements
on supercomputers [3,12,8] and through which we suppress
dependencies between mesh points inside a given kernel. To do
this, in ourmesh generation preprocessor, which is serial and need
not be implemented in CUDA because it is very efficient and run
only once, we partition the mesh elements into a finite number of
disjoint subsets with the property that any two elements in a given
subset do not share any global mesh nodes, as illustrated in Fig. 6.
Data at these nodes can therefore be added to their corresponding
global location without fear of conflict, removing the need for an
atomic mechanism. The local arrays that are related to the mesh
elements are reordered based on their color, and an array of offsets
that point to the boundary between subsets is created. All elements



456 D. Komatitsch et al. / J. Parallel Distrib. Comput. 69 (2009) 451–460
Fig. 4. Flowchart of kernel 2, which is the critical kernel that performs most of the calculations in the spectral-element method and in which we spend 84% of the time.
Fig. 5. Flowchart of kernel 1, which is a far less critical kernel that performs the
update of some global arrays in the spectral-element method and in which we only
spend7%of the time. It is probably optimal or close to optimal because its occupancy
is 100% and all its memory accesses are perfectly coalesced.

are processed by calling the kernel repeatedlywith a grid size equal
to the number of elements in a particular color subset.
Our basic algorithm to color the mesh is the following:

while (all elements are not colored) {
change current color

for each element {
if (this element is not colored) {
if (its neighbors do not have current color)

{ color this element with current color }
} } }

While this algorithm is simple, it generates color distributions
that are very uneven. The initial colors found contain far more
elements than the last. We therefore add a second step that
balances the number of elements inside each mesh subset of a
given color to finally obtain subsets of comparable size. This second
step is as follows: we have ‘‘rich’’ sets that contain too many
elements and ‘‘poor’’ sets that contain too few. Richest colors can
give elements to poorest colors after checking that these elements
do not share a point with the set they are added to. The richest set
gives elements to poor sets, starting with the poorest. This second
step stops either when most sets contain a number of elements
that is close to the mean value (the total number of elements
divided by the number of sets), which is the target, or when rich
sets cannot give elements to poor sets any longer because these
elements would otherwise share a point with other elements in
these poor sets.
Were this not done, CUDA kernels running on the last mesh

subsets, which might contain only a few elements, would become



D. Komatitsch et al. / J. Parallel Distrib. Comput. 69 (2009) 451–460 457
Fig. 6. Illustration of coloring: A connected mesh can always be decomposed into subsets of disjoint mesh elements only, suppressing the need for an atomic update.
inefficient because of insufficient active blocks. One can concoct
small examples that demonstrate that this simple algorithm is not
optimal: the number of colors obtained is not always theminimum
possible on a given mesh. Nonetheless, it is sufficient in practice.

4.2. Implementation 2: Shared CPU/GPU

In many current PCs, the memory installed on the CPU
motherboard is often four to eight times larger than the amount
installed on the graphics card. It is the case in our experimental
setup: 0.75 GB on our 8800 GTX GPU, 1 GB on our GTX 280 GPU,
and 8 GB on each PC. This implies that the size of a problem that
runs 100% on the GPU is necessarily smaller than if it were run
on the CPU. It is therefore of interest to implement another CUDA
version that is not too drastically restricted by the amount of device
memory of the graphics card.
In this second version (Fig. 3), we store all the global arrays

on the GPU and use the remaining space to store the local arrays
of some maximum number of elements, with the constraint that
all arrays loaded correspond to a fixed color. Processing of these
elements is then exactly the same as in the first version of the
algorithm. The cost incurred during the transfer of the local arrays
to the GPU decreases the efficiency of the algorithm, but larger
problems can now be solved.
Given a partition of the spectral elements into subsets of fixed

color, these subsets are further divided into packets. The size of
these packets is precisely the grid size of kernel 2, i.e., the number
of thread blocks sent to the GPU. This version is thus limited
by the space taken by the global arrays on the GPU. At worst,
space must be left on the GPU for a single element, although for
a packet size of one, the algorithm is expected to be extremely
inefficient for lack of parallelism. Thus, we aim to maximize the
size of the packets, although this can only be done at the expense
of space taken up by the global arrays. The global arrays account
for approximately 30% of the memory size of the spectral-element
code. As a consequence, this out-of-GPU-core version can handle
problems with three times the number of elements in the version
running fully on the GPU.
One easily computes an estimate of the maximum model

size that can be run with this second version. Assuming nspec
elements and nglob ' (nspec × 125)/2 global points, because
in a typical mesh many points are shared and about half are
duplicates that are removed when creating the global mesh of
unique points, the space taken by the 9 global (SGA) and 11 local
(SLA) arrays is (in bytes)

SGA ' 9× nglob× sizeof(float)
SLA = 11× grid_size× 128× sizeof(float).

