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When we infer a tree from genetic data using parsimony we minimize the amount of change along the

branches of the tree. Similarly when we use the likelihood principle we minimize change conditional

on a specific mutation model. The mutation model is crucial. The model can take into account

that we do not observe all substitution events, because recent events might hide ancient events.

Parsimony is therefore undercounting the number of changes and so might have a shorter tree than

the true tree. Likelihood does not escape this problem either, we have either a tree that is shorter

or the same length as the true tree.

An alternative to likelihood or parsimony is an approach based on evolutionary distances between a

pair of sequences, where the distance is accounting for all unseen events, for example using similar

mutation models as likelihood.

Pairwise distance methods are not so popular anymore because the are outperformed by likelihood

methods. Pairwise methods evaluate all pairs of sequences and transform the differences into

a distance. This essentially is a data reduction from a possibly many state difference to a single

number. Combining these distances to estimate a tree must be less powerful than the full likelihood

approach. In addition, an identical distance can be generated from different sequence pairs and

once we only analyze the distance matrix that difference is lost. Using the number of different sites

as a distance measure makes quickly clear that we can arrive at the same measure from different

sequences.

Distance methods have still their merit because once the distance matrix is calculated the tree

building can be very fast and under many circumstances are the trees generated with such methods

not all that terrible and often are identical to the likelihood tree.
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Table 1: Example of a problematic data sets for distance methods, the used distance is simply

counting sites that are different between pairs.

Individual Sequence

one ATTAGC

two ATTGGC

three ATGGGC

four GTGGGC

→

Individual one two three four

one - 1 2 3

two - 1 2

three - 1

four -

1 Additive distances

If we could estimate branch length on a tree with absolute certainty all distances on a tree would

be additive, for example the distances between all the tips of the tree in Figure 1 are

dAB = v1 + v2

dAC = v1 + v3 + v4

dAD = v1 + v3 + v5

dBC = v2 + v3 + v4

dBD = v2 + v3 + v5

dCD = v4 + v5

Additive trees satisfy the four-point metric condition, for any four taxa A,B, C, and D,

dAB + dCD ≤ max(dAC + dBD, dAD + dBC)

Figure 1: Addititive tree.
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2 Ultrameric trees

Ultrameric trees have additive properties and also obey ultrameric properties:

dAB = v1 + v2 + v3

dAC = v1 + v2 + v4

dBC = v3 + v4

v3 = v3

v1 = v2 + v3 = v2 + v4

Ultrametric trees are often expressed as molecular clock tree, also such trees do not necessarily

assume that there is linear change of the mutation rate through time.

2.1 Additive tree method

The discussion about additive trees all real great but unfortunately due the finiteness of the data

there will be random fluctuations that will result in deviations from the perfect additivity. Methods

were derived that used this deviation (or distortion) from the perfect additivity as an optimality

criterion. Fitch and Margoliash and others derived a method that minimizes the following objective

function

E =
T−1∑
i=0

T∑
j=i+1

wij |dij − pij |α (1)

where E is the error of fitting the distance estimates and the tree, T is the number of taxa, dij is a

distance measure between the taxa i and j; pij is the length of the path connecting i and j; wij is a

Figure 2: Ultrameric tree.
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weighting to separate the taxa i and j, and α can take values such as 1 or 2. With a value of α = 2

one uses a least-squares minimization. If α = 1 then the absolute differences will be minimized.

The weightings wij can accommodate previous knowledge about the data, but often it is unclear

what we know. The most common weightings are

wij = 1 All errors of the distances are the same

wij = 1/d2
ij percentage error is the same

wij = 1/dij square root of the error is the same

wij = 1/σ2 error is inversely correlated to the expected variance

of the measurements of dij

Missing data can be easily accommodated by setting the wij involving missing data to zero. If the

variation of σ2 is known this weighting would be preferred. Problems might arise when identical

sequences are in the dataset.

