VECTORIZATION OF CONJUGATE-GRADIENT METHODS FOR LARGE-SCALE MINIMIZATION

I. M. Navon,

Supercomputer Computations
Research Institute

and Dept. of Mathematics

Florida State University

Tallahassee, FL 32306-4052

ABSTRACT

Vectorization techniques are applied here for the vectoriza-

tion of the non-linear conjugate-gradient method for large-

scale unconstrained minimization. Until now the main thrust

of vectorization techniques has been directed towards vec-

torization of linear conjugate-gradient methods designed to

solve symmetric linear systems of algebraic equations. Com-

putational results are presented using a robust limited-

memory Quasi-Newton-like conjugate-gradient algorithm due
to Shanno and Phua [21], applied to large-scale unconstrained
minimization problems arising in meteorological applications.

The vectorization of the non-linear conjugate-gradient method
results in speed-ups up to a factor of 21 compared to the

performance of the scalar code, when minimizing non-linear

functions of 10 — 10 variables. A sizable reduction in the

CPU, time required for the minimization of large-scale non-

linear functions is obtained-pointing to the advantages of

vectorization for large-scale numerical unconstrained mini-

mization problems, where local minima of non-linear func-

tions is to be found using the non-linear conjugate-gradient

method.

1. INTRODUCTION

During the last few years conjugate-gradient methods were
found to be the best available tool for large-scale non-linear
minimization of functions occurring in geophysical applica-
tions. We consider here the case when function evaluation is
expensive and gradients are evaluated by finite differences.
The objective function F(z) is often described by a complex
computer code and the derivatives of F(z) are not avail-
able analytically. Generally in this case no higher derivatives
are used. Therefore for large-scale unconstrained minimiza-
tion with expensive function evaluations and in the absence
of analytical gradients, each gradient evaluation requires N
function evaluations.

The cost of solving the optimization problem i.e.
min F : R — R™
n (1)
z€R

is dominated by the function and finite difference gradient
evaluations.

In the present paper we present the results of the vector-
ization of the memoryless Quasi-Newton conjugate-gradient

CH2617-9/88/0000/0410$01.00 © 1988 IEEE

P. K. H. Phua,

Dept. of Info. Systems
and Computer Science
National University
of Singapore

410

and M. Ramamurthy

Dept. of Atmospheric Sciences
University of Illinois
Urbana-Champagne, IL 61801

code due to Shanno and Phua [26] applied for finding the lo-
cal minimizer of large-scale meteorological problems involv-
ing 10* — 10° variables. In such cases it is not unusual for
each evaluation of F(z) to require up to a minute on a single
processor of the CYBER-205. The results point to the vector-
ization of the function and gradient evaluation code, as well
as the vectorization of the conjugate-gradient routine itself
to result in a significant speed-up, i.e. in a sizable reduction
in the CPU time required for the minimization.

Qur approach may be then used in a multiple processor ar-
chitecture using concurrent evaluations as proposed by Schn-
abel [20]. It is concluded that vector processors are advanta-
geous for large-scale non-linear unconstrained minimization
problems where the local minima of non-linear functionals is
found using the conjugate-gradient method.

As for the non-linear conjugate-gradient method which con-
stitutes the topic of the present research paper - a thorough
review of the available literature points out to the fact that
the absolute totality of the research activity carried by a
small number of researchers was directed towards efforts in
parallelizing the conjugate-gradient method — and to our best
knowledge ~ no effort was directed towards vectorizing the
method.

Parallelization of the non-linear conjugate-gradient method
can be introduced by approximating the successive gradi-
ents by finite-differences of the function values calculated in
parallel - and one can accelerate the linear searches by simul-
taneous function evaluations at preselected gridpoints along
the search direction.

Several authors (Chazan and Miranker [2], Sloboda [22],
Sutti (23,24}, and Schendel and Schyska [19]) designed paral-
lel versions of Powell’s non-gradient method [15] generating
conjugate search directions by minimization over geometri-
cally parallel manifolds. This results in simultaneous line
searches, but computational experience up to date is too
limited (see Lootsma. [8)).

