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ABSTRACT

Methods aimed at the specification of suitably balanced initial fields, combined with a 4-D varia-
tional data assimilation, were examined and applied to a finite-difference limited-area shallow
water equations model. Ageostrophic (noisy) initial conditions which lead to the generation of
unrealistically large amplitude gravity-wave oscillations in the model, were used. A penalty func-
tion method is presented, aiming to achieve the elimination of unwanted gravity oscillations. The
procedure consists in the addition of a quadratic penalty term to the cost function used in the
variational data assimilation requiring that the time tendency of the geopotential height satisfy
an inequality constraint. Numerical experiments show that using the penalized cost function
results in the efficient elimination of all gravity oscillations. The results point to the fact that if
used correctly, the penalty method can efficiently control gravity waves in the model. New results
are also presented concerning the impact of incomplete observations in both the time and space
dimensions on the uniqueness of the solution, on the convergence rate of the minimization
process, on the condition number of the Hessian (which in turn affects the convergence rate), on

the quality of the retrieved initial fields, and finally on the quality of the ensuing forecast.

1. Introduction

Recently, considerable research has focused on
variational data assimilation as a means of
controlling the initial conditions in a numerical
weather prediction model by using observations
distributed in a certain time window as well as the
model itself. The problem may be viewed as that of
finding the initial conditions that minimize a cost
function or distance between model and observa-
tions over the time interval considered. The initial
conditions determine the space-time trajectory of
the system of partial differential equations which
constitute the model and the integration of the
adjoint equation model yields the value of the
gradient of the cost function with respect to the
initial conditions which are the control variables
of this optimal control problem. This powerful
method, which was described in the papers of
Derber (1985), LeDimet and Talagrand (1986),
Courtier and Talagrand (1987) and Talagrand
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and Courtier (1987), incorporates the time dimen-
sion in the assimilation process quite naturally.
Further, by incorporating the physics of the
problem in the definition of the cost function and
the constraining dynamics of the model itself, this
method turns out to be very versatile and essen-
tially imposes no limitation on the characteristics
of the data to be assimilated. However, due to its
high computational cost, the operational applica-
tion of variational data assimilation is still limited
to research and development versions. Many
issues, such as scaling, weighting, preconditioning,
conditions for the uniqueness of the solution,
efficient minimization, gravity wave control and
incomplete observations need to be addressed
before it becomes an operational tool.

In this paper we will address the two main
issues, i.e., gravity wave control and the influence
of incomplete observations in both the time and
space dimensions. A number of theoretical issues
and some numerical results related to the
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previously mentioned issues using a limited-area
shallow water equations model are presented.

Gravity oscillations with unrealistically large
amplitudes may be generated in numerical models
due to the insertion of erroneous data or due to
errors in the numerical model. Methods aimed at
the specification of suitably balanced initial fields,
which will not give rise to spurious gravity
oscillations, are known as initialization methods.
The normal mode initialization (NMI) technique
(Machenhauer, 1977), for instance, is charac-
terized by a separation of the slow and fast mode
components of the flow as a means of controlling
the amplitude of the high-frequency gravity-inertia
waves in a primitive equation model and gained a
wide popularity during the last decade. An implicit
NMI approach, stimulated by the desire to
apply the NMI to limited area models, was also
developed starting from the idea of the bounded
derivative method (Kreiss, 1980; Browning and
Kreiss, 1982; Ballish, 1981; Semazzi and Navon,
1986; Temperton, 1988, 1989). The implicit NMI
approach may be implemented in models whose
normal modes cannot readily be found. It also
seems to be a more useful approach than the
explicit NMI approach for initializing very high
resolution spectral models.

Variational data assimilation, by its nature,
can be used to assimilate data which was not
previously initialized. Problems arise as to how
to efficiently control high frequency gravity wave
oscillations in variational data assimilation when
assimilating noisy data.

Courtier and Talagrand (1990) indicated that
gravity wave noise can be efficiently eliminated by
adding a penalty term, defined by the normal
modes of the model, to the cost function and com-
bine this approach with a NMI procedure in the
variational data assimilation. The penalty method
follows the logic of tending to reduce the time
tendency of the gravity wave component of the
flow to a very small value. When the penalty term
was included in the cost function, the minimization
process converged to a solution which looked
acceptable in terms of the amount of gravity waves
it contained, but the convergence rate turned out
to be extremely slow. Only by combining the
penalty method with the adjoint of NMI have
properly balanced conditions been obtained in
an acceptable number of descent steps. Inclusion
of the penalty term in the cost function while
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performing the minimization on uninitialized fields
leads to better numerical conditioning and ensures
that the minimizing solution will not contain an
unacceptable amount of gravity waves. However
this approach involves a sizable computational
effort, namely, it requires the availability of both
the normal modes of the model and that of the
adjoint of the NMI procedure.

In this paper we propose both a short cut
penalty function method and an augmented
Lagrangian method aimed at controlling the
total time tendency of the flow while achieving
a reasonable convergence rate. The proposed
method requires less memory and computatio-
nal effort than the method of combined penalty
and NMI proposed by Courtier and Talagrand
(1990).

Another issue directly related to variational data
assimilation is the case of incomplete observations
in either the space or time dimensions. An impor-
tant question is whether the solution is unique or
not if there are less observations in space. An
additional related question concerns the influence
of the density of observations in time on the
convergence rate of the minimization procedure.
In Thacker (1988), the process of fitting a model to
inadequate data is discussed. Results show that for
the simple three wave model of Thacker and Long
(1988), a reasonable fit can be obtained even if the
number of observations is less than the number of
degrees of freedom of the model. A theoretical
derivation of a sufficient adequate condition for
the solution to be unique in the case of incomplete
observations was given in Appendix B of the
paper. Several numerical experiments to clarify
this idea using a shallow water equations model as
a test problem were provided.

The plan of the paper is the following. In
Section 2, a brief description of the limited-area
shallow-water equations model, its adjoint model,
the definition of the cost function, the calculation
of the gradient of the cost function, and different
test problems are given. In Section 3, the penalty
method and augmented Lagrangian method, the
penalized cost function and the corresponding
changes in the gradient calculation using the
adjoint model are described. Application of the
penalty and augmented Lagrangian methods
are presented in Sections 4 and 5, respectively.
Theoretical conclusions and results assessing the
impact of insufficient observational data are
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presented in Section 6. Summary and conclusions
are presented in Section 7.

2. Brief description of the model and the
variational problem

2.1. The shallow-water equations model and its
adjoint system
The shallow-water equations may be written in
the form

ou Ou Ou od
E“l"“a"rva—fv-}-a—x— , (21)
ov v ov ¢
E+ua+vay+fu+5)—)-—0, (2.2)
op 09 O¢ ou Ov

—4u—+v— —+— )= 2.
6t+uax+vay+¢ ax+ay 0, (2.3)

with periodic boundary conditions in east-west
direction and a solid smooth wall condition on the
north and south boundaries, respectively. Here u,
v, and ¢ are the two components of the velocity
field and the geopotential field, respectively, both
spatially discretized with a centered difference
scheme in space and an explicit leapfrog time-
differencing scheme. Numerical experiments were
carried out on a rectangular domain of size L=
6000 km, D =4400 km. The parameters of the
space and time discretization are Ax =300 km,
Ay=220km and Ar=600s.

To derive the adjoint system of this shallow-
water equations model, the linear tangent system
to eqgs. (2.1)—(2.3) is first derived. This system can
be written as:

ou' O(uw') ,0u ou

ou had — L= 24
ot Uty e @Y
o' Ov o’ v’ ., 09"

E"’M $+u'5x‘+"a—y—+fu+ay_0’ (25)
o Agw)  Bgu) HPv) A4 _( (o6

ot ox Ox dy dy
or in matrix form as

a—X+AX=0,

E 2.7)
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where the vector X and the operator matrix A are
given by

X=(u,0,¢), (2.82)
ou(-)) | a(-) du o)
= 0Ty U/ %
_ v (), 0(v(-)) a(-)
A= ()a+f ME-F'—@);—- W
a(¢(-)) Ae(-)) 5(u('))+6(v(‘))
Ox dy ox dy
(2.8b)

respectively. The vector X represents a perturba-
tion around the state u, v, ®.