For SLA, each element has a size of 128 instead of 125 due to
padding used to align memory accesses, as explained in Section 5.
Therefore the total size of the arrays on the card is SC = SGA+ SLA.
Setting SC equal to the amount of user-controlled memory on the
graphics card, and expressing nglob as a function of the number
of elements, we find that, knowing that a float takes 4 bytes, and
for a card with 724 MB usable memory,

nspec = (SC− SLA)/2250 =
724× 220 − 5632× grid_size

2250
.

The maximum problem size ranges from nspec = 332,282 for
packets of grid_size = 2048 elements to nspec = 316,903 for
packets of grid_size = 8192. Therefore themaximum size of the
problemdoes not vary significantlywith the size of the packets.We
will see below in Fig. 8 that to keep a good performance level one
should not select packets smaller than 1024 elements. A problem
with 320,000 elements requires approximately 2.4 GB on the CPU,
or 3.3 times the size of usable GPUmemory. Therefore, this version
can handle problems more than three times the size of the first
version.

5. Optimizations common to the two CUDA implementations

In this section, we discuss some of the optimizations incor-
porated into the kernels. As a rule-of-thumb, the fastest kernels
minimize access to device memory, avoid non-coalesced accesses
to global memory, avoid bank conflicts when reading from or
writing to shared memory, and try to minimize register and/or
shared memory usage to maximize occupancy. At the same time,
one strives to work with many blocks running per multipro-
cessor to overlap the latencies of memory transfers with useful
computation.
Accesses to the global memory of the GPU are not cached, and

thus have a huge latency in the range of 400 to 600 cycles. The
thread scheduler is in charge of hiding this latency by executing
other thread blocks on the multiprocessors while waiting for
memory and other requests to be serviced. In a CUDA kernel, it is
thus important to launch a sufficiently large number of blocks so
that each multiprocessor has many blocks executing at any given
time.
To ensure coalesced reads from global memory, the local array

sizes are a multiple of 128 floats, which is itself a multiple of the
half-warp size of 16, instead of 53 = 125, thus purposely sacrificing
128/125 = 1.023 = 2.3% of memory. Each thread is responsible
for a different point in the element. Consequently, the threads of a
half-warp load adjacent elements of a float array. Access to global
memory is thus perfectly coalesced in kernels 1 and 3, as well as in
the parts of kernel 2 that access local arrays.When accessing global
arrays in kernel 2, the indirect addressing necessary to handle the
unstructured mesh topology results in non-coalescent accesses, as
seen in Section 3.
The 5 × 5 derivative matrices are stored in constant memory,

which has faster access times and a cache mechanism. All threads
of a half-warp can access the same constant in one cycle.
Each multiprocessor of the NVIDIA 8800 GTX has 8192

registers and 16 kbytes of shared memory in each multiprocessor.
Each block uses the same amount of shared memory. As the
shared memory used per block increases, fewer blocks can run
concurrently, and therefore, fewer threads are active. With 128



458 D. Komatitsch et al. / J. Parallel Distrib. Comput. 69 (2009) 451–460
threads per block, a maximum of 6 blocks, i.e., 768 threads per
processor divided by 128 threads per block can run concurrently.
This implies that all threads are occupied if the kernel uses
8192/768 ' 10 registers or fewer per thread because to get
100% occupancy one needs all threads active. The key to lowering
register usage is to either launch multiple kernels with a less
complex structure, or define variables local to the kernel, which
are stored in registers, as close as possible to where they are used.
Unfortunately, the dense matrices and equations we are solving
make this separation very difficult if not impossible. As a result, 27
registers per thread is the lowest number we have achieved, using
6160 bytes of shared memory with a corresponding occupancy of
33%. Tominimize register usage,wehave availed ourselves of some
tricks: use of the ‘‘volatile’’ keyword, and use of the -maxrregcount
= N compilation flag that limits the number of registers used.
Unfortunately, the latter approach leads to storage of variables in
local memory, i.e., device memory, with a resulting decrease in
performance. The remaining two kernels have simpler structure
and attain 100% occupancy with coalesced read/writes.
Next, we determined whether kernel 2 was bandwidth- or

