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Abstraet--A FORTRAN computer program is presented and documented which implements a new 
approach to objective analysis of pseudostress data over the Indian Ocean. (A pseudostress vector is 
defined as the wind components multiplied by the wind magnitude.) 

This method is a direct large-scale minimization approach of a cost functional expressed as a 
weighted sum of lack of fit to data as well as constraints on proximity to original observations and 
climatology, on a smoothing parameter and on kinematic equivalence to climatological patterns. Each 
of the constraints was weighted by selected coefficients controlling how closely the minimizing analysis 
fits each type of data or constraint. 

The functional operates on 7330 variables (i.e. two wind components at each grid location) and was 
minimized using a highly efficient memoryless quasi-Newton-like conjugate-gradient method. Use of an 
independent subjective analysis of the same data provide for a direct quantitative comparison and confirm 
the adequacy of the objective analysis. This scheme now has been adopted operationally to generate 
monthly average pseudostress wind values on a l°-grid over the Indian Ocean. 

Key Words: Unconstrained minimization, Objective analysis, Wind Stress, Variational techniques, 
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INTRODUCTION 

The variational analysis method allows us to combine 
information originating from a variety of sources by 
minimizing the lack of fit to the various sources. 

Variational analysis methods for objective analysis 
of meteorological fields were proposed first by 
Sasaki (1955, 1958). Variational analysis methods 
also were used by Holl and Mendenhall (1971) and 
Holl, Cuming, and Mendenhall (1979) for blending 
meteorological fields. 

Hoffman (1982, 1984) used a direct minimization 
technique to remove aliasing ambiguity of the 
SEASAT satellite scatterometer winds. 

In this paper, we present the code used to produce 
monthly average pseudostress values on a I t mesh 
over the entire Indian basin, 30°S-28°N, 30°E-120°E. 

Pseudostress is defined as the magnitude of the 
wind times its components, that is 

 x=ulvl,  .,=vlvl (l) 
where u and v are the eastward and northward 
components of the wind respectively, and V is the 
wind magnitude. 

In our approach here, based on work of Legler, 
Navon, and O'Brien (1989) and Navon and Legler 
(1987) we use a variational analysis method to mini- 
mize an objective cost functional F, which is a 

measure of various lacks of fit. The definition of the 
cost functional, F, is problem dependent and involves 
knowledge about the nature of the expected error of 
the data. A proper specification of the cost functional 
which is defined as a weighted sum of lack of fits 
to data and constraints is essential for obtaining a 
satisfactory solution of the objective analysis prob- 
lem. The results have been used in forcing the ocean 
circulation model of Luther and O'Brien (1985) for 
the years 1977-1985. Results from this ocean model 
from the fall of 1985 have been validated by compar- 
ing them to collocated U.S. Navy bathythermograph 
and NOAA satellite data (Simmons and others, 
1988). 

The outline of this paper is the following. The 
data used and the variational cost function, F, are 
described in the first section of this paper. The 
CONMIN conjugate-gradient method used for carry- 
ing out the unconstrained minimization is detailed in 
the second section of the paper. The final section is 
devoted to the VARIATM program code and its 
implementation with real data sets for the Indian 
Ocean. 

COST FUNCTIONAL 

The purpose of the analysis is to obtain a high- 
quality monthly average representation of the winds 
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over the Indian Ocean regime. In this study, the only 
information available will be (a) ship report averages 
on a l ° resolution mesh and (b) a 60-yr pseudostress 
climatology based on Hellerman and Rosenstein 
(1983) which was formed by averaging 60 yr of ship 
wind reports into calendar month means. The ship 
reports are averaged into boxes in the following way, 
all the ship wind observations for the analysis month 
as reported from merchant ships as well as from 
scientific cruises and meteorological buoys are first 
collected and screened for incorrect values (Fig. l). 
Typically < 2 %  of the observations are removed in 
these schemes. The remaining observations (typically 
about 10,000-20,000 observations in the region of 
interest) then are converted to pseudostress and 
filtered according to expected means. The resulting 
data are averaged within each 1 ~ square and any data 
voids are filled using simple bilinear interpolation. 

The first step in implementing direct minimization 
is designing the cost functional which will be mini- 
mized. It will be a measure of lack of fit of the 
data according to certain prescribed conditions which 
may be dynamically or statistically motivated. We 
know from climatology the wind pattern should be 
"smooth". Thus some measure of roughness and 
some measure of lack of fit to climatology should be 
included in the cost functional. 

The key ingredients in our objective scheme are the 
inclusion of two kinematic constraints into the cost 
functional to be minimized. We choose to require the 

analysis to be similar to the curl and divergence of the 
climatology as well as to the climatology itself. 

The cost functional. F. which is used to determine 
objectively derived monthly maps of pseudostress is 
defined as follows: 

.: +..o>, +.,-.,.o,:i 

+ L'X Z ZI(V'U< - ~ 0 ) '  
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+ ~ ~ ,Y_., [ f t .  v x (,~ - ,~)]' (2) 

where z , ,  z.,. are the resultant eastward and northward 
pseudostress components; rxo, % are the components 
of the l : mean values determined by the ship wind 
reports; z~o, r,0 are the components of the pseudo- 
stress climatology; z, z¢ are the resultant and clima- 
tology pseudostress vectors respectively; and L is a 
length scale (chosen to be I : la t )  which makes all 
terms uniform dimensionally, and scales them to the 
same order of magnitude. The coefficients (actually 
weights) p, 7, 2, 3, and a control (i.e. they weight the 
component of the penalty function) how closely the 
direct minimization fits each constraint (lack of fit). 

\ 

~ ~ : ¢ . s , _ .  - ' :=:\ 2 / ; # ~ 1  ,_.w. :( ; M ~ ; ~ / ~ { . :  z 

. / / x  4 , /  ÷," - " _  ..... "-. . . . . . .  %. 3~ ~, \ £ , ~  

,:./.:2-:i.".::-;i.'.-.:::7:;;--:!;7t.-'.-:i:) . .  
\ . . . . . . . . . . .  x: . .  > . "  "... - ' ~ . ~  

/ 

I t 1 I t [ ] ] I I 

30E ~OE 50E 60E 70E 8OE 90E i OOE t 10E 120E 

Figure I. Marine wind observations (first converted to pseudostress--see text) during December 1988 are 
shown here after being filtered and binned on I grid. Data void regions indicate there were missing 

observations in those locations. Vector lengths indicate magnitude. 
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Objective analysis of pseudostress wind fields 3 

The first term of the functional expresses the 
proximity to the original (input) data. Because one of 
the weights is arbitrary, in this study we shall set p to 
unity. The second term is concerned with the close- 
ness of fit to the climatological value for that month. 
A higher value of its corresponding weight leads to 
a closer approximation to the climatological value. 
The third term is a measure of the data roughness, 
and controls the "radius of influence" of an anomaly 

75E 

in the input winds or in the climatological values. 
It can be termed a "smoothing term" or a "penalty 
function". 

