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ABSTRACT

The Turkel-Zwas (T-Z) explicit large time-step scheme addresses the issue of fast and slow time scales in
shallow-water equations by treating terms associated with fast waves on a coarser grid but to a higher accuracy
than those associated with the slow-propagating Rossby waves. The T-Z scheme has been applied for solving
the shallow-water equations on a fine-mesh hemispheric domain, using realistic initial conditions and an increased
time step. To prevent nonlinear instability due to nonconservation of integral invariants of the shallow-water
equations in long-term integrations, we enforced a posteriori their conservation. Two methods, designed to
enforce a posteriori the conservation of three discretized integral invariants of the shallow-water equations, i.e.,
the total mass, total energy and potential enstrophy, were tested. The first method was based on an augmented
Lagrangian method (Navon and de Villiers), while the second was a constraint restoration method (CRM) due
to Miele et al., satisfying the requirement that the constraints be restored with the least-squares change in the
field variables. The second method proved to be simpler, more efficient and far more economical with regard
to CPU time, as well as easier to implement for first-time users. The CRM method has been proven to be
equivalent to the Bayliss-Isaacson conservative method. The T-Z scheme with constraint restoration was run
on a hemispheric domain for twenty days with no sign of impending numerical instability and with excellent
conservation of the three integral invariants. Time steps approximately three times larger than allowed by the

explicit CFL condition were used. The impact of the larger time step on accuracy is also discussed.

1. Introduction

In recent years several approaches have been pro-
posed for the efficient integration of the primitive
equations numerical weather prediction models. In
most of these methods the different time-scales of the
advection and the gravity-inertia terms are dealt with
separately in order to achieve computational efficiency.
Examples are the semi-implicit schemes (see Robert,
1979; Burridge, 1975) and the split-explicit schemes
(see Magazenkov et al., 1971; Gadd, 1978a, 1978b).

In the split-explicit schemes the horizontal advection
terms in the governing equations are integrated with a
time step limited by the wind speed, while the terms
associated with gravity-inertia oscillations are inte-
grated in a succession of shorter time steps; in this way
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a substantial computational economy is achieved when
compared to usual explicit integration schemes.

A different and original approach was proposed by
Turkel and Zwas (T-Z, 1979). Noting that the fast
gravity-inertia waves contain only a small fraction of
the total available energy and hence can be calculated
with a lower accuracy than the slow Rossby waves,
T-Z (1979) propose a space-splitting rather than a time-
splitting for the shallow-water equations.

To be more explicit, they propose treating the terms
associated with the fast gravity-inertia waves, on a
coarser grid but to a higher accuracy than the terms
associated with the slow Rossby waves. The relationship
between the coarse and fine mesh is an integer p > 1,
thus allowing, with little additional work, time-steps
nearly p times larger than those allowed by the usual
explicit stability criteria. While very promising as a
concept, the T-Z scheme has not as yet been applied
operationally with realistic initial conditions.

The purpose of this paper is to discuss the application
of the T-Z space split-explicit integration schemes. For
purposes of illustration, we consider the shallow-water
equations on a hemispheric domain.

In section 2 we present the T-Z scheme for both a
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limited-area Cartesian case and for the spherical case.
In section 3 we present the new constraint restoration
scheme for enforcing conservation of integral invari-
ants. As the T-Z scheme applied to realistic initial
conditions on the hemisphere did not conserve exactly
the integral invariants of the shallow-water equations
(a variation of 5%-10% in the potential enstrophy con-
straint), the restoration method due to A. Miele et al.
(1969a,b, 1971) emerged as a simple and economical
method, satisfying the requirement that the constraints
be restored with the least-squares change of the vari-
ables. In section 4 the numerical results of long-term
integrations on the hemisphere using the T-Z scheme
are discussed, and the impact of the constraint resto-
ration enforcing of integral invariants conservation is
assessed. Computational efficiency and accuracy issues
are also addressed. Conclusions are presented in section
5. Proofs of the stability condition for the T-Z scheme
and the relationship between the CRM and the Bayliss—
Isaacson method are presented in appendix A and ap-
pendix B, respectively.

2. The Turkel-Zwas explicit large time scheme for the
shallow-water equations

a. The Cartesian case

The shallow-water equations in Cartesian coordi-
nates can be written as

U+ u + vuy+ ghy = fo
v+ uv + oo, + gh,= ~fu
hy+ uhy+vhy, + h(u,+v,) = 0, ¢))

where u is the zonal wind, v the meridional wind, 2
the height, g the gravity and f the Coriolis parameter
assumed constant for the subsequent analysis.