compute-bound. To do this, we removed all calculations from
kernel 2 and only read every local array once and wrote a simple
arithmetic expression making use of all the input data to prevent
the CUDA compiler from suppressing them. For example, if there
were three input arrays and one output array, the resulting kernel
would be read a; read b; read c; write d = a
+ b + c;. This artificial kernel has occupancy of 100% and is
bandwidth-dominated. Under this extremely favorable condition
of perfect occupancy, the performance is only 1.6 times better than
kernel 2. We might have expected a higher gain, typically around
a factor of 3, given the factor of 3 improvement in occupancy. This
clearly indicates that kernel 2 is bandwidth-bound: performance
is limited by the memory bandwidth of the card and under the
best of circumstances cannot increase by more than a factor of
1.6, regardless of how it is coded. Therefore, we know that the
15x speedup that we measure for our application on the 8800 GTX
is very good because even with perfect occupancy we could only
increase it to roughly 15 ×(1.6 ×84%) ' 20 since kernel 2 is the
critical kernel that takes 84% of the time, as mentioned above, and
the other kernels already have an occupancy of 100%.
Arrays that store variables in a local element are three-

dimensional, and access can occur along any of the three
dimensions. We have 5-way bank conflicts (see the glossary of
Table 1 for a definition of bank conflict) in the section of kernel
2 (see Fig. 4) that performs local calculations inside each spectral
element with loops on its 5 × 5 × 5 local points. This happens
because at some point five threads access the same memory bank
L, five other threads access memory bank L+5, and so on.We have
not found a satisfactory way of reducing or suppressing these bank
conflicts. The issue could perhaps be resolved at the expense of
additionalmemory consumption, but onmemory-limited graphics
cards this is not practical. It is quite possible that such bank
conflicts simply cannot be suppressed in such a high-order finite-
element application.
We also tried to use fast operations on the card but did not

notice any measurable improvement: a kernel in which all stan-
dard operations were replaced by fast operations: __fmul_rz(),
__fadd_rz() for floats and__mul24() for integers did notmea-
surably improve performance.

6. Numerical validation of the two CUDA versions

In Fig. 7 we validate the two CUDA implementations of our
spectral-element code by comparing the time evolution of the
vertical component of the displacement vector recorded at one
grid point, called a ‘seismogram’ in the field of seismic wave
Fig. 7. Vertical component of the displacement vector recorded at one grid point
produced by waves generated by an earthquake source located at another grid
point and propagating across the mesh of Fig. 1 computed with our two CUDA
implementations of the code aswell as with the original serial version of the C-code
using either single-precision or double-precision floats. The difference amplified by
10,000 between CUDA version 1 and the single-precision serial C version is very
small and validates our implementation. The other seismograms are in excellent
agreement as well, in particular the single-precision and double-precision serial
codes, which shows that single precision is sufficient for this problem.

propagation, produced by waves generated by an earthquake
source located at another grid point and propagating across the
mesh. We take the mesh of Fig. 1 (left) and put the earthquake
source in element 3711 at global grid point 256,406 and record
the vertical component of the displacement vector in element
7413 at global grid point 495,821. As a comparison, we run the
same simulation with the original C-code running fully on the CPU
using either single precision or double precision floats. The four
seismograms are indistinguishable at the scale of the figure, which
validates our two CUDA implementations and also validates the
fact that single-precision arithmetic is adequate for this problem.
The results differ in the very last decimals (only) because of the
different order in which the operations are performed, which
produces a different roundoff as shown by the difference amplified
by 10,000 between CUDA version 1 and the single-precision serial
C version.