The last two terms are the boundary layer kinematic 
terms. They force the results to be comparable with 
climatology, but not in the direct sense. They control 
the degree to which the divergence and curl of the 
resulting vector field approximate the kinematics of 
the climatology. The five terms of the cost functional 
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Figure 2. Four stages of data analysis in sample region for July 1984. A--Filtered and binned pseudostress 
values: B-Mata field after interpolation has been applied to fill data-void regions; C--results of variational 
analysis using VARIATM; D--vector difference: minimization results (Fig. 2C)--binned data field 

(Fig. 2A). 
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address some of the possible constraints. Other possi- 
bilities include time evolution constraints, kinetic 
energy constraints, pressure gradient terms. 

The process of calculating the results is demon- 
strated in Figures 2 and 3. A selected region in the 
Indian Ocean is shown in detail in Figure 2A, the ship 
wind reports have been averaged into 1 : boxes, thus 
some boxes have no data. These voids are filled using 
bilinear interpolation (Fig. 2B). The result of the 
minimization (Fig. 2C) and the difference between 
Figures 2C and 2A (Fig. 2D) indicate satisfactory and 
expected results. 

The manner of selecting the optimal weights for 
each lack of fit is not addressed in this paper. From 
experimental results in Legler, Navon, and O'Brien 
(1989), small variations in the weights for the 
derivative terms (smoothness, divergence, and curl) 
had little effect on the results. The second weight, 7, 
was critical, for it balanced the overall magnitude of 
the results between the climatological norms and 
the ship reports (usually of larger magnitude). The 
weights can be thought of as empirically determined 
tuning parameters. These weights could be selected 
by objective means: in theory the method of general- 
ized cross validation (Wahba and Wendelberger, 
1980) could be used, but the computation would be 
impractical with this size data set. In addition, cross 
validation requires "valid" data, something which is 
difficult to assess. The adjoint model optimal control 
technique (Cacuci, 1981; Hall and Cacuci, 1983; 
LeDimet and Talagrand, 1986; Talagrand, 1985) can 

aid in a sensitivity study of the critical tuning par- 
ameters. None of these objective methods could tell 
us what the "correct" values of the weights should be 
because the "correct" solution is not known. Instead, 
in this study comparisons to independent analyses 
were used to determine appropriate values (Legler, 
Navon, and O'Brien, 1989). 

Only the 3665 points located over the ocean were 
included in the direct minimization process, and 
because a z~ and a % must be varied at each point, 
the cost functional included a total of N = 7330 
variables. 

CONJUGATE GRADIENT LARGE-SCALE 
UNCONSTRAINED MINIMIZATION 

The conjugate gradient method for solving large- 
scale unconstrained, nonlinear minimization prob- 
lems has been shown to be efficient both from the 
computational complexity viewpoint as well from the 
storage requirements viewpoint (Navon and Legler, 
1987). The subroutine CONJ is a modified version 
of the Beale restarted memoryless quasi-Newton 
algorithm developed by Shanno (1978a, 1978b) and 
documented by Shanno and Phua (1980). 

The methods requires 7N single/double precision 
words of working storage and offers the option of 
two methods for determining the local minimum of 
a function of N variables: (a) a limited-recovery Beale 
(1972) restarted quasi-Newton-like conjugate-gradient 
algorithm and (b) a Broyden-Fletcher-Goldfarb-- 
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Figure 3. Results of variational analysis using VARIATM for December 1988. Contours of equal 
magnitude are drawn with contour  interval o f  3 0 m  2 sec -2. Vectors with magnitude > 75 m 2 sec -2 are 

truncated to 75 m 2 sec -2. 
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Shanno (BFGS) (Luenberger, 1984, p. 268) quasi- 
Newton method which requires the storage of the 
Hessian (N x N) matrix of the objective func t ion- -  
an option which is not feasible for large-scale 
problems because of memory limitations. 

The different steps implementing CONJG are the 
following: 

(i) Initialization 

The first-guess field, Xo = (UH . . . . .  UN~N, V I I  . . . . .  

V~,.,u) ~, (pseudostress) and an initial guess of the 
Hessian matrix; H0 = I (the unit matrix) are input to 
the routine. (It only stores vector updates to the 
matrix but never the matrix itself.) 

Compute 

f~ = f ( x ~  ) 

g~ = g(Xk ) = Vf(X~). (3) 

CONJG set the initial search direction, Sa., in the 
direction of steepest descent 

S~ = - g , .  (4) 

(iO Determination of  the step-size 

In this step an inexact linear search procedure (see 
Shanno and Phua. 1980) is implemented. 

The basic linear search uses Davidon's  (1959) cubic 
interpolation to determine an optimal step-size ~t, 
which satisfies the following two conditions: 

f (X~ + ~qS~.) <~J'(X~) + 0.000t~S~g~ (5) 

I s~.gCV~ + ~ & )/S[g~ I < 0.9. (6) 

(iii) Test for convergence 

Update X~ by 

[~ +, = f (Xa  + t ) 

g~+l = g('¥~+ I) 

p~ = X~ + l - X~ 

)'~ = g ~  * I - g k  ( 7 )  

where 

X~ = current point estimate of the minimum 
gk = gradient vector evaluated at the current 

point 
& = current search direction 

X~ + ~ = new estimate point of the minimum 
gk + ~ = the gradient evaluated at X = X~ + 

S, = the Beale restart search direction 
y, = The Beale restart gradient difference vector 

y, = g,+ ~ -- g,. 

(it') PerJbrm the Beale restart according to the Powell 
(1977) criteria 

As we work with a nonlinear problem, there is 
a loss of conjugacy and the convergence of the 

conjugate-gradient algorithm slows down unless 
restarted every N, where N is the number  of com- 
ponents in the vector X, steps in the direction of 
steepest descent Sk = -gk -  Powell (1977) proposed to 
use Beale's (1972) restart method whenever 

(a) The conjugate gradient iteration k is a multiple 
of N and/or  

(b) I g~+, g* I/> 0.2 [] gk +, I[ 2 (8) 

where II I[ is the Euclidean norm. 
This method has been proven to be computation- 

ally more efficient (Shanno, 1978a) if either of these 
two conditions holds. Compute a restart search 
direction by 

?YxkYa PIg~,+L 7)'~g,+1] 
S , + , = 7 g k + , - -  I +  PlYk PTYk ~ "JPk 

YP~gk + 1 
+ - -  ) 'k  ( 9 )  

P~Y~ 

where 

p Tk ) '  k 
?' )'~)'k 

one then gets p, = &,  y, = Yk and goes to step (ii). 