For an unrooted tree there are 2T − 3 independent branches defining the pij values, and there are

T (T − 1)/2 distinct distances. We can represent the tree as an indicator matrix A of T (T − 1)/2

rows and 2T −3 columns. An element of this matrix is 1 if the branch k is part of connecting taxon

i to taxon j otherwise it is zero. The p values can now be expresses as the

Av = p

1 1 0 0 0

1 0 1 1 0

1 0 1 0 1

0 1 1 1 0

0 1 1 0 1

0 0 0 1 1





v1

v2

v3

v4

v5


=



pAB

pAC

pAD

pBC

pBD

pCD


(2)

If the distances were additive then p = d for all pairs and we could solve the equation directly. but

due to the imperfection of the data we use formula 2 to eliminate p in formula 1. Assuming α = 2

and wij = 1 we can find the branch length

v = (AT A)−1(AT d)

Still we need an appropriate search strategy to search for the best tree, but we can use any heuristic

strategy can be used to do that.

Sometimes the solution of the above equation results in negative branch length, several strategies

are described but most simply the negative branch length are set to zero without adjust the other

branch lengths. If the data does not propose negative branch lengths the error estimate E will be

accurate but when negative branch length are encountered the estimates of E will be too low.
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Errors using this procedure come from two two sources: (1) we assuem each pairwise distance is

independent of each other, this is certainly untrue. (2) any error in the data will be amplified by the

pairwise use and underestimates similarity by state compared to similarity by descent (homoplasy).

2.2 Minimal evolution

Minimal evolution sets the weights to 1 and α = 2 and simply assumes that the sum of all branches

are minimized (instead of all individual branches by itself)

L =
2T−3∑

i1

|vij | (3)

This was described by Kidd and Sgaramella-Zonta (1971). This was (re)described in 1992 by

Rzhetsky and Nei as minimal evolution in a very similar form

L =
2T−3∑

i1

vij (4)

the newer version takes the absolute value which seems a big drawback but under realistic condition

is often of no big concern. Some proponent claim that ME is superior to other techniques, although

others have shown that the simple Fitch-Margoliash method works as well as ME with enough data.

3 Distance measures

To get a distance we need to have some model of change between the two sequences and a possible

way to about this is to look at the frequency of changes between the two taxa:

FXY =


nAA/N nAC/N nAG/N nAT /N

nCA/N nCC/N nCG/N nCT /N

nGA/N nGC/N nGG/N nGT /N

nTA/N nTC/N nTG/N nTT /N

 =


a b c d

e f g h

i j k l

m n o p


Ambiguities are not coded correctly usign the above scheme, the uncertainties might be counted

more than once, for example a Purine would be an A or a G and will overestimate the similarity.

The most simply distance is the p-distance or dissimilarity D. It is

dXY =b + c + d + e + g + h + i + j + l + m + n + o

=1− (a + f + k + p)
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The mutation models specified earlier can be used to generate distances and for example the Jukes-

Cantor distance is

D =1− (a + f + k + p)dXY = −3
4
ln(1− 4

3
D)

4 Actual strategies to find optimal trees with distance methods

4.1 Neighbor-Joining

The neighbor-joining technique is kin to clustering technology. It was developed by Saitou and

Nei (1987) and uses a distance matrix to construct a tree. It assumes that the data are close

to an additive tree, but it does not assume a molecular clock. NJ is a special case of the star

decomposition algorithm described earlier. I start wit a star phylogeny and then uses the smallest

distance in the distance matrix to find the next two pairs move out of the multifurcation. The none

need s to recalculate the distance matrix that now contains a tip less.
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Algorithm 1 Neighbor joining
1. Give a matrix of pairwise distances (dij), for each terminal node I calculate its net divergence

ri from all other taxa using the formula

ri =
N∑

k=1

dji

where N is the number of terminal nodes in the current matrix. Note that the assumption that

dii = 0, otherwise the summation would need to skip over k = i.

2. Create a rate corrected distance matrix M in which the elemens are defined as

Mij = dij − (ri − rj)/(N − 2)

only states i 6= j are interesting, even only the minimum needs to be known.

3. define a new node u whose three branches join nodes i, j and the rest of the tree. Define the

length of the tree branches from u to i to j as

viu =
dij

2 + (ri − rj)
2(N − 2)

vju = dij − viu

4. Define the distance from u to each other terminal node

dku = (dik + djk + dij)/2

5. Remove distance to nodes i and j from the data matrix and decrease N by 1.

6. If more than two nodes remaining, go back to step 1. Otherwise the tree is full defined except

for the last branch length which is

vij = dij
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