7. Performance analysis and speedup obtained

Our experimental setup is composedof anNVIDIAGeForce 8800
GTX card installed on the PCI Express 1 bus of a dual-processor
dual-core 64 bit Intel Xeon E5345 2.33 GHz PC with 8 GB of RAM
and running Linux kernel 2.6.23; and of an NVIDIA GeForce GTX
280 card installed on the PCI Express 1 bus of a dual-processor
dual-core 64 bit AMD Opteron PC with 8 GB of RAM and running
Linux kernel 2.6.20. The 8800 GTX card has 16multiprocessors, i.e.,
128 cores, and 768 MB of memory, and the memory bandwidth is
86.4 GB per second with a memory bus width of 384 bits. The GTX
280 card has 240 cores and 1024 MB of memory, and the memory
bandwidth is 141.7 GB per secondwith amemory buswidth of 512
bits. We use CUDA version 2 beta, driver 169.09, and the following
three compilers with compilation options:

icc version 10.1: -no-ftz
gcc version 4.1.2: -fno-trapping-math
nvcc version CUDA_v2_beta: -fno-trapping-math.

Floating-point trapping is turned off because underflow-
trapping occurs very often in the initial time steps of many seismic
propagation algorithms and can lead to severe slowdown.
The serial code we start from is already heavily optimized [17,

15], in particular using the ParaVer performance analysis tool [13]



D. Komatitsch et al. / J. Parallel Distrib. Comput. 69 (2009) 451–460 459
Table 2
Time per element and speedup obtained on the 8800 GTX for version 1 of our CUDA algorithm (entirely on the GPU) and version 2 (shared CPU/GPU) using an increasingly
larger problem size. For version 2 we also show the percentage of time taken by transfers, which is very high because the spectral-element algorithm is bandwidth-bound.

Mesh size (MB) Version 1 Version 2
Time/elt (µs) Speedup Time/elt (µs) Speedup Transfer time (%)

65 1.5 13.5 4.2 4.6 68
405 1.3 15 3.7 5.3 68
633 1.3 15 3.7 5.3 67
Table 3
Same as Table 2 but measured on the GTX 280.

Mesh size (MB) Version 1 Version 2
Time/elt µs Speedup Time/elt µs Speedup Transfer time (%)

65 0.91 21.5 4.1 4.8 80
405 0.8 24.8 2.93 6.8 76
633 0.78 25.3 2.8 7.1 75
to minimize cachemisses, therefore high speedups will be difficult
to reach because our serial reference code is very fast. It is based
on a parallel version that won the Gordon Bell supercomputing
award on the Japanese Earth Simulator – a NEC SX machine – at
the SuperComputing’2003 conference [17]. To illustrate this, let
us study the influence of the compiler on CPU time of the serial
version of the code, measuring total time for 2100 time iterations
for increased reliability:

icc -O1: 324.6 s ; -O2: 345.0 s ; -O3: 345.2 s
gcc -O1: 336.8 s ; -O2: 313.7 s ; -O3: 302.2 s

The fact that differences are small and that for icc a less
aggressive optimization level is more efficient underlines the fact
that the code is already well optimized. We select gcc -O3 as
a reference for all the timing measurements of the serial code
presented below. The small differences in serial performance will
not significantly affect our conclusions.
To make sure that converting the original code from Fortran95

to C did not significantly change performance levels, we also timed
a serial version of the original Fortran95 code, run on the same
mesh and therefore sameproblemsize,with both Intel ifort version
9.1 and GNU gfortran version 4.1.2, using -O1, -O2 and -O3. In the
best case, we obtained:

gfortran -O3: 328.7 s
ifort -O2: 270.1 s

i.e., the difference between the best C time and best Fortran95 time
is only 302.2/270.1 = 1.12 = 12%.
Let us now study the speedup obtained for increasingly larger

i.e. higher-resolution versions of the mesh in Fig. 1. We consider
three mesh sizes: a low-resolution mesh of 65 MB of memory, a
medium-resolution mesh of 405 MB, and a high-resolution mesh
of 633MB. The three meshes contain respectively (7424, 496,525),
(46,592, 3061,529), and (72,800, 4769,577) elements and global
points. Tables 2 and 3 show the speedup measured for version 1
of the code (entirely on the GPU) and version 2 (shared CPU/GPU)
on both cards. Values vary weakly with the size of the mesh. The
maximum speedup is 25x on the GTX 280 and 15x on the 8800GTX
for version 1, and 5.3x on the 8800 GTX and 7.1x on the GTX 280
for version 2,which is significantly slower but can handle problems
more than three times larger than the memory size of the GPU.
Fig. 8 shows the computation time per mesh element in