(v) Compute a new search direction using the 2-step 
memoryless BFGS method (Shanno, 1978a) 

T 
= +Pk&-+ 1 l=Iv~ Sk+, --flkgk+~ ~ . 

P k . '1, 

y~Hkyk P~gk+l )'[l~Ikgk+,~n 
- 1 +  p:y-----~ Pl) 'k  P~A'k j r * .  

(10) 

Here/ t~  is an approximation of the inverse Hessian 
off ,  where only two rank-two matrix updates of the 
initial H0 = I (unit matrix) are required, that is no 
matrix storage, and the vectors/4kgk + ~ and /~k& are 
defined by 

pr). P~g~ +1 
/ ~ ' g k ÷ ~ = ~  gk+l . r ,  Y' 

. , .  t ) ~ . ) ,  

and 

T ,T  
+{P, gk+l ) ,gk+l~ \ y ,y, )P' 

T , , T 
P, 3,//)kP, .l'k 

( l l )  

where .v, and p, are values obtained at a restart step. 
In our algorithm convergence is determined to 

have occurred if 

lie II < Ilg011' (13) 

where [III is the Euclidean norm and , is user 
supplied. Here go is the initial gradient of the 
functional f. 

We need ~ = 10 -2 and for the present problem 
CONJ converged within 20 iterations. 

2p,~yk ) : rye \_  
p y, (12) 
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PROGRAM VARIATM 

This program illustrates the use of  the quasi- 
Newton-like conjugate gradient method applied to 
the problem of  determining the unconstrained mini- 
mum of  the large scale cost functional F given a first 
guess field, an appropriate climatology, and selected 
weights. In the program V A R I A T M ,  the sequence of  
events is to set some variables, read in the first guess 
field, read in the climatology, then minimize the cost 
functional by calling the main subroutine, VARY.  
Upon  return from VARY,  the results are printed to 
an output  file. Diagnostic output  is printed to a file 
throughout  the process. 

The main program V A R I A T M  sets memory space 
aside for the arrays of  x and y components  of  the 
wind values. There are 94 locations in the east-west  
direction and 58 in the nor th-south  direction. 
Because in this array there are locations over land 
(where there are no wind reports) these locations have 
as their values, 999. The array UV holds the results 
of  the current minimization in the iteration. The 
array U V O  contains the first guess field, and the array 
UVC contains the climatology field. 

To make use of  this program, it will be necessary 
to change the input files of  course, and also the 
subroutine F U N C T  which evaluates the functional 
as well as its gradient. The minimizer (a large- 
scale unconstrained local minimization procedure, 
usually a conjugate-gradient or l imited-memory 
quasi-Newton) can be situated from any standard 
mathematical  package (the one used here has a 
machine specific parameter,  FACC,  i.e. this accuracy 
parameter F A C C  indicates the smallest number for 
which 1.000 + F A C C  ~ 1.000). C O N J G  was provided 
courtesy of  Shanno and Phua (1980). 
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APPENDIX 
Program L~tmg 

PROGRAM variat 

INTEGER ounit 
CHARACTER resfil, fgfile,outfil,climfil 

c 
PARAMETER (resfil='variat.res',fgfile='aug88fg',outfil-'varyout', 

+ climfil='climat.fil',wgtno=l.0,wgtpozl.07,nxi94,ny=58) 

c 
COMMON /bounds/spval,wgt(nx, ny),ounit 

COMMON /data/uv(nx, ny,2),uvc(nx, ny,2),uvo(nx, ny,2),kount(nx,ny) 
COMMON /params/rho,gcof,alpha,beta,phi,dx, dy, dl, iter, ifun 
COMMON /spherc/clat(ny),radius 

c 
**************************************************************** 

c 

c this program reads in the monthly first guess data(tapel - first 
c guess) and the monthly climatology(tape2) and submits it for 

c the objective analysis scheme which will variate the winds 

c to best fit the prescribed characteristics, the routine will 

c use a conjugate gradient technique to find the minimun 
c of the functional f. 

c 

c version 0.i legler 2-12-86 

c version 3.0 version for publication in computers in geosciences 

c version 4.0 version resubmitted to computers in geosciences 

c 1-23-90 

c 
**************************************************************** 

c clat is cosine of latitude bands (used in spherical coordinates) 

c dl is the scaling length scale... 

c dl is chosen arbitrarily 

c dx, dy are spatial distance between two points ~n grid space 
c ifun is number of function calls 

c iter is the number of the iteration 

c array kount holds the places where the gradient can be found. 

c nx and ny are number of x and y direction grid points 

c radius of earth (for spherical coordinates) 

c spval is the special value indicating no data at this point 

c the array uv holds the current results in the iterative process 

c the array uvo holds the first guess wind field 
c the array uvc holds the climatological wind field 

c wgt is array of weights, value depends on the number of wind 

c observations at each grid location 

c n is the number of data points submitted to be varied 
***************************************************************** 

c 

c set the multipliers here and also other necessary data 

c 

DATA one,onelev, othous/l.0,111.1,1000./ 

DATA tof/-31.5/ 

DATA two,oneS0/2.0,180.0/ 

c 
::::::::::::::::::::::::::::::::::::: 

c 

c set parameters to be passed in common block 

c 

radius = 6.37e06 

rho = 1.0 

phi = 1.5 

gcof = 2.0 

alpha = 30.0 

beta = 30.0 

spval = 999.0 

ounit = 6 

c 
:::::::::::::::::::::::::::::::::::: 

c 

dx = one*onelev*othous 
dy = dx 

c 

dl = one*dx 
c 

iter - -i 
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raddeg m (asin(one)*two)/one80 

DO I0 j - l,ny 

clat(j) = cos((tof+float(j-l))*raddeg) 

i0 CONTINUE 

c 
c open a file for collecting the diagnostic output 

c 
OPEN (ounit, file-outfil,status-'new',form-'fornu~tted') 

c 
WRITE (ounit,*) 'the coefficient for the diff to clim is ',phi 

WRITE (ounit,*) 'the coefficient for the diff to orig obs is ',rho 

WRITE (ounit,*) 'the coefficient for the smoothness is ',gcof 

WRITE (ounit,*) 'the coefficient for the divg term is ',beta 

WRITE (ounit,*) 'the coefficient for the vort term is ',alpha 

c 
c create output file for program results 

c 
OPEN (unit~4,file-resfil,status-'new',form-'unformatted ') 

c 

WRITE (4) rho,phi,gcof,alpha,beta 

c 

c ............................................................. 
c make the units of each of the terms s**-2 so scale the 
c appropriate terms by this distance scale dl which is 

c initially set to 1 degrees 

c 
rho = rho/dl**2 

c 

phi = phi/dl**2 

c 
gcof = gcof*dl**2 

c 

c ............................................................. 

c read in the first guess wind data 

c 
OPEN (unit=l,file=fgfile,status='old',form='unformatted') 

c 

READ (l,err=50) iyear,month 

READ (l,err=50) uvo 

READ (l,err=40) kount 

c 
CLOSE (i) 

c ............................................................. 