Let us assume that the adjoint problem to (2.7)
is

A

7). ¢4 5

——+A4*X=0. .
Fr + 0 (2.9)
The adjoint operator 4* satisfies

<AX’ X>DXT=<A*X9 X>D)<T’ (210)

where ¢ ) represents the general definition of the
inner product given by

3 ®”
(X, Y p,r= ). f f X,Y,dD ds, 2.11)
i=1%%0 D

where T is the temporal domain, ¢, and #5 are the
lower and upper limits of the time integration
interval, and D is the spatial domain over which
the equations are integrated. We can then derive
the following expression for 4* (see LeDimet,
1988, Kontarev, 1980):

IO CD)! a()

v
x o Uatl 0%
_ u o) au(-) a)
A* (')E_f B T -¢ P
) O O 0
ax dy ax ay
(2.12)

2.2. The objective function and its gradient

In all the present experiments, the objective
function was defined as a simple weighted sum of
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squared differences between the observations and
the corresponding model values, namely

J(Xo) = {W(X(Xo) = Xops ), X(Xo) — Xops

Ny
= W¢ Z (¢n_¢obs)2

n=1

Ny
+ WV Z [(un_uobs)2+(vn-vobs)2]’ (213)

n=1

where N, is the total number of geopotential
observations available over the assimilation period
(25, tr), and Ny is the total number of wind vector
observations. The quantities u,,,, Vops, and Gops
are the observed values for northward wind com-
ponent, eastward wind component and geopoten-
tial field respectively, while the quantities u, v, and
¢ are the corresponding computed model values.
W, and Wy are weighting factors which are taken
to be the inverse of estimates of the statistical root-
mean-square observational errors on geopotential
and wind components respectively. In our test
problem, values of W,=10"*m~?s* and Wy =
10~2m 2?52 are used.

The gradient of the objective function with
respect to the initial condition X:

X(0) = X,, (2.14)
is given by
V. J = X(0), (2.15)

where X(0) is obtained by integrating the adjoint
system (2.9) backward in time with a zero initial
condition at time ¢. In addition, a forcing term:

2W(X — Xops) (2.16)

is added to the adjoint variable at times when
observational data are available.

2.3. Description of test problems

To carry out the numerical experiments of the
incomplete observations, the initial conditions of
Grammeltvedt (1969) were used, given by

9y —yo)

h=H,+H h
o+ H, tan D

2nx

+ H, sech? 2y = o) sin

) 7 (2.17)
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where Hy,=2000m, H,=—-220m, H,=133m,
L = 6000 km, D = 4400 km. Here L is the length of
the channel on the § plane, D is the width of the
channel, and y,= D/2 is the middle latitude of the
channel. The initial velocity fields were derived
from the initial height field via the geostrophic
relationship and are given by

g oh

= ———

foy
d

a.

(2.18)

=

V=

~lo

where g=10ms~? and f=10"%s~'. The time
and space increments used in the model were

Ax =300 km, Ay =220 km, At=600s.

(2.19)

The experiment is devised as follows. The obser-
vational data consist of the model-integrated
values for wind and geopotential at each time step
starting from the Grammeltvedt initial conditions
defind by eqs. (2.17) and (2.18). Either random
perturbations of these fields, performed using a
standard library randomizer RANF on the CRAY-
YMP or complete flat fields are then used as the
initial guess for the solution. The time length of the
assimilation window is 10 hours which in turn
involves 60 time steps of 10 min each.

In order to assess and compare the performance
of the quadratic penalty method in damping the
small scale gravity waves present in the initial
fields, we add some artificial perturbations to the
geopotential field of the test problem described
above. Case 1 was obtained by perturbing the
initial height field by the addition of a small pertur-
bation term in the following way

¢'(i, )=, j) + o, ;% 8(, j)
i, j=8,12 (2.20)

where 2,4 ,0=0.9 %, «, ;= 0.45% when i or j equal
9 or 11, and «; ;= 0.3% when i or j equal 8 or 12,
where 7 and j relate to grid locations in the x and
y directions, respectively.
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Fig. 1. Case no. 1 initial geopotential field produced by
one grid point local perturbation on the Grammeltvedt
initial geopotential field condition no.l. Contour
interval is 200 m? s ~2 and values of the isolines are scaled
by 10,

In case 2, the initial height field was perturbed
by
¢ (i, )= ¢(i, /) +(0.9%) x §(i, j),

i, j= 3k, k=1,2,..,6,
"', Jj')=¢(i", j') +(045%) x 8(i', j'),

(2.21)

where (i’, j') represent all the grid points adjacent
to the grid point (i, j).

The isoline graphs of the perturbed height fields
¢’ and ¢” are plotted in Figs. 1 and 2, respectively.
For both cases the velocity fields were not
changed. We see that the height fields thus
obtained contain either one local grid point
perturbation in Case 1 or a 6 x 6 local grid point
perturbation of the geopotential field for Case 2,
respectively.

These two perturbed initial conditions were
used to produce the model-generated observa-
tions. The variational data assimilation without
(with) the penalty term is implemented by starting
from a model atmosphere at rest and minimizing
the cost function defined in eq. (2.13) (or egs.
(4.3)-(4.5)). When a prescribed convergence
criterion is met, the minimization process was
stopped. In all the following experiments, we
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Fig. 2. Case no. 2 initial geopotential field produced by a
6 x 6 grid point local perturbations on the Grammeltvedt

initial geopotential field condition no.1. Contour
intervals and scaling factor for the values of isolines
are the same as in Fig. 1.

employed L-BFGS, a limited memory quasi-
Newton method (Nocedal, 1980, Liu and Nocedal,
1989). The convergence criterion applied for all the
numerical experiments was

I gl < & max{1, [ X,||}, (2.22)

where g, is the gradient of the cost function at the
kth iteration and ¢ = 10~'* was chosen based on
obtaining a perfect solution, i.e., one in which no
visible difference with the initial condition used
to produce the observations to be assimilated is
observed. However the weights used to define the
cost function can be interpreted as variances of the
data. Errors in the retrieved fields with this con-
vergence criteria are, however, much smaller than
the error implied by these weights. The cost func-
tion is reduced more than the value of the sum of
mean square data errors and it is an overfitting.
This is quite acceptable in an “identical twin”
approach with lots of data available which
corresponds to our cases. In a real data experiment
where model and data might be inconsistent
(biased), this would lead to the appearance of
spurious large-amplitude high-frequency gravity-
wave noise in the solution.
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3. Penalty and augmented Lagrangian
methods—motivation, theory, and
numerical algorithms

3.1. Penalty and augmented Lagrangian methods

The basic idea of the penalty method is to
eliminate the constraints in constrained optimiza-
tion problems by adding to the cost function a
penalty term which prescribes a high cost to
infeasible points. Associated with this method is a
parameter r, called the penalty parameter, which
determines the severity of the penalty and as a
consequence the extent to which the resulting
unconstrained problem approximates the original
constrained problem.

Consider the problem

minimize J(X)

subject to A =0. (3.1)

where X is an n-dimensional vector and 4 is an
m-dimensional vector.

Instead of solving the above constrained mini-
mization problem we can solve an unconstrained
minimization problem by defining the following
augmented Lagrangian function L,
L(X, A)=J(X)+ATh+ 5r|h)? (3.2)
for any scalar r, where L, is called the augmented
Lagrangian function and 4 is the multiplier vector
(Bertsekas, 1982).

The quadratic penalty method consists of
solving a sequence of unconstrained minimization
problems of the form
minimize L, (X, 0), (3.3)
where the multipliers are set to zero and {r,} is a
penalty parameter sequence satisfying

O<ri<ris: Vk, rp — oo. 3.4)
The sequential penalty method iterative proce-
dure can then be algorithmically summarized as

follows:

(i) Start with an initial point X, and an initial
value of r; >0. Set /= 1.