For a leap-frog explicit time integration with Ax
= Ay the stability condition is

At 1
PR S — ,
Ax ul+ [vf+ V2gh
and for typical meteorological conditions
Veh> (lul + o)), (3)

while most of the energy is carried at the convective
speed O(Ju| + [v]).

Turkel and Zwas (1979) identified the terms con-
nected with the Vg_h in the stability condition. They
are the pressure gradient terms A, and 4, in the mo-
mentum equations and the divergence term A(u, + v,)
in the continuity equation. Noting, however, the im-
portance of the geostrophic departure in driving the
whole system (see also Haltiner and Williams, 1980,
pp. 51-52), Turkel and Zwas (1979) decided to treat
the terms (gh, + f0) and (gh, + fu) as one entity and
to calculate them on a coarse grid, but to compensate
for the higher truncation error on the coarse grid by

)
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using a Padé compact difference approximation with
fourth-order accuracy for their calculation.
We can express the Padé derivative operator as
4 _ 1w
ax  Ax1+6%6’
where the averaging and differencing operators, x and
d respectively, are

@

1
uw; = '2-(wi+l/2 + Wizi2)

OWi = Wir12— Wiy 2. (5)

Application of the Padé differencing operator to the

expression gh, + fu gives

1w
Eay(1+06%/6)

and upon clearing fractions we obtain

hi+ fu, 6)

& ohi+ f(1+56Y/6)u
Ay

1 1 2 1
=5[§;(hi+1 —hi)+ Zf(‘é Ui + 3 ui+gui—l)] . (D

Using all the information, the T-Z scheme (space-
splitting scheme) takes the form of the following gen-
eralized leap-frog method:
n+l

= -1
uj =uj "A[“?}(“:’"ﬂ,j—uf'—u)‘*‘”ﬁ(uf',jﬂ_uﬁ;—l)

42 Bl = hz'.,,p]

+ 2Atf[(l —ayj+ %(v;’-fp,j + v?—p,j)]
vt =0l — A[“Z’(Uﬁl,j = 0i-1,) F 0541 — V1)

+ (s hz:,-_,,)]

—2Atf1(1 —a)uf + %(u;:j-f-p + uZ#p)]

Bt =prt— A[“Z‘(hﬂl,j —hi_y )ikl — Aoy

n

2
gy =l =) ®)

Here A\ = At/Ax = At/Ay and p > 1 is an integer which
defines the relationship between the coarse mesh on
which terms associated with the inertia-gravity waves
are treated and the fine mesh on which terms associated
with the slow Rossby waves are discretized.

With the original leap-frog method in the Cartesian
case the incompressibility condition u, + v, = 0 is sat-
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isfied exactly for the geostrophic Rossby wave. The dif-
ference scheme (8) no longer has this property and in-
stead the divergence is zero only to the second order.

It is possible to insure that the divergence of the
numerical solution is identically zero by appropriate
averaging of the approximation to u, in the y direction
and v, in the x direction. Turkel and Zwas (1979) found
that averaging in the Cartesian case caused negligible
changes in the accuracy.

The situation is different in the spherical case and
will be elaborated on in the next section.

It can be proven that the stability criterion for this
scheme where a leap-frog explicit time differencing
method is employed is:

At 1
—_——
Ax |yl +|v|+ V2gh/p

For proof of Eq. (9) see appendix A. Hence, one can
use time-steps nearly p times larger than allowed by
the usual explicit scheme.

If we use « = Y5 in (8), we obtain the Padé difference
approximation of (7), a fact which also emerges if we
linearize (1) so as to obtain a linear system with con-
stant coefficients and assume a solution of the form

U U
v = 14 ei (Ex+ny—wt).
h H

Then, as shown by Turkel and Zwas (1979), the am-
plitudes corresponding to the numerical slow Rossby
wave are

&)

(10)

v-o [1 +—;—(a —%)(pm)z ¥ 0[(pnAy)“1]

R O e I R
Again choosing o = ¥ gives us the fourth-order ac-
curacy on the coarse mesh. This higher order on the
coarse mesh grid will balance the second-order error
of the convective terms on the fine mesh. This is the
same « as predicted by the Padé approximation ap-
proach previously suggested.