C 

c if hobs is 1 or less then make weight of uv-uvo =wgtno otherwise wgtpo 

c 

DO 30 i = l,nx 

DO 20 j = l,ny 

wgt (i, j) = wgtpo 

IF (kount(i,j).LE.l) wgt(i,j) = wgtno 

20 CONTINUE 
30 CONTINUE 

c 
WRITE (ounit,*) 'the year and month of this run are ',iyear,month 

c 

c ............................................................. 

c read in the appropriate climatological month 
c 

OPEN (unit-2,file-climfil, status-'old',form~'unformatted') 

c 

c now read in the desired month's climatology 
c 

READ (2) monc,uvc 
c 

CLOSE (2) 

c 
c .................................................................... 

c call the variational method main subroutine 
c 

CALL vary 
c 
c ................................................................... 

c write out the results of the objective analysis 
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c 
WRITE (4) iyear,month 
WRITE (4) uv,uvo,uvc 

c 

CLOSE (4) 

c ................................................................... 

STOP 'after successful run...' 

c 
c read error messages 

c 
40 CONTINUE 

STOP 'after read error first guess data kount array' 

50 CONTINUE 
STOP 'after read error first guess data' 

c 

END 

c 

c 
*********************************************************************** 

C 

C 
SUBROUTINE funcij(i,j,ifg) 

INTEGER ounit 

PARAMETER (nx=94,ny=58) 
COMMON /bounds/spval,wgt(nx, ny),ounit 

COMMON /data/uv(nx, ny,2),uvc(nx, ny,2),uvo(nx, ny,2), 

+ kount (nx, ny) 

c 

c ..................................................... 

c 
c determine if at the location i,j the functional can be evaluated... 

c 

c i,j are the indices (location) in the array that are to be checked 

c to see if the functional can be evaluated there 

c ifg is a flag, it will have value 999 if the functional can be evaluated 

c 

c at point i, j 

c 

c .................... 

c 

0 if the functional cannot be eval 

ifg = 999 

IF (uv(i,j,l) .EQ.spval) RETURN 

IF (uv(i+l,j,l).EQ.spval) RETURN 
IF (uv(i-l,j,l).EQ.spval) RETURN 

IF (uv(i,j+l,l).EQ.spval) RETURN 
IF (uv(i,j-l,l).EQ.spval) RETURN 

ifg = 0 

RETURN 

END 

************************************************************************* 

c 

C 
SUBROUTINE funct (n,x, f,g) 
INTEGER 

REAL 
PARAMETER 

COMMON 

COMMON 
+ 

COMMON 
+ 

COMMON 

DIMENSION 
EXTERNAL 

c 

c ....... 

ounit 

uc,uh, flap,divg, vort 

(nx=94, ny=58) 

/bounds/spval, wgt (nx, ny) , ounit 

/data/uv (nx, ny, 2) , uvc (nx, ny, 2) , uvo (nx, ny, 2) , 
kount (nx, ny) 

/params/rho,gcof,alpha,beta,phi,d:.:,dy,dl, iter, 
ifun 

/spherc/clat (ny), r 
x (n) , g (n) 

uc, funcij,uh, flap, divg, vort 
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c 

c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c ................................. 
c 

this is the user supplied function for calculating the function 
that is to be minimized and also the gradient of that function 
at each point for input into subroutine conjg (a conjugate 
gradient method for finding the minimum of a function...) 

legler feb 18, 1986 .... 

n is the size of the single array that is the combined east-west and 
north-south values of uv. in this case it is 7330. 

x is array of current values of the resultant winds 
g is array of gradient values 
dell is angular distance between grid points 

DATA one,two,one80/l.O,2.0,180.O/ 

raddeg = (asin(one)*two)/one80 
dell = one*raddeg 

n2 = n/2 
nxm2 = nx - 2 
nym2 = ny - 2 

ny~l = nx - 1 
nyml = ny - 1 

iter = iter + 1 

set the new values of winds into an array for computations,etc 
the u components into the first half of the array 

the v components into the last half of the array 

the array x is the current values of the resultant winds 
must put them back into the rectangular array for computing the 

finite difference approximations 

DO 20 i = l,nx 
DO i0 j = l,ny 

IF (kount(i,j).EQ.0) GO TO i0 

c 
uv(i, j, I) = x(kount (i, j)) 
uv(i,j,2) - x(kount(i,j)+n2) 

I0 CONTINUE 
20 CONTINUE 

c 
c calculate and sum up the function at all points 

c 
c the function is this: f-rho*sum(uv-uvo)**2+ 
c phi*sum(uv-uvc)**2+ 
c dl**4* gcof*sum(del**2(uv-uvc))**2+ 
c dl**2*alpha*sum(k dot del x(uv-uvc))**2+ 

c dl**2* beta*sum(del dot (uv-uvc))**2 
c rho,phi,gcof,alpha,beta,dl are set constants 
c uv is results, uvc is climatology,uvo is first guess 
c del is operator, k is vertical component,dot is operator 

c 
c set the sum terms to 0: sc-sum climatology terms sm: sum laplacian 
c terms, sd=sum of divergence terms, sv-sum of vorticity terms 

c 
sc = 0.0 

sm = 0.0 
sd = 0.0 
sv = 0.0 

DO 40 i m 2,n.~ml 
DO 30 j ~ 2,nyml 

can f be evaluated here at i,j ??? 
if so, then skip to the next grid point in space 
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CALL funcij(i,j,ifg) 
IF (ifg.EQ.999) GO TO 30 

c 
sc - sc + rho* (uh(i,j,l)**2+uh(i,j,2)**2+ 

+ two*uh (i, j, i) *uh (i, j, 2) ) + 
+ phi* (uc(i,j,l)**2+uc(i,j,2)**2+ 
+ two*uc(i,j,l)*uc(i,j,2)) 

sm = sm + gcof* (flap(uc, i,j,l,dell)**2+ 
+ flap(uc, i,j,2,dell)**2) 

sd E sd + beta*divg(uc, i,j,dell)**2 
sv = sv + alpha*vort(uc, i,j,dell)**2 

c 
30 CONTINUE 
40 CONTINUE 

c 
c sum up the pieces of the functional 

c 
f = sc + sm+ sd + sv 

c 
c print out the values of the terms for this iteration 

c 
WRITE (ounit,*) 'this is for funct call ',iter 
WRITE (ounit,*) 'sum of obs diff term ',sc 
WRITE (ounit,*) 'sum of smoothness term ',sm 
WRITE (ounit,*) 'sum of divergence term ',sd 
WRITE (ounit,*) 'sum of vorticity term ',sv 

c 
c ............................................................... 
c 
c now compute the gradient of the function... 