kernel 2, which is by far the most computation-intensive kernel
(excluding host/device transfer times; only computation time is
measured), measured on the 8800 GTX as a function of the number
of mesh elements in each packet of this second version of our
algorithm. Each spectral element of our mesh, which contains 125
points, leads to a block of 128 threads. One can therefore consider
this figure as a graph of compute time as a function of grid_size
Fig. 8. Evolution of computation time permesh element in kernel 2 as a function of
the number ofmesh elements in each packet of the second version of our algorithm.

because the number of elements is equal to the number of blocks.
One clearly observes that variations of performance are relatively
small, i.e., computation time per element asymptotes, when
packets of reasonably large size are used but that performance
decreases very significantly if the packets are too small, typically
below 512 elements, because the scheduler does not have enough
blocks to overlap latencies. High-frequency variations can also be
observed owing to the fact thatwemademeasurementswith a unit
increment for the number of mesh elements in each packet.

8. Lessons learned, conclusions and future work

We have ported a high-order spectral-element application,
which performs the numerical simulation of seismic wave
propagation resulting from earthquakes, on NVIDIA GeForce 8800
GTX andGTX 280 graphics cards using CUDA. Since this application
runs in single precision, currentGPUhardware that supports quasi-
IEEE-754 single precision arithmetic is suitable and sufficient.
We discussed two possible implementations of the code: the

first is limited to the memory size of the card, and the second can
handle larger cases because it is only limited by the size of the
global arrays, because often the amount ofmemory installed on the
CPU side is significantly larger than the amount of memory on the
graphics device. We validated the two algorithms by comparison
to the results of the same run with the original C version of the
code without CUDA. We then performed several numerical tests
to compare the performance between the two versions and with
respect to the original version without CUDA and showed that in
the best case we obtained a performance increase of 25x.



460 D. Komatitsch et al. / J. Parallel Distrib. Comput. 69 (2009) 451–460
In future work, we would like to investigate the use of several
cards on the same PC, the so-called multi-GPU setup. In addition,
couplingwithMPI could further accelerate our code. The key issues
will be to minimize the serial components of the code to avoid the
effects of Amdahl’s law and to overlap MPI communications with
calculations. The combination of MPI and GPUs would allow us to
run large-scale realistic cases similar to those in [17,15], but at a
vastly reduced cost.

Acknowledgments

The authorswould like to thank ChristopheMerlet, Jean Roman,
Cyril Zeller and Bruno Jobard for fruitful discussions. TheWeb page
of Dominik Göddeke on GPGPU and the http://www.gpgpu.org
Web site were very useful. The comments of three anonymous
reviewers improved the manuscript. This research was funded
in part by French ANR grant NUMASIS ANR-05-CIGC-002 and by
US National Science Foundation grant NSF-0345656. The authors
thank Hélène Barucq and INRIA for funding a one-month visit of
Gordon Erlebacher to University of Pau, during which a significant
part of this work was performed.

References

[1] R. Abdelkhalek, Évaluation des accélérateurs de calcul GPGPU pour la
modélisation sismique, Master’s Thesis, ENSEIRB, Bordeaux, France, 2007.

[2] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics
simulations fully implemented on graphics processing units, J. Comput. Phys.
227 (10) (2008) 5342–5359.

[3] P. Berger, P. Brouaye, J.C. Syre, A mesh coloring method for efficient MIMD
processing in finite element problems, in: Proceedings of the International
Conference on Parallel Processing, ICPP’82, August 24–27, 1982, Bellaire,
Michigan, USA, IEEE Computer Society, 1982, pp. 41–46.

[4] T. Brandvik, G. Pullan, Acceleration of a two-dimensional Euler flow solver
using commodity graphics hardware, in: Proceedings of the Institute of
Mechanical Engineers, Part C: J. Mech. Eng., Part C: J. Mech. Eng. Sci. 221 (12)
(2007) 1745–1748.