Practical difficulties arise for a limited-area model
at the boundaries when p, the ratio between the coarse
and fine grids, is larger than 1. In such a case one has
to formulate well-posed boundary conditions on an
interpolated grid. We tested the feasibility of the
method on a limited-area problem with doubly periodic
boundary conditions, using p = 5 as done by Turkel
and Zwas (1979) and obtained similar results to those
reported by Turkel and Zwas,

b. The spherical case

The shallow-water equations on a sphere are given
by
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du 1 ou ou
_+ _—
at acoso[“ax”cosoao]
u g oh
—(f+—tanfjv+ —=
(f a n)v a cosf dA

6_v L f’—+vc 0
ot "acosh| on L% 58

goh

+=tanf Ju+2—=
(f tan )u =30

oh 1
—+

8t acosf [ax () + —(h” 0050)] 0. (12)

Here the Coriolis parameter f is nonconstant and is

given by
f=2Qsinb, (13)

where  is the rate of angular rotation of the earth, &
is the height of the homogeneous atmosphere, # and v
are the zonal and meridional wind components, while
the latitudinal and longitudinal directions are given by
6 and X respectively, and a is the radius of the earth.

By using an analysis similar to that of Arakawa and
Lamb (1977) for the linearized shallow-water equations
system and considering solutions of the form:

(u, h); = Re{u;, h exp[RkiAN — o1)]}, (14)

where = V—1, k is the zonal wavenumber, ¢ is the

. gravity wave frequency,

_,eh) e
" acosfAN

@ = sin(kAX) (15)

the maximum allowable time step for leap-frog ex-
plicit-time differencing and an A-type grid is (in the
absence of Fourier high-latitude filtering)

Ap.. = _GCOSAN
e (eH )l/zwmax
(see also Takacs and Balgovind (1983)). The stability
condition (16) depends on the space and time discre-
tizations assumed, where H is the equivalent depth.
In our case wn., = 1 for waves with wavelengths
close to 4AX. As in the Cartesian case, certain terms
will be differenced over a coarser grid over points p
meshes away in the A\ (longitudinal) direction and ¢
meshes away in the latitudinal direction 6. However,
as can be seen from (16), the time restriction is dictated
by the distance between mesh points in the longitudinal
A direction, namely the distance @ cosfAM. This is why
Turkel and Zwas (1979) suggest taking p larger than
g. They also suggest maintaining the averaging asso-
ciated with the dlvergence term in the continuity equa-
tion.
The Turkel-Zwas scheme for the sphencal case takes
the following form:

(16)
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uj
ug-H _ulj —0 3
cos

+2At [(1 —a) (29 sinf + %ij taan)vf} +g(29 sinf + zletp—‘j taan)vi’J,p,j + % (29 sinf; +

n

— Ui
pH=prl g
cosd;
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g
Gj(u?+l,j—u?—lJ)+v3(u;:j+l uu 1)+ COSH_, hl+p_] hn—p,j)]

u._ .
L) tan0j)v,'~'_pJ]
a

g
(Ul+1 J Vi)t v(V7j —VE-) + E(hgjﬂz“ hj—q ]

- 2At[(l - a)(ZQ sind, + Eai tanaj)ug-

2
hg+1 = h;]"_l { 1} (hl+1,j t I,J) + vy(hu+l u’—l)

L
co 6

o _ u )
+= [(29 sinf;., + ";“’ tan0,~+q)u,'{ at (29 sin;_,+

[0 4
[(1 o) Ulep,;— Uip )+ > (Uispjeg— U1 jrqt Ulepj—q— u,"_,,,,-_,,)} -

un
i,j—
LJl ‘ tand;_, )u 0 —q]]

1
p

o
+ [(1 —a)(V]j4q 080,14 —V];_, cOS0,_)) + E(D?ﬂ,, j+q COSBj4q

1
—V]4pj—qCOSO;_g+ 0], i1gcO80,0g— VI, iy cos()j_q)] t_l] a7

where
o= At/(a- AN)= At/(a- A). (18)

For a = !5 the geostrophic balance and the incom-
pressibility condition are satisfied to a higher order as
was shown in the Cartesian case [Eq. (11)].

¢. Treatment of polar regions for the Turkel-Zwas
scheme

In what follows, we will assume that we are dealing
with the Northern Hemisphere. Following Kalnay et
al. (1983) we first transform the equations (12) using
a stereographic projection, and then we area-average
the equations over a polar cap. The stereographic pro-
jection of # and v results in unique u, and v, indepen-
dent of the longitude A (see also Takacs, 1986).