c 
c uh is function to compute difference between current uv value and 

c original (first-guess) value 
c uc is function to compute difference between current uv value and 
c climatological value 
c flap computes the laplacian of the uc field 
c divg computes the divergence of the uc field 
c vort computes the vertical vorticity of the uc field 

c 
c ............................................................... 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

the gradient of f is made of two pieces, dg/du and dg/dv 
after writing out all the finite difference approximations 
for the function, then do the gradient computation. 
for the gradient calculation as expressed in this code, 
grid locations surrounding the point i, j have contributions to 
the gradient at i,j. the pieces below represent those 
contributions, for example, ull and ulla are the pieces from 
the point i,j for dg/du, v01 is contribution of point 

i-l,j for dg/dv, etc 

compute dg/du at 3,3 then up to dg/du at 92,56 then for 

the rest of the g values do dg/dv 

note that each computation of dg/du and dg/dv requires a part 
of five (5) evaluations of g 

sum up the sum of squares of g (sg) to determine the norm of the grad 

sg = 0.0 

DO 60 i = 3,nz~n2 
DO 50 j = 3,nym2 

can the gradient be calculated here ??? (hint-check kount) 
kount read in with first guess field... = number of obs at each point 

IF (kount(i,j) .EQ.0) GO TO 50 

do gradient dg/du at i, j 

ull = 2.*rho* (uh(i,j,l)+uh(i,j,2)) + 
2.*phi* (uc(i,j,l)+uc(i,j,2)) 
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ulla - 2.*gcof*flap(uc, i,j,l,dell)* 
((-2./dell**2)+ (clat(j)/dell**2)* 
(clat(j+l)* (-l.)-clat(j-l)))/ (r*clat(j))**2 

u21 = 2.*gcof*flap(uc, i+l,j,l,dell)/dell**2/ 
(r*clat(j))**2 

u21a - 2.*beta*divg(uc, i+l,j,dell)* (-i.)/ 
(2.*dell*r*clat (j)) 

u12 = 2.*gcof*flap(uc, i,j+l,l,dell)*clat(j+l)*clat(j)/ 
dell**2/ (r*clat(j+l))**2 

ul2a = 2.*alpha*vort(uc, i,j+l,dell)*clat(j)/ (2.*dell)/ 
(r*clat(j+l)) 

u01 = 2.*gcof*flap(uc, i-l,j,l,dell)/ (dell*r*clat(j))**2 
u01a = 2.*beta*divg(uc, i-l,j,dell)/ (2.*dell*r*clat(j)) 
ul0 - 2.*gcof*flap(uc,i,j-l,l,dell)*clat(j-l)*clat(j)/ 

dell**2/ (r*clat(j-l))**2 
ul0a = 2.*alpha*vort(uc, i,j-l,dell)* (-l.)*clat(j)/ 

(2.*dell)/ (r*clat(j-l)) 

now do the dg/dv at i,j ... 

vii = 2.*rho* (uh(i,j,2)+uh(i,j,l)) + 
2.*phi* (uc(i,j,2)+uc(i,j,l)) + 
2.*gcof*flap(uc, i,j,2,dell)* 
((-2./dell**2)+ (clat(j)/dell**2)* 
(clat(j+l)* (-l.)-clat(j-l)))/ (r*clat(j))**2 

v21 = 2.*gcof*flap(uc, i+l,j,2,dell)/ (dell*r*clat(j))**2 + 
2.*alpha*vort(uc, i+l, j,dell)* (-i.)/ 
(2. *dell*r*clat (j)) 

v12 ~ 2.*gcof*flap(uc, i, j+l,2,dell)*clat(j+l)*clat(j)/ 
(dell*r*clat(j+l))**2 + 2.*beta*divg(uc, i,j+l,dell)* 
(-l.)*clat(j)/ (2.*dell*r*clat(j+l)) 

v01 = 2.*gcof*flap(uc, i-l,j,2,dell)/ (dell*r*clat(j))**2 + 
2.*alpha*vort(uc, i-l,j,dell)/ (2.*dell*r*clat(j)) 

vl0 = 2.*gcof*flap(uc, i,j-l,2,dell)*clat(j-l)*clat(j)/ 
(dell*r*clat(j-l))**2 + 2.*beta*divg(uc, i,j-l,dell)* 
clat(j)/ (2.*dell*r*clat(j-l)) 

add up all the pieces for the gradient of the u-component 

g(kount(i,j)) = ull + ulla + u21 + u21a + u12 + ul2a + 
u01 + u01a + ul0 + ul0a 

now add up all pieces for the gradient of v component 

g(kount(i,j)+n2) = vll+ v21 + v12 + v01 + vl0 

calculate the norm 

sg = sg + g(kount(i,j))**2 + g(kount(i,j)+n2)**2 

50 CONTINUE 
60 CONTINUE 

print out the current value of the norm**2...sum(g**2) 

WRITE (ounit, 9000) sg 
c 

9000 FORMAT ( / ' t h e  no rm o f  g r a d  (sum o f  t h e  s q u a r e s  o f  g r a d )  = ' , e l 0 . 3 )  
c 

RETURN 

END 
c 
c 
************************************************************************* 

SUBROUTINE printo(ier, f) 
INTEGER ounit 
PARA/METER (nx-94,nym58) 
COMMON /bounds/spval,wgt(nx, ny),ounit 
CHARACTER*40 message(5) 

DATA message/ 
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C 

C ....... 

C 
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'normal termination.., the final value of f is ' 

'gradient error check the final value of f is ' 

'search direction on uphill..the final vvalue of f is ' 

,'maxfn exceeded the final value of f is ', 

'function not reducing..the final value of f is ' 
/ 

c 

c 
c ier is returned error code 
c f is final value of the functional 

c 

c ................................. 

c 
IF (ier. EQ.0) WRITE (ounit, 9000) f,message(1) 

IF (ier.EQ.129) WRITE ( o u n i t ,  9000) f , m e s s a g e ( 2 )  
IF (ier. EQ.130) WRITE (ounit, 9000) f,message(3) 

IF (ier. EQ.l) WRITE (ounit,9000) f,message(4) 

IF (ier. EQ.132) WRITE (ounit, 9000) f,message(5) 

c 
9000 FORMAT ( e 1 2 . 3 , a 4 0 )  

c 
RETURN 

print out the appropriate error condition and final value of f 

END 

C 

c 
************************************************************************** 

SUBROUTINE vary 

INTEGER ounit 

PARAMETER (nx=94,ny=58) 
PARAMETER (n=7330) 