(i) Minimize J'(X,r,) by using an un-
constrained minimization method and obtain the
solution X *.
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(iii) Test whether X* is a solution of the
problem (i.e., satisfying the constraints A=0
within some prescribed accuracy criteria). If this is
true, then terminate the process. Otherwise, go to
the next step.

(iv) Increase the value of the next penalty
parameter, r,. {, using the relationship

rie =cr; (c>1), (3.5)
1e, r;,>r;>0, where ce[4, 10] is suggested.
(See Bertsekas (1982))

(v) Set the new value of / =17+ 1, use as a new
starting point the point X, =X* and go to
step (ii).

The method depends for its success on sequen-
tially increasing the penalty parameter to infinity.
As r takes higher values, the approximation
becomes increasingly accurate whilst the problem
becomes extremely ill-conditioned (namely the
Hessian of the cost function has a very high
condition number).

It is, however, possible to improve considerably
the performance of the penalty method by
employing a nonzero vector of multipliers 4, and
by updating them in an intelligent manner after
each minimization of the form

minimize L, (X, 4,) (3.6)
(see Hestenes, 1969; Powell, 1977; Navon and De
Villiers, 1983). This is the augmented Lagrangian
approach, also called the method of multipliers.

It is argued that in the penalty method where
Ay =const (in our case 4, is 0), it is ordinarily
necessary to increase r, to infinity. It is known
theoretically (Bertseckas, 1982) that it is not
necessary to increase r, to infinity in order to
induce convergence in the augmented Lagrangian
method. This is an important advantage, since it
results in the elimination or at least moderation of
the ill-conditioning problem. A second important
advantage of the augmented Lagrangian method is
that its convergence rate is considerably better
than that of the penalty method. For the method of
multipliers, the rate of convergence is linear or
superlinear, while for the penalty method, the rate
of convergence is much slower and depends essen-
tially on the rate at which the penalty parameter is
increased. This advantage of the augmented
Lagrangian method in the speed of convergence
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has been verified in many computational studies,
where a consistent reduction in the computation
time ranging from 30 to 80 % has been reported.

A formal description of the typical step of the
original version of the augmented Lagrangian
method is as follows:

Given a multiplier vector A, and a penalty
parameter r,, we minimize the augmented
Lagrangian function L, (X, ;) using an un-
constrained minimization method to obtain a
solution vector X,. We then update the multipliers
vector using the following formula

Ak 1= A+ 1ih, 3.7

where the penalty parameter is chosen such that
rv .1 =1, (say for instance ., ; = cry, ce [4, 10])
and we repeat the entire process (see Bertsekas,
1982).

The choice of the initial vector of multipliers 4,
is based either on prior knowledge or a choice of
either the zero or unit vector is made in the
absence of such knowledge.

3.2. Definition of the penalized cost function

Throughout this paper we augment (or
penalize) the cost functional by adding a quadratic
penalty term
% 2

Fy (3.8)

r ’

to the cost function in order to reduce the amount
of gravity waves present in the variationally
assimilated fields, and to impose an appropriate
balance between the mass and velocity fields,
where ||-| is an L, norm. The method follows the
same basic premise as used in the nonlinear nor-
mal mode initialization approach of Machenhauer
(1977) and seeks to reduce the time derivative of
the gravity wave component of the flow. The
philosophy here is that we employ the penalty
method in a weak sense which is different from that
of solving a constrained minimization problem.
We try to reduce the absolute value of the time
derivative until it reaches a prescribed small value
instead of trying to attain a perfect steady state
solution (d¢/0t =0). This is done by stopping the
increase of the penalty parameter and not letting it
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tend to infinity, which is effectively equivalent to
imposing an inequality constraint of the form

%

<H9
ot

(3.9)

where H is a constant related to the frequency gap
for the exterior equivalent depth separating the
gravity waves from the Rossby waves. This
approach is called penalty regularization.

This method is also equivalent to the now classi-
cal terminology introduced by Sasaki (1970) and it
is intended to allow only a slowly varying evolu-
tion of the field, i.e., it will result in a projection on
the slow manifold of the motion.

The cost function assumes thus the following
form

2

J'=J+r

0¢
= (3.10)

for the penalty method and

% ) (3.11)

ot
0; if z<H;
vz = {(z — H)? otherwise.
for the penalty regularization approach.

The augmented Lagrangian function L, assumes
the form

.F=J+r¢<’

where

2

o9

= (3.12)

LX, A)=JX)+ AT =+=r

o6 1
ar 2

3.3. Gradient with penalty and Lagrangian terms
included in the cost function

To assess the performance of the quadratic
penalty method in damping the small scale gravity
waves present in the initial fields, one needs to
provide the gradient of the cost function to be
minimized for any unconstrained optimization
routine. From the basic derivation of adjoint
model we found out that the gradient of the
penalized cost functions can be easily calculated by
integrating the same adjoint model with different
forcing terms added to the adjoint model, that
is, besides adding the forcing terms 2W(:,)
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(X(z,) — X°™(¢,)) in the adjoint model whenever
an analysis time ¢, (r=0, 1, ..., R) is reached, we
also add at every time step the following additional
terms

0¢
*
2rar =, (3.13a)
¢
.
rA*y (Taz)’ (3.13b)
ZrA*—(Zq:+i (3.13¢)

to the right-hand side of the adjoint model for
calculating the gradients of the cost functions
defined in equations (3.10)—(3.12), respectively.

4. Application of the penalty function method

4.1. Basic experiments: results of penalty and
penalty regularization

Let us first discuss the results obtained for
Case 1. Having model produced observations, the
minimization (started from 0) of the cost function
which does not include a penalty term terminated
successfully after 104 iterations and 153 function
calls. The cost function decreased by 10 orders of
magnitude while the norm of gradient decreased
by 6 orders of magnitude. The variational assimila-
tion was thus able to perfectly retrieve the original
initial conditions (not shown). This result served
as our base experiment.

After that, we carried out several sequential
minimizations of the cost function, augmented
with the penalty term (3.8) with the intention of
damping out the local gravity wave perturbation
illustrated in Fig. 1. One might have thought that
the gravity wave can be damped to any desired
accuracy by simply choosing a very large value of
the penalty parameter r, and then carrying out a
single unconstrained minimization. However from
our experiments, we found out that for smaller
values of the penalty parameter r (say for instance
r<10°) the retrieved geopotential field was not
smooth enough and for larger values of r (>10°)
the minimization failed. For a value of r=10°, a
single minimization cycle performed very well at
first but after 105 iterations with 141 function calls,
the minimization failed again before the same
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convergence criteria (2.22) was reached. However
upon examination of the geopotential field after
105 iterations, we found out that a smooth initial
geopotential field has already been obtained. A
measure of the efficiency with which the constraint
imposed by (3.8) is enforced, is given by the
following corresponding variation of the quantity
ll0¢/0t||> which decreases from 0.77 x 10> m*s~°
to 0.70 x 10! m*s~° in the course of minimiza-
tion (see Fig. 3), i.e., a decrease of three orders of
magnitude in the squared time tendency of the
geopotential field pointing out to a successful
filtering of high-frequency gravity-waves.

We also carried out the experiment using
the penalty regularization method with H=
1.0 x 103, Similar results are obtained.

4.2. Results using the exterior penalty function
method

The sensitivity of the performance of the mini-
mization for different values of penalty parameter
ri is not surprising since it is well-known that the
condition number of the Hessian matrix evaluated
at the minimum increases as r becomes larger (the
so-called ill-conditioning effect of the penalty
method) (Gill et al., 1981, see also Appendix A).
The conditioning of the Hessian matrix has a
special significance in this case. If the initial value
of r is “too large”, even a robust unconstrained
minimization algorithm (as the one used in our
case) will typically experience great difficulty in its
attempt to compute the minima due to the slow
convergence induced by the increasingly larger
condition number of the Hessian of the penalized

10° T T T T v 10°

10 10

- 10" 10!