The Hatfield Polytechnic Group has investigated conjugate-
gradient methods of Nazareth (12] which generate conjugate
search directions without exact linear searches (see Dixon,
Ducksbury and Sing [4], Dixon and Patel [3], Dixon, Patel,
and Ducksbury [5], Patel [13], and Schnabel [18]). Other
work on parallel optimization is reported in Straeter and
Markos [26]. Housos and Wing [6,7] used pseudo-conjugate
directions for the solution of the non-linear unconstrained op-

timization problem on a parallel computer using the Powell
(15] non-gradient method. Other efforts involved Mukai [9],
Pierre [14], Van-Laarhoven [25], etc. No report appears to
be available of speeding up the non-linear conjugate-gradient
method for large-scale optimization on vector computers.

This issue is of crucial importance when we solve problems
with expensive function/gradient evaluations which appears
to be the case for large-scale meteorological applications.

1t is important to develop very efficient unconstrained min-
imization algorithms not only because the problem occurs
in many instances on its own — but even more so because
an unconstrained minimization problem must be solved in
the inner-loop of the solution of important constrained non-
linear problems. As mentioned by Schnabel [18] vector com-
puters may be advantageous in the case of large-scale uncon-
strained minimization.

These large-scale minimization problems occur in applica-
tions in meteorology, computational chemistry and struc-
tural optimization to cite but a few of the application fields.

In Section 2 we will describe the relevant large-scale mete-
orological problems where the constrained non-linear opti-
mization, e.g., the Augmented-Lagrangian formulation was
applied. A large-scale unconstrained optimization problem
must be invariably solved in the inner-loop of the solution
of the Augmented-Lagrangian constrained non-linear mini-
mization. The robust (see Navon and Legler [11]) conjugate-
gradient solver, its structure and computational complexity
will be described in Section 3. Numerical results concerning
the vectorization of the conjugate-gradient code and in par-
ticular the vectorization of the function/gradient evaluation
part of it will be presented in Section 4.

Results concerning the performance of the conjugate-gradient
code under scalar, automatic vectorization and refined man-
ual vectorization will be numerically and graphically pre-
sented and discussed in Section 5. The resulting speed-ups
of the conjugate-gradient method and the relative improve-
ments in performance will be tabulated and summarized.

Finally, the impact of the number of variables in the non-
linear function to be minimized on the speed-up performance
of the vectorized non-linear conjugate-gradient code for a
particular vector supercomputer, e.g., (the CYBER-205) will
be discussed.

Section 6 will include a summary and conclusion remarks
where implications for vectorization of different non-linear
conjugate-gradient methods applied to large and very large-
scale unconstrained minimization.

2. TYPICAL LARGE-SCALE
METEOROLOGICAL PROBLEMS

To exemplify the large-scale problems encountered in mete-
orology we will briefly present two such problems.

A) ENFORCING CONSERVATION OF INTEGRAL
INVARIANTS USING THE AUGMENTED-
LAGRANGIAN METHOD

An Augmented-Lagrangian method is applied to enforce con-
servation of total mass, total energy and potential enstro-
phy for a limited-area model of the two dimensional shallow-

411

water equations. The non-linear equality constrained prob-
lem is transformed in a series of unconstrained minimization
problems (Bertsekas [1]).

The functional F is defined by:

Nz NY
S S aU-to+a(V -Vl +8(H - H) ()
j=lk=1

where NzAz = L and NyAy = D, where L and D are the

dimensions of the rectangular domain over which the shallow
water equations are being solved.

The functional was solved subject to three equality con-
straints :

E, - Ey
Zn - ZO (3)
H, — Hy

where n and 0 denote the values of the integral invariants at
time tn = nAt and tg = 0 respectively. Here the vector =
has 3Nz Ny components where z is given by:

T
z = (“llv--auN,Ny,vlly---1'”N,N,,7h117-°-,hN,N,)- (4)

For a coarse resolution of a grid of 12 x 15 we had a function
with 540 variables, i.e. the unconstrained minimization was
carried out on a non-linear function of 540 variables.

A refined mesh test was also carried out for a mesh space
increment of:

Az = Ay = 40 km and At = 360 sec (5)

whereas the original grid had a mesh spacing of 400km and
a time step of numerical integration of 3600 sec.

In the refined mesh test we had 150 x 111 x 3 variables, i.e.

50000 variables in the non-linear unconstrained minimiza-
tion.

2.1. Constrained adjustment to suppress Lamb waves

In meteorological applications one is often interested in sup-
pressing external gravity waves in a 3-D model by modifying
the observed wind field in such a way that the vertical mo-
tions at the lowest level of a three-dimensional atmospheric
model vanish.