COMMON /data/uv(nx, ny,2),uvc(nx, ny,2),uvo(nx, ny,2),kount(nx, ny) 
COMMON /params/rho,gcof,alpha,beta,phi,dx, dy, dl, iter, ifun 

COMMON /bounds/spval,wgt(nx, ny),ounit 

DIMENSION g(n),x(n),w(6*n) 

EXTERNAL funct 

c 

c ....... 

c 

c this subroutine will actually call the minimizing routine which 

c uses for now the conjugate gradient method subroutine conjg 

c note the external function funct 

c legler 2-21-86... 

c 

c 

c facc is smallest number such that facc+l.0<>facc 

c facc is machine dependent, change as necessary 

c 

facc = 1.0e-15 
c 

c 

iunit = ounit 

iout = 1 

nw = 6*n 

maxfn = 9 
c 

c 

C!!!!!!!!!!![!!!!!!!!!!!!!!!!!!![!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!! 
C 
c n is the size of the array to be varied 
c x is the current values of the winds in a singularly dimensioned array 

c f is array of the functional values 

13 
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c 

c 
c 

c 

c 

c 

c 
c 

c 

c 

c 

c 

c 

c 
c 

c 
c 

c 

c 

I0 

20 

30 
40 

50 

g is array of gradient values 

iff is number of function calls made 

ic number of iterations... 

cacc is desired accuracy of the results 

ier is returned error code 

maxfn is maximum number of function calls allowed 

w is array for working space (required to be 6*n) long 
iout output desired ? (0=no, otherwise indicates output every iout 

iteractions) 
nw 6*n for dimension of the working space 

iunit is output unit number 

facc is estimate of machine accuracy 

nmeth indicator for method set to 0 for c-g 

dfpred initial step size reduction in the functional 

set the x array(current results) to the first guess 

x is array of current values of the resultant winds 

uv holds the current (varied) values of the analysis 

DO 40 i = l,nx 
DO 30 j = l,ny 

IF (kount(i, j) .EQ.0) GO TO i0 

x(kount(i,j)) = uvo(i,j,l) 

x(kount(i,j)+n/2) = uvo(i,j,2) 

CONTINUE 

now set the current results (in grid-space) to the first guess 

DO 20 k = 1,2 

uv(i,j,k) = uvo(i,j,k) 

CONTINUE 

CONTINUE 

CONTINUE 

in order to determine the desired 'accuracy' needed for the 

conjugate-gradient to quit and return control to this subroutine, 

initial values of the function and the norm of the gradient 

are needed 

CALL funct (n,x,f,g) 

find the norm of g 

sum = 0.0 

DO 50 i = l,n 

sum = sum + g(i)**2 
CONTINUE 

c 

c ....... 

c 

c set the accuracy desired (cacc), the initial decrease of f (dfpred) 

c and the maximum calls allowed of subroutine funct (maxfn) ... 

c 

c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

C 

acc = l.Oe-O2*sum 
cacc = sqrt(acc) 

dfpred = f/2.5 
c 

C!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

c 

C 

CALL conjg(n,x, f,g, iff,ic, cacc, ier,maxfn, w, iout,nw, iunit, facc, 
+ nmeth, funct,dfpred) 

c 

iter = ic 

ifun = iff 
c 

c print out the meaning of the error code and the final f value 



o 0 j e c u v e  ana lyms  ot  p s e u u o s t r e s s  w m a  neJas  15 

CALL printo(ier,f) 

RETURN 

END 

c 
************************************************************************* 

FUNCTION uc(i,j, ixy) 
INTEGER ounit 

PARAMETER (nx-94,ny-58) 

COMMON /bounds/spval,wgt(nx, ny),ounit 

COMMON /data/uv (nx, ny, 2) , uvc (nx, ny, 2) , uvo (nx, ny, 2) , 
+ kount (nx, ny) 

c 

c ..................................................... 

c 

C 

c 

c 

c 
c 

c 

c 

c 

C ................................. 

c 

this is one of the difference operators which for location 

i,j and component ixy finds the following value 

uc=(current uv value - climatology uv value)*wgt 

ixy is either 1 (east west component) or 2 (north-south component) 

legler 2-19-86... 

IF (uv(i,j,ixy).EQ.spval) STOP 'uv in tine uc is spval...' 

uc = 0. 
IF (uvc(i,j,ixy).EQ.999.) RETURN 

uc = (uv(i,j,ixy)-uvc(i,j,ixy))*wgt(i,j) 

RETURN 

END 

c 

c 

FUNCTION uh(i,j,ixy) 

INTEGER ounit 

PARAMETER (nx=94,ny=58) 

COMMON /bounds/spval,wgt(nx, ny),ounit 

COMMON /data/uv(nx, ny,2),uvc(nx, ny,2),uvo(nx, ny,2), 
+ kount (nx, ny) 

c 

c .................................................... 

c 
c this is one of the difference operators which for location 

c i,j and component ixy finds the following value 
c uh = current uv value - original observation value 

c 
¢ legler 2-19-86... 

c ..................................................... 

IF (uv(i,j,ixy).EQ.spval) STOP 'uv in tine uh is spval...' 

uh = 0. 
IF (uvo(i, j,ixy) .EQ.-999.) RETURN 

uh = uv(i, j,ixy) - UvO(i, j,ixy) 

RETURN 

END 
c 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
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FUNCTION divg(fun, i,j,dx) 

REAL fun 

PARAMETER ( n x = 9 4 , n y = 5 8 )  
COMMON /spherc/clatlny),r 

EXTERNAL fun 

c 
c .......... 

c 

c this is the function to calculate the finite difference form of 

c d i v e r g e n c e  i n  s p h e r i c a l  c o o r d i n a t e s  i n  g r i d  s p a c e ,  l e g l e r  9 - 2 6 - 8 6  
c 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
c 

divg = i./ (r*clat(j)*2.*dx)* (fun(i+l,j,l)-fun(i-l,j,l)+ 

+ fun(i,j+l,2)*clat(j+l)-fun(i,j-l,2)*clat(j-l)) 

c 

RETURN 

END 

c 

c 
************************************************************************* 

FUNCTION flap(fun,i,j,ixy,dx) 

REAL fun 

PARAMETER (nx=94,ny=58) 

COMMON / s p h e r c / c l a t ( n y ) , r  
EXTERNAL fun 

c 

c ..................................................... 