10° 10°

107 10"

10-2 " i A 1 i L 1 L 10-1
0 20 40 60 80 100

Fig. 3. Variation of the value of [0g/dr|? with the
number . of iterations during the minimization of the
penalized cost function with a penalty parameter r = 10°,
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cost function. Therefore, in order to solve the
problem by a penalty function method, a sequence
of unconstrained minimization problems has to be
solved, with moderately increasing values of the
penalty parameter (called the exterior quadratic
penalty method, see Fiacco and MrCormick, 1968
and Rao, 1983). In the exterior penalty function
method, each successive x*(r,) is used as the
starting point for solving a minimization problem
with the next increased value of the penalty
parameter, until an acceptable convergence
criterion (i.e., a satisfactory solution) is attained
for the first time (where x*(r,) is the minimum
point obtained using the preceding penalty
parameter r,).

Table 1 presents the results of the application of
the exterior penalty function method with r; =1,
¢c=10, /=1,6. We see that with a penalty
parameter equal to r;, the minimization ter-
minates with 106 iterations and 157 function calls.
If we examine the assimilated initial height field we
find that all the characteristics of the large scale
features have been retrieved. The following
sequential minimization of the cost function
augmented by a quadratic penalty term with
penalty parameters equal to r,, r;, and r,, respec-
tively, had a rather small impact on the smoothing
of the geopotential field (i.e., the elimination of the
gravity waves). Much of the damping of the
gravity waves occurs however when larger penalty
coefficients are used in stages 5 and 6 of the
sequential minimization procedure. After stage 6,
no sizable amount of high-frequency gravity waves
remains to be damped. This can also be inferred by
the small decrease in the norm of gradient with a
larger penalty parameter r, (see Table 1). It seems
that the exterior penalty function method is very

Table 1. Numerical results of the variational data
assimilation with application of the exterior penalty
Sfunction method to assimilate observations with one
local perturbation (7 cycle)

K r, ITER NFUN  J/J, |G)/1Gol £

1 10° 106 157 405-1077 1.41.10-¢% 10~
2 10° 5 8 224-10° 294.107%+ 10~
3102 14 21 9.69-10~! 2.28-107* 10~
410° 16 34 197-10° 164-1071 10°%
510 17 27 421-107! 835-10°2 10~
6 10° 30 45 397-107! 447-1072 10~
7 108 22 44 789-10°! 1.51-10°* 10~
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efficient in damping the small scale gravity wave
perturbations when a threshold value of the
penalty term has been attained. However, if we
consider the total number of iterations (188)
and total number of function calls (282) required
to reach stage 6, we find out that the required
computational effort is too expensive.

To reduce the computational cost, we carried
out a second exterior penalty function numerical
experiment with r, =103 ¢=10, /=14, in
which each subsequent minimization cycle uses
an increasingly stringent convergence criteria as
shown in Table 2 (also see Navon and deVilliers,
1983). Again most of the large scale characteristic
features are retrieved after the first minimization
cycle (Figs. 4a-b). The gravity wave oscillations
were damped out gradually till the fourth mini-
mization cycle ended with r, = 10°. The solution
for the geopotential field is practically the same as
that in previous exterior experiment. The total
number of iterations and function evaluations are
102 and 165, respectively. The computational cost
of this procedure is now comparable with the
computational cost of minimization without the
penalty term being included in the cost function.

4.3. Results using the short cut penalty method

If we examine the performance of the above
experiments, one can easily find out that the mini-
mization with a small penalty term or without a
penalty term at all but with a looser convergence
criteria can retrieve most of the large-scale features
of the initial condition fields, while a minimization
with larger penalty terms can damp out almost all
the small scale gravity wave features present in the
meteorological fields. This implies that only two
successive minimizations are required to obtain a
smooth solution devoid of gravity wave oscilla-
tions.

Table 2.. Numerical results of the variational data
assimilation with application of the exterior penalty
Sfunction method to assimilate observations with one
local perturbation (4 cycle)

K r, ITER NFUN  J/J, |G|/|Gol e
1 102 48 74 446.107° 141-10~* 10~
2100 16 26 7.85-10"!' 1.76.10°' 10~®

420.10°! 1.02.10! 5.10°1
396.10~! 3.13.1072 10714

3 10*
4 10° 26 37

Tellus 44A (1992), 4
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Fig. 4. Retrieved initial geopotential height after each cycle of the exterior penalty function method with a penalty
parameter set to (a) r; = 102, (b) r, = 10%, (c) ;= 10* and (d) r, = 10, respectively. The Case no. 1 observations were
assimilated, where the initial guess for the first minimization cycle is set to zero, the solution of the ith penalized
minimization was used as the initial guess for the (i + 1)th minimization, i =1, ..., 3. Contour intervals and scaling
factor for the values of isolines are the same as in Fig. 1.

We conducted therefore, another experiment in
which the first unconstrained minimization was
carried out without a penalty term being included
in the cost function and which was terminated
when a convergence criteria of 10~'? (instead of a
stringent one of 10~!*) was reached. The mini-
mization solution of the case where no penalty
term was included is then taken as the first guess
for the next minimization cycle with a large

Table 3. Numerical results of the variational data
assimilation with combination of the non- penalized
assimilation and penalized assimilation to assimilate
observations with one local perturbation

K r, ITER NFUN  J/J, |G|/1G,) P
1 0 52 75 4.46.107° 141.10~* 10~12
2 10° 34 45 7.85-10°! 1.76-10~' 10~

Tellus 44A (1992), 4
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Fig. 5. Retrieved initial geopotential field after the
second stage of the short cut minimizations when the
Case no. 2 observations are assimilated, where the initial
guess for the first minimization is set to zero and the solu-
tion of the first minimization without a penalty term was
used as the initial guess for the second minimization.
Contour intervals and scaling factor for the values of
isolines are the same as in Fig. 1.

penalty term being included in the cost function
(r=10°). The minimization of the penalized cost
function was then terminated when a convergence
criterion of ¢ = 10 ~* was reached. We found that
the distribution of the retrieved initial height fields
of the two minimizations is the same as in
Fig. 4(d). As far as the computational cost is con-
cerned (see Table 3), this experiment required a

21500 T T T—r—r—vr-7rr 21500
21000 21000
20500 20500
20000 20000
19500 19500
19000 A PO | P 1 i 19000

0 18 36 54 72

Fig. 6. Time variation of the geopotential fields for 24 h
at grid point (10, 10) after variational data assimilation
with (dotted line) and without (solid line) a penalty term
being included in the cost function when the Case no. 1
observations are assimilated.

Tellus 44A (1992), 4
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Table 4. Numerical results of the variational data
assimilation with combination of the non-penalized
assimilation and penalized assimilation to assimilate
observations with 6 x 6 local perturbation

K r, ITER NFUN  JJJ,  |GI/IG,l P
1 0 55 75 212.1077 1.27-10* 10-2
2105 33 45 233.10-2 144.10°2 10-%

total of only 86 iterations and 120 function calls for
the whole procedure, i.e., it was computationally
cheaper than the base experiment.

To illustrate the validity and effectiveness of
this two stage minimization procedure, we imple-
mented it for the test Case No.2. Table 4 and
Fig. 5 present the numerical results obtained for
this experiment. It is clear that this procedure (the
short-cut penalty approach) also performs very
well on Case No. 2, which contains a much larger
amount of small scale gravity wave features than
Case No. 1, except that near the north and south
boundaries there are still some small scale noises.
The total computational cost turned out to be
rather cheap (86 iterations and 120 function calls)
compared to the cost of a single minimization
without a penalty term which leaves the small scale
gravity wave features undamped (107 iterations
and 155 function calls).

4.4. Impact of the VDA with a penalty term
included on short-range forecast (24 h)

A number of 24 h forecasts (14 h real forecast
due to a length of 10h assimilation window)
starting from the variationally data assimilated
initial state with and without the inclusion of a
quadratic penalty term in the cost function were

20300 ¥ T T 20300
20200 20200
20100 20100
20000 20000
19900 19900
19800 19800
19700 19700
19600 4 L L 19600
0 18 36 54 72

Fig. 7. Same as Fig. 6 except for Case no. 2.
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carried out using a finite difference shallow water
equations model. The results of these forecasts
were then compared to the results of a 24 h
integration starting from a non-variationally
assimilated state.