An alternative way is to regard this adjustment as a varia-
tional adjustment of the horizontal wind fields in a pressure

coordinate system (z,y, p) so that the pressure tendency '%-
is zero everywhere and p, is the surface pressure.

The continuity equation in pressure coordinates is given by

ou Qv Ow _

5;+5;+—6_p— (6)

Integrating this equation from the top to the bottom of the
atmosphere and assuming the vertical velocity w = 0 at both
end points we obtain (see Ramamurthy [16], Ramamurthy

and Carr [17]).
Pe (Qu Ov
A (a_z + 6_y) dp=0.

Using this equation as a constraint will ensure that

(M

dps

@ ="

(8)
In other words, using the continuity equation as a strong con-
straint will enable us to suppress Lamb waves (Ramamurthy

(16])-

The Lamb waves are high speed acoustic-gravity waves which
appear as solutions to the primitive equations in numerical
weather prediction along with slow, physically relevant me-
teorological waves. As such, we are interested in suppressing
the Lamb waves which can be viewed as noise in a mete-
orological model and which moreover impose very stringent
computational stability conditions on the allowable time step
At.

The functional for which the stationary value is to be found
for this problem is:

f=/=/;/;[(u—ﬁ)2+(u—ﬁ)]2dzdydp
+/¢/y[A/0P' (%+g—;) dp] do dy,

where 4 and 9 are the analyzed horizontal wind components
- while « and v are the observed horizontal wind components
- and A is the Lagrange multiplier.

()

In a discrete Augmented-Lagrangian formulation we obtained
- 2
L=Y %" Z [(“ijk — ijjp)
i 7 k
+ (vije — vije)] Azyap

3 Uitk ~ ¥i-1,5k

P Ty [(et
i g

Vig+lLk ~ Vij-1k
2Ay

SaaH)>

k
ULk = Vii-1kY o 12
24y i

] (10)
+)Ap AzAy
Yit1,5,k — %i-1,5,k
2Az

AzAy.

where
Cjj are the penalty terms.

- Ajj are the Lagrange multipliers.

412

Our model domain is rectangular with a resolution of (46 x
46) grid points while in the vertical we have 10 discrete levels
resulting in this application in a function of 46 x 46 x 10 x 2
components i.e. & 42320 components. A coarser mesh case
where the mesh spacing was increased by a factor of 2 in
the horizontal resulted in a function of 23 x 23 x 10 x 2
components = 10000 variables. The gradient of the discrete
Augmented-Lagrangian function L with respect to z where
z is given by

(11)

z= (14111,---,uN,N,,N,,11111,---1‘"N,N,,N,)

for the three dimensional limited-area domain in the z,y and
p coordinates (NyAz = L, NyAy = D, NpAp = H) is given
by

aL

=2 (u;; — 851) AzAyA
O ik ("uk "z]'c) zAyap

Yitlgk ~ %i-1,5k
DG

2Ay
(Ci-15 = Civ1,j
2Az

+) Ap (12)

) AzAy

oL

3o =2 (v,-jk - ﬁijk) AszAp

ijk
Aij—1 — Aij41
D=l Tt) AzA
+ (8y AzAyAp

4y (Ui+1.j,k — Uiy gk
k

13

24z (3)
Yij+LE = Vij-LE Y 4

AR
ci,j—1 = Cij41

(——2 Ay)Asz.

The same inexact minimization of the Augmented-

Lagrangian of Bertsekas [1] is applied using the same rules
for updating the multipliers and penalties.

The same non-linear conjugate-gradient unconstrained mini-
mization method, CONMIN [26], is used to minimize the
Augmented-Lagrangian discrete functional.

3. THE LIMITED
MEMORY QUASI-NEWTON
CONJUGATE-GRADIENT METHOD

In our application we used the limited memory Quasi-Newton
conjugate-gradient method of Shanno and Phua [26] imple-
menting a restructured version of CONMIN, which was found
to be robust and performing for a wide series of meteorologi-
cal and geophysical applications [11]. This routine allows the
user to use either a conjugate-gradient method or, if memory
is available the Quasi-Newton BFGS algorithm. The Beale
restarted memoryless Q.N. conjugate-gradient requires 7N
single/double precision words of working space.

For solving our large-scale non-linear unconstrained opti-
mization problems, memory considerations mandate using
the conjugate-gradient method.