c 

c this i s  t h e  f u n c t i o n  t o  c a l c u l a t e  t h e  l a p l a c i a n  ( s e c o n d  o r d e r  
c finite difference operator) at a point i,j for the ixy 

c c o m p o n e n t  w i t h  t h e  o p e r a t o r  f u n .  
c this fun operator is one of the difference operators 

c uc ( d i f f e r e n c e  o f  uv  - c l i m a t )  o r  u h ( d i f f  o f  uv  - o r i g i n a l ) .  
c the involved values should not be special values since this is 

c a function called only for those locations found by subroutine 
c findn and stored in kount legler 2-19-86 
c 

c changed to reflect calculation in spherical coordinates 
c l e g l e r  9 - 2 6 - 8 6  
c 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
c 

flap = 11./ (r*clat(j)*dx)**2)* (fun li+l, j, ixyl -2 . *fun (i, j,ixy)+ 

+ fun(i-l,j,ixy)+clat(j)* (clat(j+l)* (fun (i, j+l, ixyl -fun (i, 
+ j,ixy))-clat(j-l)* (fun(i, j,ixy)-fun(i, j-l,ixy)))) 

c 

RETURN 

END 
c 

c 

c 

FUNCTION vort ( f u n ,  i ,  j , d x )  
REAL fun 

PARAMETER (nx=94,ny=58) 

COMMON /spherc/clat(ny),r 
EXTERNAL fun 

c 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

c 

c function to calculate v o r t i c i t y  i n  s p h e r i c a l  c o o r d i n a t e s  
c legler 9-26-86 
c 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

c 

vort = i./ (r*clat(j)*2.*dx)* (fun(i+l,j,2)-fun(i-l,j,2)- 

+ fun(i,j+l,l)*clat(j+l)+fun(i,j-l,l)*clat(j-ll) 
c 

RETURN 

END 
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SUBROUTINE conjg(n,x,f,g, ifun, iter,eps,nflag, m xfun, w, iout,mdim, 

+ idev,acc,nmeth,calcfg, f0) 

DIMENSION x(n),g(n),w(mdim) 

EXTERNAL calcfg 

LOGICAL rsw 

SUBROUTINE CONJG is provided by Shanno (see Shanno, D.F. and K.H. Phua 

article: Remark on algorithm 500 a variable method subroutine for 

unconstrained nonlinear minimization, ACM Transactions on 

Mathematical Software, 1980, pp.618-622.) 

alpha = I. 

iter = 0 

ifun = 0 

ioutk = 0 

nflag = 0 

nx = n 

ng= nx + n 

IF (nmeth.EQol) GO TO I0 

nry =ng + n 

nrd = nry + n 

ncons = 5*n 

nconsl = ncons + 1 

ncons2 = ncons + 2 

GO TO 20 

10 CONTINUE 

ncons = 3*n 

20 CONTINUE 

CALL calcfg(n,x,f,g) 

ifun = ifun + 1 

nrst = n 

rsw = .true. 

dgl = 0. 

xsq = O. 
DO 30 i = l,n 

w(i) = -g(i) 

xsq = xsq + x(i)*x(i) 

dgl = dgl - g(i)*g(i) 

30 CONTINUE 

dg = dgl 

gsq = -dgl 

if(gsq.le.eps*eps*amaxl(l.,xsq))return 

new return criteria... 

IF (gsq. LE.eps*eps) RETURN 

40 CONTINUE 

fmin = f 

ncalls = ifun 

IF (iout.EQ.0) GO TO 60 

IF (ioutk.NE.0) GO TO 50 

WRITE (idev, 9000) iter, ifun, fmin,gsq 

50 CONTINUE 

ioutk = ioutk + 1 

IF (ioutk.EQ.iout) ioutk = 0 

60 CONTINUE 

alpha = alpha*dg/dgl 

IF ((nrst.EQ.l) .OR. (nmeth.EQ.l)) alpha - I. 

IF (rsw) alpha = abs(f0)/gsq 

ap = 0. 

fp = fmin 

dp = dgl 

dg = dgl 

iter = iter + 1 

step = 0. 

DO 70 i = l,n 

step = step + w(i)*w(i) 

nxpi = nx + i 

ngpi =ng + i 

w(nxpi) = x(i) 

w(ngpi) - g(i) 

CAG£O 171--B 
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70 

80 

90 

I00 

CONTINUE 

step = sqrt(step) 

CONTINUE 
IF (alpha*step.GT.acc) GO TO 90 

IF (.NOT.rsw) GO TO 20 

nflag = 2 

RETURN 

CONTINUE 

DO I00 i = l,n 

nxpi = nx + i 
x(i) = w(nxpi) + alpha*w(i) 

CONTINUE 

CALL calcfg(n,x,f,g) 

ifun = ifun + 1 
IF (ifun.LE.mxfun) GO TO Ii0 

nflag = 1 

RETURN 

ii0 CONTINUE 

dal = 0.0 
DO 120 i = l,n 

dal = dal + g(i)*w(i) 

120 CONTINUE 
IF (f.GT.fmin .AND. dal,LT.0.) GO TO 160 

IF (f.GT. (fmin+.0001*alpha*dg) .OR. 

+ abs(dal/dg).GT.0.9) GO TO 130 

IF ((ifun-ncalls).LE.l .AND. abs(dal/dg).GT.eps .AND. 

+ nmeth.EQ.0) GO TO 130 

GO TO 170 

130 CONTINUE 
ul = dp + dal - 3.0* (fp-f)/ (ap-alpha) 

u2 = ul*ul - dp*dal 

IF (u2.LT.0.) u2 = 0. 

u2 = sqrt(u2) 
at = alpha - (alpha-ap)* (dal+u2-ul)/ (dal-dp+2.*u2) 

IF ((dal/dp).GT.0.) GO TO 140 

IF (at.LT. (l.01*aminl(alpha,ap)) .OR. 

+ at.GT. (.99*amaxl(alpha,ap))) at = (alpha+ap)/2.0 

GO TO 150 

140 CONTINUE 
IF (dal.GT.0.0 .AND. 0.0.LT.at .AND. 

+ at.LT. (.99*aminl(ap, alpha))) GO TO 150 

IF (dal.LE.0.0 .AND. atoGT. (l.01*amaxl(ap, alpha))) GO TO 150 

IF (dal. LE.0.) at = 2.0*amaxl(ap, alpha) 

IF (dal.GT.0.) at = aminl(ap, alpha)/2.0 

150 CONTINUE 

ap = alpha 

fp = f 

dp = dal 

alpha = at 

GO TO 8O 

160 CONTINUE 
alpha = alpha/3. 

ap = 0. 

fp = fmin 

dp = dg 

GO TO 80 

170 CONTINUE 

gsq = 0.0 

xsq = 0.0 

DO 180 i = l,n 
gsq = gsq + g(i)*g(i) 
xsq = xsq + x(i)*x(i) 

180 CONTINUE 
if(gsq.le.eps*eps*amaxl(l.0,xsq))return 
IF (gsq. LE.eps*eps) RETURN 

DO 190 i = l,n 
w(i) = alpha*w(i) 

190 CONTINUE 
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IF (nmeth.EQ.l) GO TO 330 

rtst = 0. 