In Fig. 6 we plot the time variation of the
geopotential field at a given grid point for a varia-
tionally assimilated integration without the inclu-
sion of a penalty term as well as the results from
the integration with a penalty term being included
in the cost function. Fig. 7 is the same as Fig. 6 but
for case 2.

From the hourly evolution of the geopotential
field for the short-range forecast (24 h) with the
penalized variational data assimilation and a run
without the inclusion of a penalty term, we observe
a major impact for the first 6-10 hours of the
numerical integration (see Fig. 6) for one localized
grid point perturbation case. In the case of
multiple-localized perturbations the impact of the
penalty approach remains visible after 24 h.

A perfect damping of the short gravity waves is
observed, matching in every respect similar results
obtained by the use of nonlinear normal mode
initialization. However the present method has
several advantages, the first being the fact that no
explicit knowledge of the normal modes of the
model is required, the second being that using the
penalty function approach it is possible to take
into account data distribution in time. However,
the variational data assimilation procedure itself
(without the inclusion of any penalty term)
remains computationally expensive. The initializa-
tion here comes as a by-product and involves little
additional cost beyond the computational cost
required by the variational data assimilation.

The results obtained compare favorably with
those obtained by other researchers using implicit
normal mode initialization of the shallow-water
equations model over a limited area domain (See
Juvanon du Vachat, 1986; Semazzi and Navon,
1986; and Temperton, 1988).

5. Application of the augmented Lagrangian
method

To compare the numerical performance and
computational cost of the method of multipliers,
we carried out an experiment minimizing the
augmented Lagrangian function, identical to the

X. ZOUET AL.

Table 5. Numerical results of the variational data
assimilation with application of the method of
multiplier to assimilate observations with one local
perturbation (4 cycle)

K r, ITER NFUN JiJy |GI/1Gol 3
110 54 78 207-107° 1.07-107% 107
2 10° 16 32 549-107' 637-1072 1071

435.107' 814.1072 5.107%*
3.50-107' 3.32-10°'  10°*

3104 24 41
4 10° 23 44

second exterior penalty function experiment
(r,=10%, ¢=10, [/=1,4, where the initial
Lagrange multiplier is 4, =0 and 4, is updated by
equation (3.7), the first order multiplier update
formula of the augmented Lagrangian method).
The number of iterations and the number of func-
tion evaluations for each run is given in Table 5.
Comparing Table 5 with Table 2, we can not see
any improvement due to the method of multipliers.
However by considering the retrieved initial
geopotential field after each run (Fig. 8), we found
out that most of the large-scale characteristic
features were retrieved after the first run. The
gravity wave damping effect occurs mainly in the
next two runs. A comparison with the Fig. 4 shows
that the solution from the third iteration of the
method of multipliers is better than the fourth
iteration of the penalty method, whilst the total
numbers of iterations and function evaluation are
96 and 158, respectively.

Therefore, with the application of the aug-
mented Lagrangian method we effectively obtain an
additional order of decrease in the value of penalty
parameter while at the same time obtaining a more
satisfactory solution. However the improvement
obtained in this case is not impressive in as far as
the computational cost is concerned.

Table 6. Numerical results of the variational data
assimilation with application of the method of
multiplier to assimilate observations with one local
perturbation (short cut)

K r, ITER NFUN  JjJ,  [GI/IGs ¢

1100 4 14 124.10-2775.10~2 10-°
210° 29 42 405.10-% 463.10~> 10-"
310° 18 24 370-10-2 310.10-2 10

Tellus 44A (1992), 4
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Fig. 8. Same as Fig. 4 except using the augmented Lagrangian method.

And similarly, the short cut augmented
Lagrangian method is much cheaper (see Table 6)
and performs better than the short cut penalty
method in the sense of better quality of the
retrieval.

6. The case of incomplete information

6.1. Uniqueness of the solution

In more realistic situations, meteorological
observations are temporally and spatially dis-

Tellus 44A (1992), 4

tributed, and are inhomogeneous both in quality
as well as in quantity. The question arises as to
what will happen if we decrease the number of the
observations in space. This is mathematically
equivalent to determining the necessary condition
for a unique solution of the problem of optimiza-
tion.

For this case, the objective function may be
written as

min J(X,) = min{ W(CX(Xo) — Xop5)s

CX(Xo) — Xobs > (6.1)



286

where X is an n-dimensional vector defined in the
space R,, X, is an m-dimensional vector (m < n)
defined in space R,,, and C is a projection operator
from the space R, to the space R,,. In this case the
gradient of the objective function with respect to
the initial conditions is obtained by the same
method described in Subsection 2.1 except that the
forcing term added to the adjoint variable during
the integration of the adjoint model is changed
from (2.16) to the following form
2CTW(CX — Xps). (6.2)

The uniqueness of the solution of minimizing
problem (6.1) depends on the structure of the
Hessian matrix H. (6.1) has a unique solution U *
if the Hessian H is positive definite. In the linear
case, the forecast model can be written as

——=AX
dt ?

(6.3)
where A is a constant matrix independent of X.
The cost function, J, being a summed up
semi-norm, is always positive and consequently
the matrix H is positive semi-definite. Thus for
problem (6.1) to have a unique solution, H must
be positive definite.

An explicit expression for the Hessian matrix H
was derived in Appendix B (B8). The uniqueness
condition of the solution, i.e., H is positive definite,
is transformed into an algebraic condition on A
and C. It is stated that if the rank of

C
c4

g= "7 | (6.4)

CA"71

is equal to n, then the Hessian matrix H will be
positive definite.

It is seen that the Hessian H is independent of
the observation itself. It depends on the model
(operator 4) and on a projection (operator C)
mapping the model variables into the space of
observations.

In the nonlinear case, however, J is no longer
quadratic with respect to the control variable U,
where U represents model initial state. Due to the
nonlinearity of the forecast model, no global
results may be obtained. However since J is

X.ZOU ET AL.

bounded from below we know that there exists at
least one local minimum U * which is characterized
by VJ(U *)=0. A sufficient condition for U* to be
a unique local minimum is that H(U *) be positive
definite. In Appendix C, we present a particular
method to calculate the Hessian matrix using a
second order adjoint model integration. One time
integration of the second order adjoint (at a
cost around 1-2 times integration of the direct
foreward model) can provide the value of one
column of the Hessian matrix, or the value of the
product of the Hessian and a vector. Due to the
large dimension of the control variable (10 to 10°)
in variational data assimilation, the computation
of a full Hessian may be prohibitive for real
applications. However it is possible to obtain an
estimate of the spectral radius and the condition
number of the Hessian by using an iterative power
method or a Rayleigh quotient method, both of
which require only the value of the Hessian multi-
plied by a vector. One can also obtain several large
and small eigenvalues of the Hessian by a deflation
method (Golub and Van Loan, 1989).

At the end of Appendix B an analysis of the rela-
tionship between the uniqueness of the solution
and the observations was carried out for a simple
linearized shallow water equations. In the next
section, we will carry out some numerical experi-
ments to estimate the influence of the distribution
of available observations on the uniqueness and on
the convergence rate to the local minimum.

6.2. Results with incomplete observations

We use the L-BFGS (Liu and Nocedal, 1989)
unconstrained minimization algorithm, which
seems to be a most efficient and robust large-scale
minimization routine (Zou et al., 1991). First we
decreased the number of the observational fields.
Suppose that only the » and v fields are observed
and there are no observations of the geopotential
field. The numerical results show that the mini-
mization of the cost function defined in (2.13)
without the first summation was able to retrieve a
unique minimum, i.e., not only perfect initial fields
for the ¥ and v components but also a smooth
balanced ¢ field. If only the geopotential field is
observed, the minimization of the cost function
was also able to retrieve a unique minimum which
is the same as the Grammeltvedt initial condition.
These results are consistent with the theoretical
results of Appendix B, which determine the

Tellus 44A (1992), 4
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Fig. 9. Variations of (a) the scaled value of the cost function and (b) the scaled norm of the gradient of the cost
function with the number of iterations when the observations for the three fields are available at every 1 (dash dot
line), 2 (dotted line), and 4 (solid line) grid points in both x and y directions.

necessary conditions for a unique minimum of the
cost function.