As shown by Le [10] the basic formula for CPU consumption
in an optimization code is:

T =tg(ng + nng) + t;in; (14)
where ¢y and ¢4 are the times required for function and gradi-

ent calculation respectively, while ¢; is the average overhead
execution time per iteration.

Here ny is the number of function evaluations, ng is the
number of gradient evaluations, where:

(15)

tg = ntg
and n; is the number of iterations.

The computational cost of CONMIN depends on the number of
function and gradient evaluations more than on the number
of additions and multiplications within CONMIN itself which
is about 20N additions and 22N multiplications for a normal
iteration of the conjugate-gradient code.

The frequency of restart iterations in comparison with nor-
mal iterations was one to three and it was extremely rare for
a given direction to be used for more than 10 iterations.

4. VECTORIZATION TECHNIQUES

In this section we describe the various steps taken to speed
up the CONMIN conjugate-gradient algorithm for the CYBER-
205 vector processor. Because of its memory to memory
architecture the CYBER-205 has a longer vector start-up time
than say a register to register supercomputer such as the
CRAY X/MP. To achieve top performance it is necessary to
increase the vector length on the CYBER-205 to fairly long
vectors.Its half performance vector length is about 100. Most
of the CPU consumption in the conjugate-gradient algorithm
was in two sections :

a) Function and gradient evaluation,
b) actual minimization step.

The actual ratio between the two is problem dependent, de-
pending on the complexity of the objective function, number
of variables, etc. As a first step we restructured CONMIN so
that all the DO loops could be vectorized, where the bulk of
the DO loops perform inner products and summations. We
used the 48 SSUM and Q8 SDOT operations which have an
initial vector start-up of 96 and 107 cycles respectively.

Hence the larger the N in the DO loop, the lesser the impact of
the start-up time on the final performance of the two opera-
tions. Having vectorized the minimization routine, the main
task is to vectorize the often heavy compute-intensive FUNCT
routine which performs the function and gradient evaluation
for subsequent use in CONMIN.

The number of function evaluations depends amongst others
on the rate of convergence, the step-size requirements and
the number of Beale restarts.

413

In general vectorization in FUNCT necessitated collapsing two
and three dimensional arrays into one dimensional arrays to
extract top performance from the CYBER-205.

Use of control bit vectors was also necessary.Such collapsing
is done very efficiently on the bit addressable CYBER-205
with the help of WHERE statements that enable us to mask
the results along the boundary grid points by pre-initializing
those addresses to zero bits with Q8 VMKO calls.

Also the largest loop range was made the innermost loop
in those loops where collapsing was not possible due to the
iterative nature of the computations.

5. DISCUSSION OF NUMERICAL RESULTS

By timing the runs of the conjugate-gradient large-scale min-
imization code (using SPY for instance) it became immedi-
ately evident that effectively the bulk of the CPU time was
spent in the FUNCT routine for function and gradient evalua-
tion. ’

As such our vectorization effort was mainly directed towards
performance improvement of the FUNCT routine. We first ap-
plied automatic vectorization (such as VAST-2) for instance.

Further improvement in the speed-up due to vectorization
was achieved by using manual vectorization hereby referred
to as supervectorization.

In both large-scale problems the improvement due to auto-
matic vectorization was rather marginal-and it was only after
performing manual vectorization that impressive speed-ups
were achieved. In the first problem (AUGLAG) the speed-up
due to vectorization was a factor of almost 65 in the FUNCT
routine. The net speed-up for this problem was an impres-
sive factor of 21. For the coarser mesh version of AUGLAG
(23 x 23) the improvement was already reduced since the
CYBER-205 has a slower vector start-up time compared to
the CRAY computer and the performance efficiency of the
CYBER-205 has a strong dependence on the vector length.

On the other hand for the conservation of integral invariants
treated in this study only a factor of about 7 speed-up was
attained for the fine mesh (111 x 115). This clearly reflects
the problem dependent nature of the computational cost for
the gradient and function evaluation routines.

The total speed-up for this problem was also a factor of 7.
For a very coarse mesh version of GUSTAF (12 x 15) the
speed-up due to the vectorization was only by a factor of
about 2, again reflecting on the longer break-even point for
vector computations on the CYBER-205 supercomputer.

A more detailed break-down of the computational cost and
the overheads associated with the large-scale minimization
using CONMIN are illustrated in the following Tables. The
relative percentages of the CPU time spent in the various
parts of the minimization code (namely CONMIN itself and
the function and gradient evaluation routines) are depicted
in the accompanying figures.