[5] I. Buck, GeForce 8800 and NVIDIA CUDA: A new architecture for computing on
the GPU, in: Proceedings of the Supercomputing’06 Workshop on ‘‘General-
Purpose GPU Computing: Practice and Experience’’, 2006. URL www.gpgpu.
org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf.

[6] D. Dobb’s, Dr. Dobb’s Portal web site (March 2008). URL www.ddj.com/
hpc-high-performance-computing/207200659.

[7] R. Dolbeau, S. Bihan, F. Bodin, HMPP: A hybrid multi-core parallel program-
ming environment, in: Proceedings of the Workshop on General Purpose Pro-
cessing on Graphics Processing Units, GPGPU’2007, Boston, MA, USA, 2007.
URL www.irisa.fr/caps/projects/Astex.

[8] C. Farhat, L. Crivelli, A general approach to nonlinear finite-element
computations on shared-memory multiprocessors, Comput. Methods Appl.
Mech. Engrg. 72 (2) (1989) 153–171.

[9] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S.H.M. Buijssen,
M. Grajewski, S. Turek, Exploring weak scalability for FEM calculations on a
GPU-enhanced cluster, Parallel Comput. 33 (10–11) (2007) 685–699.

[10] D. Göddeke, R. Strzodka, S. Turek, Performance and accuracy of hardware-
oriented native-, emulated- and mixed-precision solvers in FEM simulations,
Internat. J. Parallel Emerg. Distrib. Syst. 22 (4) (2007) 221–256.

[11] N.K. Govindaraju, D. Manocha, Cache-efficient numerical algorithms using
graphics hardware, Parallel Comput. 33 (2007) 663–684.

[12] T.J.R. Hughes, R.M. Ferencz, J.O. Hallquist, Large-scale vectorized implicit
calculations in solid mechanics on a Cray X-MP/48 utilizing EBE precondi-
tioned conjugate gradients, Comput.Methods Appl.Mech. Engrg. 61 (2) (1987)
215–248.

[13] G. Jost, H. Jin, J. Labarta, J. Giménez, J. Caubet, Performance analysis of multi-
level parallel applications on shared memory architectures, in: Proceedings of
the IPDPS’2003 International Parallel and Distributed Processing Symposium,
Nice, France, 2003. URL www.cepba.upc.es/paraver.

[14] T. Kim, Hardware-aware analysis and optimization of ‘Stable Fluids’, in:
Proceedings of the ACM Symposium on Interactive 3D Graphics and Games,
2008.

[15] D. Komatitsch, J. Labarta, D. Michéa, A simulation of seismic wave propagation
at high resolution in the inner core of the Earth on 2166 processors of
MareNostrum, in: Lecture Notes in Computer Science, vol. 5336, 2008,
pp. 364–377.
[16] D. Komatitsch, J. Tromp, Introduction to the spectral-element method for
3-D seismic wave propagation, Geophys. J. Int. 139 (3) (1999) 806–822. URL
www.geodynamics.org/cig/software/packages/seismo.

[17] D. Komatitsch, S. Tsuboi, C. Ji, J. Tromp, A 14.6 billion degrees of freedom,
5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator, in:
Proceedings of the ACM/IEEE Supercomputing SC’2003 Conference, 2003, pp.
4–11.

[18] K. Liu, X.B.Wang, Y. Zhang, C. Liao, Acceleration of time-domain finite element
method (TD-FEM) usingGraphics Processor Units (GPU), in: Proceedings of the
7th International Symposium on Antennas, Propagation & EM Theory, ISAPE
’06, Guilin, China, 2006.

[19] Q. Liu, J. Polet, D. Komatitsch, J. Tromp, Spectral-element moment-tensor
inversions for earthquakes in Southern California, Bull. Seismol. Soc. Amer. 94
(5) (2004) 1748–1761.

[20] P. McCormick, J. Inman, J. Ahrens, J. Mohd-Yusof, G. Roth, S. Cummins, Scout: A
data-parallel programming language for graphics processors, Parallel Comput.
33 (2007) 648–662.

[21] P. Messmer, P.J. Mullowney, B.E. Granger, GPULib: GPU computing in high-
level languages, Comput. Sci. Engrg. 10 (5) (2008) 70–73.