Next we decreased the number of grid points
where observations are available. If we reduce
the observational data in grid space (i.e., in the
horizontal space dimension) by alternating the
available observational data in both the x and y
directions, for instance by assuming that data was
available only every two grid points in each
direction (i.e., the number of observations was
decreased from 21 x 21 to 11 x 11), the minimiza-
tion process fails. Namely after 71 iterations, the
minimization stops due to rounding errors before
a smooth solution was obtained. No reasonable
retrieval is obtained and the objective function and
the norm of gradient decrease by only about 2-3
orders of magnitude, which is roughly half of the
orders of magnitude known to be necessary from
our experiment to reach a smooth solution. If we
continue to further decrease the number of obser-
vations in both space directions to every 4 grid
points for instance, no significant difference from
the case of every 2 grid points is observed (see

Fig. 9) and also no satisfactory convergence and
retrieval are obtained. It seems that the perfor-
mance of the minimization depends really on the
number of available observations at the grid
points. At least, this is the case for the limited-area
shallow-water equations random perturbation
test, where the control variables are only the initial
conditions.

If we continue further to decrease the number of
observations on the grid points (in the space
dimension) to every 14 or 19 grid points for
instance, there is no significant difference from the
case of every 2 grid points, ie, no good con-
vergence and no satisfactory retrieval are obtained.
It seems that the performance of the minimization
is more sensitive to a decrease in the number of
observations available in space than in time. At
least, this is the case for the limited-area shallow-
water equations random perturbation test, where
the control variables are only the initial conditions.
If we calculate the maximum and minimum eigen-
values and the condition number of the Hessian at
the initial guess of the minimization (Table 7), we

Table 7. Values of the maximum eigenvalue (1,,,.), the minimum eigenvalue (1,,,) and the condition
number (Cond. no.) of the Hessian of the objective function at the initial guess point using the power method
and the shifted power method, when observations are available either at every time step and on each grid
point (Case 1), or on each grid point but only at every 30 time steps (Case 2), or at every time step but only

every two grid points (Case 3)

Problems Amax Amin Cond. no. Convergence criteria
Case 1 2.1981-10~4 4.8934.10°7 449.2 st —de <10-°
Case 2 1.8362.107* 1.0830-10°7 1695.5 " h"’t‘ « b
Case 3 2.9044 . 10— — 1656910~ 17.53 (k the iteration number)

Tellus 44A (1992), 4
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find that the reduction of observations in the grid
space produces a negative minimum eigenvalue of
the Hessian. Thus, we obtain an indefinite Hessian,
indicating to multiple minima or saddle points.

One could wonder whether the results from
experiment in which data is given every two grid
points could be partially improved if instead of a
random perturbed field, a first guess field lacking
small scale structure, e.g., a complete flat field,
was used to start the minimization. Minimization
starting from a flat initial guess yields similar
results with the above experiment. This shows that
the failure of the minimization with observations
available only every two grid points is independent
of the fact that we used a randomly perturbed
noisy initial guess.

If the number of observation was diminished
only in one space dimension (in this case the x
direction), say for instance that observations are
available at every two grid points, the minimiza-
tion was able to retrieve a smooth solution but the
convergence rate became rather slow. After 200
function evaluation the retrieved geopotential
fields still contain small noises. It seems that
having data available at every two grid points in
the x direction can still allow the existence of a
unique solution but will probably make the shortest
waves part of the null space solution. The model
still resorts to these degrees of freedom to better fit
the data. Imposing a penalty term (3.8) which has
the effect of damping the fast waves in the solution
may eliminate or reduce the use of these degrees
of freedom in the fitting process. Numerical
experiments show that with the penalty term
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included in the cost function the minimization in
the case of incomplete data in the x direction was
able to reach a faster convergence than without a
penalty term. The retrieved geopotential field after
200 function call is rather smooth. However the
convergence rate of the incomplete observation
with a penalty term included is still slower than
the case when observations are available at all the
grid points, in which case 83 function evaluations
were required to satisfy the convergence criteria in
(2.22).

One may ask what will happen if observational
data are reduced in time dimension? Suppose that
observations are available, say for instance, every
2, 10, 30 or 60 time steps instead of at each time
step. Fig. 10 shows the variation of the scaled value
of the objective function (J/J,) and the scaled
norm of its gradient (|| g|l/|l go/l), when the number
of time levels at which observations are available
decreases. It is evident that if observations are
available every 2, 10 or 30 time steps, the perfor-
mance of the minimization is very similar to the
case where observations were available at every
time step. But as the time interval between two
subsequent observations increases to 60 steps, i.e.,
observations are available only at the first and last
time steps of the assimilation window, the con-
vergence rate becomes slower after 10 iterations,
and the minimization reaches the local minimum
after 80 iterations instead of 50-60 iterations.
A satisfactory retrieval of initial wind and the
geopotential height fields is obtained even for the
60 time step interval of observations case. The
difference fields between the retrieved and unper-
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Fig. 10. Variations of (a) the scaled value of the cost function and (b) the scaled norm of the gradient of the cost
function with the number of iterations when the observations for the three fields are available at every 1 (solid line),
2 (dotted line), 10 (dash line), 30 (dash dotted line) and 60 (dash dots line) time step, respectively.
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turbed initial wind and geopotential are several
orders of magnitude smaller than the initial fields.

7. Summary and conclusions

In this paper, we have used optimal control
theory of partial differential equations and applied
it to a variational 4-D data assimilation in a
shallow-water equations model where only initial
conditions, or both the initial and the boundary
conditions, serve as control variables. The limited-
memory quasi-Newton method of Nocedal
(Nocedal, 1980; Liu and Nocedal, 1989) (L-BFGS
was applied to the problem of minimizing objec-
tive functions consisting of the weighted sum of
squares between the model-computed quantities
and known observations plus some penalty terms.
The observations were created from the model
integration starting from the Grammeltvedt (1969)
initial conditions and the initial guess for the mini-
mization was taken as either a random perturba-
tion of the Grammeltvedt initial conditions or a
complete flat field. Two issues related to varia-
tional data assimilation, i.e., gravity wave control,
and incomplete observations, were addressed.

The minimization was able to retrieve the
perfect initial conditions with proper scaling. This
occurred both when only the initial conditions or
when the initial plus boundary conditions served
as the control variables. However, the convergence
rate and accuracy of the retrieval are different.

The experiments carried out with diminishing
observational data indicate that the case of insuf-
ficient data can lead to rather large changes in the
pattern of behavior of minimizing the objective
function. As a consequence, it may be necessary to
include an additional term of penalization in the
objective function in order to improve the condi-
tioning of the Hessian of the objective function.
Information from second order derivatives of the
objective function gives more information on the
spectral structure of our problem.

Application of the exterior penalty method
shows how the small scale gravity wave noises
were reduced with increasing values of the penalty
parameter. Results from the short-cut penalty
method are very encouraging and show that
gravity wave noises can be effectively eliminated
without applying the NMI algorithm. Application
of the augmented Lagrangian method leads to a

Tellus 44A (1992), 4
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better quality of meteorological fields in the
retrieved solution.
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9. Appendix A

The penalty method theory

The basic idea in penalty methods is to eliminate
the equality constraints by adding to the objective
function a penalty term which prescribes a high
cost to infeasible points.

Associated with the penalty methods is a penalty
parameter which determines the severity of the
penalty and as a consequence the extent to which
the resulting unconstrained problem approximates
the original equality constrained problem.

Consider the problem

min f(x)
subject to A(x)=0

(A.1)
(A2)

where f: 2" > & and h: #" - #™ are given func-
tions. We assume throughout that (1) has at least
one feasible solution.

Let us define, for any scalar, the augmented
Lagrangian function L,: #” x #™ — R by
L(x, )= f(x)+ A h(x)+ ir |A(x)|?, (A3)
where r is penalty parameter and A is vector of
multipliers or simply multiplier.