These figures display the relative percentages for scalar code,
automatic vectorization and super (manual) vectorization
given as percentages of the total CPU time spent in the min-
imization code. For the first problem (AUGLAG), a reversal
of the relative percentage of CPU time spent in FUNCT —the
function and gradient evaluation routine versus the CPU time

spent in CONMIN itself is noticed.

This fact is even more evident in the fine mesh case (46 x
46 x 10) which involves minimization over a very long vector
(40000 variables).

In contrast for the second problem (GUSTAF), the function
and gradient evaluation routine dominates by far the bulk of
the computational cost, and this trend persists in all three
versions of the code (scalar, auto and supervector) for both
short and long vectors. However a speed-up factor of 7 was
achieved due to manual vectorization for the entire mini-
mization code.

6. SUMMARY AND CONCLUSIONS

Vectorization of the non linear limited memory Q.N. like
conjugate-gradient method applied to large-scale minimiza-
tion problems using the CYBER-205 vector processor has been
implemented. For the problems considered the function and
gradient evaluation dominate the CPU time spent in mini-
mization. By performing automatic and then hand vector-
ization we succeeded in achieving a sizable reduction in the
CPU time required for finding the local minimum of non-linear
functions of 10% — 10° variables.

This confirms the Schnabel [20] hypothesis that vector com-
puters are advantageous in the case of large-scale uncon-
strained optimization. This approach could prove vital in
further applications in meteorology, for instance for the ad-
joint 4-D data assimilation problem where each iteration of
the conjugate-gradient method requires 2-3 model integra-
tions for the length of the assimilation period and the ap-
plication is not easily amenable to concurrent calculations.
The speed-up is, however, both problem and also computer
dependent and the results are more impressive for large-scale

Problems where the number of variables is of the order of
10%. Use of multiple vector processors would allow multiple
evaluations of F'(z) to be performed concurrently with each
evaluation performed optimally by a vector processor. This

is the case for ETA10 and the ALLIANT.

REFERENCES

(1] D. P. Bertsekas, “Constrained Optimization and La-
grange Multiplier Methods,” Academic Press, 395pp,
1982.

(2] D. Chazan and W. L. Miranker, “A nongradient and

parallel algorithm for unconstrained minimization,”

SIAM Jour. on Control, 8, 207-217, 1970.

[3] L. C. W. Dixon and K. Patel, “The place of parallel

computation in numerical optimization.” IV Parallel

algorithms for nonlinear optimization, Tech. Rep. 125,

l]?ggr;erical Optimization Centre, Hatfield Polytechnic,

[4

L. C. W. Dixon, P. G. Ducksbury, and P. Sing, “A paral-
lel version of the conjugate-gradient algorithm for finite-
element problems,” Tech. Rep. 1132, Numerical Opti-
mization Centre, Hatfield Polytechnic, 1982.

414

[5] L. C. W. Dixon, K. D. Patel, and P. G. Ducksbury,
“Experience running optimization algorithms on paral-
lel processing systems;” NOC Tech. Rep. 138, Numeri-
cal Optimization Centre, Hatfield Polytechnic, 1983.

E. C. Housos and O. Wing, “Parallel nonlinear mini-
mization by conjugate-gradient ” in Proceedings of the
International Conference on Parallel Processing, Los

Alamitos, IEEE proceedings, 157-158, 1980.

E. C. Housos and O. Wing, “Pseudo-conjugate direc-
tions for the solution of the nonlinear unconstrained op-
timization problem on a parallel computer,” Jour. Op-
tim. Theory and Appls. 42, 2, 169-180, 1984.

(7]

F. A. Lootsma, “State-of-the-art in parallel unconstrained
optimization” in Parallel Computing 85, M. Feilmeir,
E. Joubert and V. Schendel (eds.), North-Holland, 157-
163, 1986.

H. Mukai, “Parallel algorithms for unconstrained opti-
mization” in Proceedings of the 18th IEEE Conference
on Decision and Control, 1 451-454, 1979.

8

(9]

[10] D. Le, “A fast and Robust Unconstrained Minimization
Method Requiring Minimum Storage,” Math Prog., 32,

41-68, 1985.

I. M. Navon and D. M. Legler, “Conjugate-gradient
methods for large-scale minimization in meteorology,”
Monthly Weather Review, 115, 1479-1502, 1987.

(11]

(12] L. Nazareth, “A conjugate-gradient algorithm without
linear searches,” JOTA 23, 373-387, 1977.