DO 200 i = l,n 

ngpi =ng + i 

rtst = rtst + g(i)*w(ngpi) 
200 CONTINUE 

IF (abs(rtst/gsq) .GT.0.2) nrst - n 

IF (nrst.NE.n) GO TO 220 

WRITE (idev,*) ' beale restart ' 

w(ncons+l) = 0. 

w(ncons+2) = 0. 

DO 210 i = l,n 

nrdpi = nrd + i 

nrypi = nry + i 

ngpi =ng + i 

w(nrypi) = g(i) - w(ngpi) 

w(nrdpi) = w(i) 

w(nconsl) = w(nconsl) + w(nrypi)*w(nrypi) 

w(ncons2) = w(ncons2) + w(i)*w(nrypi) 

210 CONTINUE 

220 CONTINUE 

ul = 0.0 

u2 = 0.0 

DO 230 i = l,n 

nrdpi = nrd + i 

nrypi = nry + i 

ul = ul - w(nrdpi)*g(i)/w(nconsl) 

u2 = u2 + w(nrdpi)*g(i)*2./w(ncons2) - w(nrypi)*g(i)/w(nconsl) 

230 CONTINUE 

u3 = w(ncons2) /w(nconsl) 

DO 240 i = l,n 

nxpi = nx + i 

nrdpi = nrd + i 

nrypi = nry + i 

w(nxpi) = -u3*g(i) - ul*w(nrypi) - u2*w(nrdpi) 

240 CONTINUE 

IF (nrst.EQ.n) GO TO 300 

250 CONTINUE 

ul = 0. 

u2 = 0. 

u3 = 0. 

u4 = 0. 

DO 260 i = l,n 

ngpi =ng + i 

nrdpi = nrd + i 

nrypi = nry + i 

ul = ul - (g(i)-w(ngpi))*w(nrdpi)/w(nconsl) 

u2 = u2 - (g(i)-w(ngpi))*w(nrypi)/w(nconsl) + 

+ 2.0*w(nrdpi)* (g(i)-w(ngpi))/w(ncons2) 

u3 = u3 + w(i)* (g(i)-w(ngpi)) 

260 CONTINUE 

step = 0. 

DO 270 i = l,n 

ngpi =ng + i 

nrdpi = nrd + i 

nrypi = nry + i 

step = (w(ncons2)/w(nconsl))* (g(i)-w(ngpi)) + ul*w(nrypi) + 

+ u2*w (nrdpi) 

u4 = u4 + step* (g(i)-w(ngpi)) 

w(ngpi) = step 

270 CONTINUE 

ul = 0.0 

u2 = 0.0 

DO 280 i = l,n 

ul = ul - w(i)*g(i)/u3 

ngpi = ng + i 

u2 = u2 + (l.0+u4/u3)*w(i)*g(i)/u3 - w(ngpi)*g(i)/u3 

280 CONTINUE 

DO 290 i = l,n 
ngpi =ng + i 

nxpi = nx + i 

w(nxpi) = w(nxpi) - ul*w(ngpi) - u2*w(i) 

290 CONTINUE 

300 CONTINUE 

dgl = 0. 

19 
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310 

DO 310 i = l,n 

nxpi - nx + i 

w(i) = w(nxpi) 

dgl - dgl + w(i)*g(i) 

CONTINUE 

IF (dgl.GT.0.) GO TO 320 

IF (nrst.EQ.n) nrst i 0 

nrst = nrst + 1 

rsw = .false. 

GO TO 40 

320 CONTINUE 

nflag = 3 

RETURN 

330 CONTINUE 

ul = 0.0 

DO 340 i - l,n 

ngpi = ng + i 

w(ngpi) E g(i) - w(ngpi) 

ul = ul + w(i)*w(ngpi) 

340 CONTINUE 

IF (.NOT.rsw) GO TO 380 

u2 = 0. 
DO 350 i = l,n 

ngpi =ng + i 

u2 = u2 + w(ngpi)*w(ngpi) 

350 CONTINUE 

ij = 1 

u3 = ul/u2 

DO 370 i = l,n 

DO 360 j = l,n 

nconsl - ncons + ij 

w(nconsl) = 0.0 

IF (i.EQ.j) w(nconsl) -u3 

ij = ij + 1 

360 CONTINUE 

nxpi = nx + i 

ngpi =ng + i 

w(nxpi) = u3*w(ngpi) 

370 CONTINUE 

u2 = u3*u2 

GO TO 430 

380 CONTINUE 

u2 = 0.0 

DO 420 i = l,n 

u3 = 0. 

ij = i 

IF (i.EQ.I) GO TO 400 

ii = i - 1 

DO 390 j = l,ii 

ngpj =ng + j 

nconsl = ncons + ij 

u3 = u3 + w(nconsl)*w(ngpj) 

ij = ij + n - j 

390 CONTINUE 

400 CONTINUE 

DO 410 j z l,n 

nconsl = ncons + ij 

ngpj - ng+ j 

u3 = u3 + w(nconsl)*w(ngpj) 

ij = ij + 1 
410 CONTINUE 

ngpi - ng + i 

u2 - u2 + u3*w(ngpi) 
nxpi = nx + i 
w(nxpi) - u3 

420 CONTINUE 

430 CONTINUE 

u4 - 1.0 + u2/ul 

DO 440 i - l,n 

nxpi - nx + i 

ngpi -ng + i 
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w(ngpi) - u4*w(i) - w(nxpi) 

440 CONTINUE 

ij - i 

DO 460 i - l,n 

nxpi - nx + i 

u3 - w(i)/ul 

u4 - w(nxpi)/ul 

DO 450 j - l,n 

nconsl -ncons + ij 

ngpj -ng + j 
w(nconsl) g w(nconsl) + u3*w(ngpj) - u4*w(j) 

ij - ij + 1 

450 CONTINUE 

460 CONTINUE 

dgl = 0.0 

DO 500 i = l,n 

u3 - 0.0 
ij - i 

IF (i.EQ.I) GO TO 480 
ii = i - 1 
DO 470 j = l,ii 

nconsl -ncons + ij 

u3 = u3 - w(nconsl)*g(j) 

i9 = ij + n - j 
470 CONTINUE 

480 CONTINUE 

DO 490 j = l,n 

nconsl = ncons + ij 

u3 = u3 - w(nconsl)*g(j) 

ij = i9 + 1 

490 CONTINUE 

dgl = dgl + u3*g(i) 

w(i) = u3 

500 CONTINUE 

IF (dgl.GT.0.) GO TO 320 

rsw = .false. 

GO TO 40 

9000 FORMAT (10H iteration, i5,20H 

+ 13H g-squared - ,e15.8/) 

function calls,i6/5H f = ,e15.8, 

END 