The quadratic penalty method consists in
solving a sequence of unconstrained minimization
problems of the form

min L, (x, 1), (A4)



290

where {1,} is a bounded sequence in %™ and {r;}
the penalty parameter sequence satisfies that

ree1>re>0 vk, and rp— 00

as k— oo. (A.S)

In the original version of the penalty method we
take the multipliers 4, to be all equal to 0 and the
method proceeds by sequentially increasing the
penalty parameter to infinity.

The ill-conditioning of the penalty method can
be described as follows: Let us denote by

P(x,r)= f(x)+ 3rhT(x) h(x)

= f(x) + 3r ()3 (A.6)

The Hessian matrices V2P(x*, r) become increas-
ingly ill-conditioned as r increases (Murray, 1969;
Lootsma, 1969). To observe why, take the Hessian
of P at an arbitrary point x

V2P(x,r)=H+ Y rh,H,+rA"A,

i=1

(A7)

where A(x) is an mxn matrix whose ith row
transpose a’(x) is the gradient vector of the
constraint function 4;(x).

At x*(r) for large r, it follows from

lim A,(r)=Ai} (A.8)

r— oo

that the first two terms form an approximation to
the bounded matrix L(x*, 1*), where L,(x;)=
H(x,)+ X" | rh;H;. The eigenvalues of L,(x,) are
restricted to the tangent space M of the active
constraints (see Luenberger, 1984, p375). Thus if
m < n, the matrix evaluated at x*(r) is dominated
by the unbounded rank deficient matrix r47 4.

As r— o0, Murray (1971) shows that n—m
cigenvalues of V2P(x*,r) are bounded with
associated eigenvectors that in the limit lie in the
null space of 4(x*) and tend to the eigenvalues of
L, the restriction or projection of L to the
tangent space M. However, the remaining m eigen-
values are of order r. These m eigenvalues tend to
infinity as r — 0. [ll-conditioning can be overcome
only by using for each kth iteration a starting point
for the unconstrained minimization procedure,
which is close to a minimizing point of

er( i3 Ak)
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usually taken to be the last point x, _, obtained
from the previous unconstrained minimization.
This in turn requires that the rate of increase of the
penalty parameter be relatively small. One has to
balance the benefit of fast convergence with the evil
of ill-conditioning. One usually chooses r,, ;=
Bri, Be [4, 10] (see Bertsekas, 1982).

10. Appendix B

Uniqueness of the solution

The solution U* for the problem (6.1) will be
unique if the functional J is strictly convex, i.e., if

JAU + (1= 1) V)< AJ(U) + (1 = 4) J(V),

A€[0,1] (B.1)

A geometric interpretation of eq. (B.1) is that
the graph of J is under any chord between U
and V.

If J is only convex, i.e., the inequality in (B.1) is
not strict, and then the minimum is not necessarily
unique and the functional J may have no minima,
one or several minima or a continuum of minima.
J may also have stationary points which are not
minima, but rather maxima or saddle points.

A difficulty encountered with non-convex func-
tionals is that there is no global characterization of"
the absolute minimum and only a local analysis
can be carried out.

If J has a second derivative, then J will be
convex if its Hessian matrix H is positive semi-
definite and J will be strictly convex if H is positive
definite.

By definition, the functional J depends upon the
observations, therefore, computing the Hessian of
J where J is defined by (6.1) permits one to
estimate the link between the observations and the
retrieved fields.

B.1 The linear case:

In the linear case, the model equation may be
written as:

(B.1)

X0)=U, (B2)

where A is a n x n constant matrix.
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An explicit solution of (B.1)-(B.2) is
X(1)=eU, (B.3)
where the exponential matrix e is defined by

A2 A"
el=l+A+—4 ...+ 4 ...
2! n!

The adjoint system is

dp
E+A’~P=C‘(CUe'“— obe)s (B4)
P(T)=0. (B.5)

The explicit solution of (B.4)-(B.5) is

1
P(t) = j e~ AU=ICHCe U~ Xyp)ds.  (B.6)
T
Using (B.6) and (2.15) we obtain
VJ(U)= P(0)
0
- J e CHCe™ . U= Xop,) ds. (B.7)
T

From (B.7) the Hessian matrix H is seen by
inspection to be

0
H= f e C'Ce™ ds, (B.8)
T

where H is a symmetric matrix (H'= H). We see
from (B.8) that the Hessian H is independent of the
observation itself, depending only on the model
(represented by A) and on the operator C mapping
the meteorological variables into the space of
observations.

Because J is quadratic with respect to U it may
be written as

J(U)=LU'HU.

J, being a summed up semi-norm, is always
positive and consequently the matrix H is positive.
For eq. (6.1) to have a unique solution, one needs
to verify that H is positive definite.

Since the condition of positive definiteness is not
very convenient to verify, another more con-
venient formalism may be the following:
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Theorem: Let o/ be the matrix [C’, 4°C*, ...,
(A"y"=' C']. If rank & =n, then H is positive
definite and there exists a unique optimal initial
condition.

Proof: H is positive definite if and only if
X'HX=0, ie., ifand onlyif X =0,

but
0

X'HX = j X't C'Ce X ds
T

0
= j llce*x)? ds. (B.9)

This expression is equal to zero if and only if

CeX=0 Vse[0,T] (B.10)
and by differentiating k times with respect to s, we

get

CA*e*X=0 Vse[O0, T]. (B.11)
For s=0 we get
CA*X =0 Vk > 0. (B.12)

By the Cayley-Hamilton theorem, there exist
constants kg, £, ..., k, _,, such that

At=kol+k A+k, A+ - +k, 4",

and therefore if (B.12) is verified for k<n—1, it
will be verified for k >n, ie.,

rank[C’, A'C, .., (4"~ 1 C"]

C

=rank C.A =r.

car!

If r =n, then the null space of the linear mapping
associated with & is reduced to 0 and the Hessian
H will be positive definite.

The condition of uniqueness of the initial condi-
tion is thus transformed into an algebraic condi-
tion on the model and the transformation from the
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variables of the model to the observed variables.
The condition stated above related to the rank of
</ is very similar to a condition of observability
for the equations (B.1)-(B.2) and a condition of
controllability for the adjoint system (B.4)—(B.S)
in the framework of optimal control theory.

If only the meteorological variables are observed,
the rank of H will depend on the number of obser-
vations. The quality of the retrieved fields will
depend not only on the number of observations
but also on their location.

Similar results may also be obtained if we
consider a temporally discretized model.

Example 1: Let us consider a continuous
linear advection-diffusion model defined on [0, 1]
by

‘l—fw‘;—fw%:o o, f>0 (B.13)
X(0,t)=a() (B.14)
X(1, 1)=b(1) t>0 (B.15)
X(x,0)= U(x), (B.16)

where a and b are given.

After a standard spatial discretization on a
regular grid with » grid points, the equation (B.13)
may be written as

dx
E—AX
X0)=U0,

where X is also the discretized variable and the
matrix A is given by

—2a a+f

A= d—ﬁ —2“ a+ﬂ

a—f —2u
and rank 4 =n.

If there is an observation of X at each grid
point then C is the identity matrix and rank C=n,
therefore rank & = n and there is a unique optimal
initial condition.

If only one out of every two grid points is
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observed then the dimension of matrix Cis (n/2, n)
(n even)

1 00 0O 0
00100 0
C=100001 0
0 1

and rank C=n/2.
The matrix 4°C’ assumes the following form

(2« 0 o0 o0 o)
a+pf a—p O 0 0
0 -2« 0 0 0
a+pf a—f O 0
A'C'= 0 -20 0 0
ao+f a—f 0
—2a 0
a4+ p 0
_ 0 0 0 0 0 |

The first 2k — 3 elements of the kth column of 4'C*
are null, while the first 2k —2 elements of the
kth column of C* are 0. Therefore the matrix
[C’, A°C‘] is an n x n matrix and its columns may
be reordered in such a way that we obtain a lower
triangular matrix whose diagonal elements are
nonzero, therefore its rank is equal to » and there
is a unique optimal initial condition with respect to
the observations.