(13] K. D. Patel, “Parallel computation and numerical opti-
mization,” Tech. Rep. No. 129, Numerical Optimiza-
tion Centre, Hatfield Polytechnic, 1982.

D. A. Pierre, “A nongradient minimization algorithm
having parallel structure with implications for an array
processor,” Computers and Electrical Engineering, 1,
3-21, 1973.

(14]

M. J. D. Powell, “An efficient method for finding the
minimum of a function of several variables without cal-
culating derivatives,” Computer Jour., 7, 155-162, 1964.

(18]

[16] M. Ramamurthy and F. Carr, “Four-dimensional data
assimilation in the monsoon region, Part 1: Experi-
ments with wind data,” Mon. Weath. Rev., 115, 1987.
(17] M. Ramamurthy, “Four-dimensional data assimilation
in a limited area model for the Monsoon Region,” Ph. D.
dissertation, University of Oklahoma, Norman, OK, 308
Pp., 1986.

(18] R. B. Schnabel, “Parallel computing in optimization,”
Computational Mathematical Programming, 15, Nato
AST Series F, K. Schittkowsky (ed.), Spring- Verlag, 357—
381, 451 pp., 1985.

U. Schendel and M. Schyska, “Parallelle Algorithmen
in der Nicht-linearen Optimierung,” Preprint 161/84.
Fachbereich Mathematik, Freie Universitatit Berlin,
1984.

(19]

[20]

(21]

[22]

(23]

24

[25]

(26]

(27]

Mega Flops

R. B. Schnabel, “Concurrent Function Evaluations in
Local and Global Optimization,” Comp. Methods in
Appl Mech. Eng., 84, 537-552, 1987.

D. F. Shanno and K. H. Phua, “Matrix conditioning and
nonlinear optimization,” Math. Program, 14, 149-160,
1978.

F. Sloboda, “A conjugate direction method and its ap-
plications,” Proceedings 8th IFIP Conference on Opti-
mization Techniques, Wurtzburg, Springer-Verlag,
1977.

C. Sutti, “Nongradient minimization methods for par-
allel processing computers, Part 1,” JOTA, 39, 4, 465-
474, 1983.

C. Sutti, “Nongradient minimization methods for par-
allel processing computers, Part 2,” JOTA, 39, 4, 475-
488, 1983.

P. J. M. Van Laarhoven, “Parallel variable metric al-
gorithms for unconstrained optimization,” Math. Pro-
gramming, 33, 68-81, 1985.

T. A. Straeter and A. T. Markos, “A parallel Jacobsen-
Okwan Optimization Algorithm,” NASA Tech. Note,
D-8020, NASA-Langley, VA, 1975.

D. F. Shanno, K. H. Phua, “Remark on Algorithm 500,”
ACM Trans. Math. Software, 6, 4, 618-622, 1980.

CYBER 205 fuster

0 X0 W0 00 60
Vector Length

700 &0 900 1000

Figure 1. Performance of the 2-pipe CYBER 205 (broken
line) and the CRAY-1 (full line) as a function of vector
length (Source Hockney and Jesshope, Parallel Comput-
ers: Architecture, programming and algorithms, 1981.)

415

% OF CPU TIME

% OF CPU TIME

% OF CPU TIME

AUGLAG (46 X 46)

100
80 71.2
60
40

20

1.4
6.3 :

i
SUPER AUTO

SCALAR

SUPER AUTO SCALAR

OBJECTIVE FUNCTION AND MINIMIZATION
GRADIENT EVALUATION

Figure 2. Histograms of the relative percentages of scalar,
automatic vectorization and super (manual) vectorization
code given as percentages of total CPU time spent in min-
imization code (AUGLAG (46 x 46).