[22] NVIDIA, CUDA (Compute Unified Device Architecture) Programming Guide
Version 1.1, NVIDIA Corporation, Santa Clara, CA, USA, 143 pages (November
2007).

[23] NVIDIA, NVIDIA GeForce GTX 200 GPU architectural overview, second-
generation unified GPU architecture for visual computing, Tech. Rep.,
NVIDIA, 2008. URL www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_
Technical_Brief.pdf.

[24] L. Nyland, M. Harris, J. Prins, Fast N-body simulationwith CUDA, in: GPU Gems
3, Addison-Wesley Professional, 2007, pp. 677–695 (Chapter 31).

[25] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E. Lefohn,
T.J. Purcell, A survey of general-purpose computation on graphics hardware,
Comput. Graph. Forum 26 (1) (2007) 80–113.

[26] E. Petit, F. Bodin, Extracting threads using traces for system on a chip, in:
Proceedings of the Compilers for Parallel Computers, CPC’2006, La Coruña,
Spain, 2006.

[27] Z.A. Taylor,M. Cheng, S. Ourselin, High-speed nonlinear finite element analysis
for surgical simulation using Graphics Processing Units, IEEE Trans. Med.
Imaging 27 (5) (2008) 650–663.

[28] M. Woolsey, W.E. Hutchcraft, R.K. Gordon, High-level programming of
graphics hardware to increase performance of electromagnetics simulation,
in: Proceedings of the 2007 IEEE International Symposium on Antennas and
Propagation, 2007.

[29] W. Wu, P.A. Heng, A hybrid condensed finite element model with GPU
acceleration for interactive 3D soft tissue cutting: Research articles, Comput.
Animat. Virtual Worlds Archive. 15 (3–4) (2004) 219–227.

[30] W.Wu, P.A. Heng, An improved scheme of an interactive finite element model
for 3D soft-tissue cutting and deformation, Vis. Comput. 21 (8–10) (2005)
707–717.

Dimitri Komatitsch is a Professor of Computational
Geophysics at University of Pau, France. He was born in
1970 and did his Ph.D. at Institut de Physique du Globe de
Paris, France, in 1997.

David Michéa is a researcher at INRIA, University of Pau
andCNRS, France. Hewas born in 1973 anddid hisMaster’s
thesis at University of Strasbourg, France, in 2006.

Gordon Erlebacher is a Professor of Computer Science at
Florida State University, Tallahassee, USA. He was born in
1957 and did his Ph.D. at Columbia University in NewYork,
USA in 1983.

http://www.gpgpu.org
http://www.gpgpu.org
http://www.gpgpu.org
http://www.gpgpu.org
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.gpgpu.org/sc2006/workshop/presentations/Buck_NVIDIA_Cuda.pdf
www.ddj.com/hpc-high-performance-computing/207200659
www.ddj.com/hpc-high-performance-computing/207200659
www.ddj.com/hpc-high-performance-computing/207200659
www.ddj.com/hpc-high-performance-computing/207200659
www.ddj.com/hpc-high-performance-computing/207200659
www.irisa.fr/caps/projects/Astex
www.irisa.fr/caps/projects/Astex
www.irisa.fr/caps/projects/Astex
www.irisa.fr/caps/projects/Astex
www.irisa.fr/caps/projects/Astex
www.irisa.fr/caps/projects/Astex
www.cepba.upc.es/paraver
www.cepba.upc.es/paraver
www.cepba.upc.es/paraver
www.cepba.upc.es/paraver
www.cepba.upc.es/paraver
www.geodynamics.org/cig/software/packages/seismo
www.geodynamics.org/cig/software/packages/seismo
www.geodynamics.org/cig/software/packages/seismo
www.geodynamics.org/cig/software/packages/seismo
www.geodynamics.org/cig/software/packages/seismo
www.geodynamics.org/cig/software/packages/seismo
www.geodynamics.org/cig/software/packages/seismo
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf

	Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA
	Introduction
	Related work
	Serial algorithm
	CUDA implementation
	Implementation 1: Self-contained on the GPU
	Global array update: Mesh coloring

	Implementation 2: Shared CPU/GPU

	Optimizations common to the two CUDA implementations
	Numerical validation of the two CUDA versions
	Performance analysis and speedup obtained
	Lessons learned, conclusions and future work
	Acknowledgments
	References