If there are less than #/2 points of observations
then it will be necessary to compute the successive
powers of the matrix 4. This can be done if one
observes that 4 may be written as

A= —2al+(a~B)L+ (x+B) L',

where

- O
-0
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Example 2: In this example, we will consider
the linearized shallow water equations discretized
in space using a standard centered finite-difference
scheme on a square domain using a step size
Ax=Ay=h with N? grid points, i.e.,

Ou;,; 4,
—W’j —}'1_!(ui+l,j :-1])+ (u,1+1 ui,j—l)
1
—foisty Bivr= i) =0, (B.17)
ov, ; U
ot — 4= h (U'+11 '—l/)+ (Uu+1 U;,j—l)
1
+fui,j+z(¢i,j+l_¢i,j—l)=0 (B.18)
A
¢ J+ (¢'+11 ¢x—11)+ (¢:/+1 ¢i,j—1)
ot
¢5 =0,
h LUy g j— Uiy, j+ Vi 41— 0i5-1) =0,
(B.19)

where #, © and § are given and u;; is the
approximate value of u at grid point M = (ih, jh).

Let X=(u,v, ¢) be the vector of grid point
values, then the system (B.17)-(B.19) can be
written as

dx

dr =AX,

where A is the 3N x 3N matrix assuming the form
written as

uu Avv
Al)ll ADD
Ay,

Ay
Ay
Ay

A is divided into 9 Nx N square submatrices,
where 4,,, 4,, and A, are tetradiagonal, 4,, and
A,, are diagonal with the Coriolis parameter on
the diagonal. Other matrices are bidiagonal.
According to Theorem 2, in order to obtain a
unique solution, the rank of the matrix

o =[C', A'C, .., (4"~ C']

must be equal to 3N. As above if u, v and ¢ are
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observed at each grid point then C =71 and we will
have a unique solution.

If only two components of the fields, u and v for
instance, are observed at all grid points, then C is
a 2N x 3N matrix assuming the form

100
C=<o I o)’

where I is the N x N identity matrix. In this case
rank(C*) = 2N, therefore the matrix 4°C‘ must be
computed giving

Auu Avu
A'C'=\ A4, A,
Ay Ay

Due to the bidiagonal structure of 4, and 4,4, it
is possible to extract N columns of A'C* indepen-
dent of the 2N columns of C, and therefore the
uniqueness of the optimal initial condition with
respect to the observations is guaranteed.

A similar result may be obtained in the case
where only one of the three components of X is
observed. But this result may be obtained only
after computing the matrix (4)* C".

This analysis has been carried out only for
the simplest linear version of the shallow water
equations model. Using formal calculus a similar
analysis might be carried out with a more com-
plicated version of the shallow water model and a
more realistic distribution of observation points.

In summary, the results given in this appendix
can be used as tools to derive, for particular cases,
sufficient conditions required to retrieve dynamical
fields from observations when optimal control
methods are carried out. Furthermore, if a criteria
on the quality of the retrieval is given by the condi-
tion number of the Hessian matrix, this approach
can be used to carry out an analysis on the optimal
location of sensors.

B.2 The nonlinear case

In the nonlinear case J is no longer quadratic
with respect to the control variable U. If the model
is nonlinear, no global results may be obtained.
Because J is bounded from below we know that
there exists at least one local minimum U * which
is characterized by VJ(U*)=0.

A sufficient condition for U* to be a unique
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local minimum is that H(U *), the Hessian at U ¥,
be positive definite. In Appendix C we presented a
way to calculate the Hessian matrix by integrating
a second order adjoint model. One time integra-
tion of such a model will yield one column of the
Hessian, or values of the Hessian multiplied by a
vector. Since the dimension of the control variable
in variational data assimilation is very large (up to
106 or more), it is still too expensive to calculate
the full Hessian and then to examine the properties
of that Hessian matrix. However it is possible to
obtain an estimate of the spectral radius and the
corresponding condition number of the Hessian by
using an iterative power method or a Rayleigh
quotient method which only requires the value
of Hessian multiplied by a vector (Golub and
Van Loan, 1989).
For example the sequence defined by

HX®
X

(k+1) _

converges to the maximum eigenvector X,
associated with the largest eigenvalue A_,, of the
matrix H if this eigenvalue is simple. Furthermore

X%+
xe) [ maxl-

To estimate the smallest eigenvalue of the
matrix H, it is sufficient to make a shift and to
consider the matrix
K=AI-H, where 4> A,
the largest eigenvalue of K is 4 — 4., (i.e., to use
the shifted power iteration).

One will also be able to calculate several
large and small eigenvalues of the Hessian by
integrating the second order adjoint model by a
deflation method (see Golub and Van Loan,
1989).

11. Appendix C

Second-order adjoint model

For the sake of simplicity, we will assume that
the model has been discretized with respect to the
space variable and that the state of the atmosphere

X. ZOUET AL.

may be described in the time interval from 0 to 7,
as the solution of an ordinary differential equation

dx
5 =F® (C.1)
X(0)=U, (C.2)

where X represents the state of the atmosphere and
belongs to the n-dimensional space Z. F is a non-
linear mapping from & to 4. We assume that Fis
such that with the initial condition (C.2) at time O,
the model described by equation (2.1) has a unique
solution between times O and T.

The adjoint equations corresponding to
(C.1)~(C.2) are written as
dP | oF | .
4= = - C.
dt+[aX] P=C'(CX—Xa,) (C3)
P(T)=0, (C4)

where P represents the adjoint variable. Integra-
tions of the adjoint system (C.3)~(C.4) resuits in
the gradient of the cost function
VJ(U)= — P(0). (C.5)

Applying a perturbation K on U we obtain from
(C.1)~(C.2)

d¥ [oF]
YT [é}] X (C.6)
X(0)=K, (C7)

where X is the perturbation of X. For the adjoint
system we obtain from (C.3}-(C.5)

SN PR

=C'CX, (C8)
B(T)=0, (C9)
VJ(U, K) = — B(0). (C.10)

The Hessian is obtained by exhibiting the linear
dependence of P(0) with respect to K.

Let us introduce Q and R, the second order
adjoint variables, which will be defined explicitly
in the following.

We take the inner product of eq. (C.6) with Q

Tellus 44A (1992), 4



CONTROL OF GRAVITY WAVES IN VARIATIONAL DATA ASSIMILATION

and of eq. (C.8) with R, integrate from time O to 7,
and add the two results together to get

[0 (G
L& 2e)- (5] 2 0)

oF o
‘<[ax] PR>+(CCX,R>}dt (C.11)

The left-hand side of (C.11) is integrated by parts
while the operators in the right-hand side are
transposed giving:

CX(T), Q(T)> — {X(0), 2(0)>
+ (P(T), R(T))> — C(P(0), R(0)>

[ (2 R)a( (r)a
[ (<[5 o)
S BRI

_ Lf<p, [g_;]R> d

+fr (X, C'CR) dt. (C.12)
0

Therefore if the variables Q and R are defined as
the solution of the following differential systems:

do ' °F "
2. [4] o-[254]

+C'CR=0, (C.13)

295

drR [oF
o= [5}] ‘R, (C.14)

o(T)=0, (C.15)

then using (C.7) and (C.9) from (C.12) one obtains

= (P(0), R(0)> = (K, Q(0)> (C.16)

Now, using (C.10) and the definition of the
Gateaux derivative, we have

{H-K, R(0)) =<K, 0(0)), (C.17)

and therefore, since H is symmetric, we have

H-R(0)=Q(0). (C.18)

To obtain the full Hessian matrix H, we have
to integrate n times the differential system
(C.13)-(C.15) with the condition on R(0) given as:
R(0)=e,, i=1,..,n, (C.19)
where ¢, is the vector of the canonical basis of #”,
then from (C.17) the n vectors Q(0) obtained from
the integration are the rows of the matrix H.

The condition for the existence of a unique
optimal initial condition is that H is positive
definite. A necessary and sufficient condition for H
to be positive definite is that its null space is
reduced to zero. This will be the case if the n
vectors Q(0) obtained by solving (C.13)-(C.15),
(C.18) are linearly independent. This is a problem
of controllability for the system (C.13)~(C.14).
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