AUGLAG (23 X 23)

100
80
80
40

20 15

7.1

SUPER AUTO SCALAR

MINIMIZATION

Figure 8. Same as Fig. 2 ezcept for AUGLAG (28 x 23)

GUSTAF (111 X 150)

100
80
60
40
20

OBJECTIVE FUNCTION AND

MINIMIZATION
GRADIENT EVALUATION

Figure 4. Same as Fig. 2 except for GUSTAF (111 x
150)

% OF CPU TIME

100

80

60

40

20

GUSTAF (12 X 15)

85.3 86.4
77.8

22.2

14.7 146

SUPER AUTO SCALAR

SUPER AUTO SCALAR

FUNCTION AND MINIMIZATION

GRADIENT EVALUATION

Figure 5. Same as Fig. 2 ezcept for GUSTAF (12 x 15)

Table I: Speed-up ratios for the AUGLAG minimization problem

AUGLAG FUNCT MINIMIZ. TOTAL
scalar to super vector ratio (46 x 46) 64.8 3.35 21.00
scalar to super vector ratio (23 x 23) 31.9 2.97 15.03
scalar to auto vector ratio (46 x 46) 1.76 3.35 1.86
scalar to auto vector ratio (23 x 23) 1.72 2.91 1.80

Table II: Speed-up ratios for the GUSTAF minimization problem
GUSTAF FUNCT MINIMIZ. TOTAL

scalar to super vector ratio (111 x 150) 6.71 7.03 6.73
scalar to super vector ratio (12 x 15) 1.90 1.05 1.71
scalar to auto vector ratio (111 x 150) 1.20 7.03 1.25
scalar to auto vector ratio (12 x 15) 1.11 1.00 11

416

Table III: Timing details for the AUGLAG (46 x 46) minimization problem for various levels of vectorization

AUGLAG (46 x 46) - Hand Vectorized
Time spent in FUNCT = 0.0334 secs.
Time spent on FUNCT calls = 0.1003 secs.
Time spent in CONMIN (total) = 0.3491 secs.
Time spent in minimization = 0.2487 secs.
AUGLAG (46 x46) - Automatic Vectorization
Time spent in FUNCT = 1.2316 secs.
Time spent on FUNCT calls = 3.6949 secs.
Time spent in CONMIN (total) = 3.9436 secs.
Time spent in minimization = 0.2488 secs.
AUGLAG (46 x 46) - Scalar
Time spent in FUNCT = 2.1649 secs.
Time spent on FUNCT calls = 6.4945 secs.
Time spent in CONMIN (total) = 7.3278 secs.
Time spent in minimization = 0.8333 secs.

Table IV: Timing details for the AUGLAG (23 x 23) minimization problem for various levels of vectorization

AUGLAG (23 x 23) - Hand Vectorized
Time spent in FUNCT = 0.0131 secs.
Time spent on FUNCT calls = 0.0395 secs.
Time spent in CONMIN (total) = 0.0942 secs.
Time spent in minimization = 0.0547 secs.
AUGLAG (23 x 23) - Automatic Vectorization
Time spent in FUNCT = 0.2428 secs.
Time spent on FUNCT calls = 0.7291 secs.
Time spent in CONMIN (total) = 0.7849 secs.
Time spent in minimization = 0.0558 secs.
AUGLAG (23 x 23) - Scalar
Time spent in FUNCT = 0.4178 secs.
Time spent on FUNCT calls = 1.2533 secs.
Time spent in CONMIN (total) = 1.4158 secs.
Time spent in minimization = 0.1625 secs.

417

Table V: Timing details for the GUSTAF (111 x 150) minimization problem for various levels of vectorizatior

GUSTAF (111 x 150) - Hand Vectorized
Time spent in FUNCT = 0.08362 secs.
Time spent in CONMIN (total) = 0.08699 secs.
Time spent in minimization = 0.00337 secs.
GUSTAF (111 x 150) - Automatic Vectorization
Time spent in FUNCT = 0.46648 secs.
Time spent in CONMIN (total) = 0.46985 secs.
Time spent in minimization = 0.00337 secs.
GUSTAF (111 x 150) - scalar
Time spent in FUNCT = 0.56127 secs.
Time spent in CONMIN (total) = 0.58508 secs.
Time spent in minimization = 0.02371 secs.

Table VI: Timing details for the GUSTAF (12 x 15) minimization problem for various levels of vectorization

GUSTAF (12 x 15) - Hand Vectorized
Time spent in FUNCT = 0.00281secs.
Time spent in CONMIN (total) = 0.00361 secs.
Time spent in minimization = 0.00080 secs.
GUSTAF (12 x 15) - Automatic Vectorization
Time spent in FUNCT = 0.00481 secs.
Time spent in CONMIN (total) = 0.00564 secs.
Time spent in minimization = 0.00083 secs.
GUSTAF (12 x 15) - Scalar
Time spent in FUNCT = 0.00535 secs.
Time spent in CONMIN (total) = 0.00619 secs.
Time spent in minimization = 0.00084 secs.

418