Up, = —u Sin\ — v COSA

U, = U COSA — V COSA (19)

Multiplying the # and v momentum equations in (12)
by sinX or cosA and adding the products, results in:

du, 1 ou,
o +acoso[u Y +vcos0 ] Jop

£ [sm)\ h+cos)\ah}

2
a cosf oA a6 ( Og)
o, 1 [,

ov ov
ot acosB[ 8)\+v os0—]+fu,,

a0

g h oh
— a 2
. SG[COS)\G +sm>\30] (20b)

a
= Byt ——
ot ? acosh [ax

Let us consider integrating the transformed equa-
tions (20a)-(20c). The area of the polar cap A4, is

(hu) + —(hv cose)] (20c)

27
A= f f a? cosfd\dd = 2wa*(1 — cosAd). (21)
x/2—A8

If we start by integrating the continuity equation and
area averaging

ohp*® 1 J‘ 2 J‘ =/2 a(hu)
=z w/Z—AB[ o (hv cosO)]adek
(22)

The first term vanishes since it is being integrated
around a complete latitude circle (See Takacs, 1986).
The second term becomes

2
f f —(hv cosf)ad\df
x/2—06 00

2

(hv cosb)/dN . 2—se
0

=a

(23)

which is approximated centered in finite-difference
form as

asinAf M
IM 2 (hv)ivjpole:tl k4

i=1
where IM is defined as the number of grid points in
the zonal direction

a J‘h (hv cosb)/d\ =2« (24)
(V]



1040

2
aN=T2 25)
By substituting into (22) we have
ohp” _ 2wasinAf %’ ()
ot 2ma*(1—cosAIM - !
sinAf ™ .
E (hv)i»jpole:l . (26)

" aIM(1 — cosAf) =,

For expressions with ¢ # 1 in the Turkel-Zwas
scheme, we repeat the process over a polar cap of gAf
which gives a term

on, " 3 singAd
at  alM(1 —cosqAf)

M

> (M0)i ) ogiezq-

i=1

27)

The same process is also applied to the transformed
momentum equations in a manner similar to Takacs
(1986).

d. Fourier filtering

Near the poles the longitudinal distances between’

neighboring points Ax = a cosfAX decreases as the
poles are approached for a fixed AA.

Owing to these short distances and to fast moving
inertia-gravity waves near the poles, prohibitively short
time-steps are required to ensure computational sta-
bility. Different Fourier filtering or high-latitude filter-
ing methods have been prosed for latitude-longitude
global gridpoint models to allow the use of large time-
steps. For a comprehensive survey see Takacs and Bal-
govind (1983). .

In our experiments we have used the Arakawa and
Lamb (1977) method in which the zonal pressure gra-
dient and zonal mass flux terms are filtered. For the
Turkel-Zwas scheme differencing gravity-wave related
terms on a coarse grid over points p meshes away in
the longitudinal direction results in a typical stability
condition of the form

(gH)'* . (pkAN)
Ar<1 28
or a cosfl s PAX d (28)
' (acosf) pAX
A<
g (gH)'7? sin(pkAN) (29)
or .
At _ (acosf)pAN (30)

max (gH) l/2wmax ’

where in our simplified case, wmax = 1.

The increase in the maximum allowable time-step
due to the differencing of gravity-wave related terms
on a coarse grid has the following implications for high-
latitude filtering. On one hand, on the coarser grid, the
frequency of the fastest resolved propagating gravity
mode, w, decreases, but on the other hand we use a
higher time-step.
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As has been shown by Daley (1980), Takacs et al.
(1985), the condition for the scheme to be linearly sta-
ble is
' Iw, I<L

g ~= AI.
The set of all gravity modes whose eigenfrequencies

satisfy

(31

1
|Wel >— (32)

At

constitutes the set of “fast” modes which will have to
be Fourier filtered to maintain stability near the poles.

The coarse mesh differencing reduces the size of the
fast modes set, but the use of a larger time step again
increases the number of modes in the “fast™ set [Eq.
(32)], as defined by Daley (1980), meaning that as far
as high-latitude filtering is concerned the same amount

‘of effort will be required to maintain computational

stability.

3. The constraint restoration method
a. Theory

The idea of enforcing a posteriori integral invariant
conservation has been pursued by Sasaki (1976, 1977),
as well as by Bayliss and Isaacson (1975) and Isaacson
(1977). These ideas have been tested by Navon (1981).
A new approach based on an augmented Lagrangian
combined penalty-multiplier method has been pro-
posed by Navon and de Villiers (1983).

In all these papers the solution to the finite-difference
scheme is modified after a given number of time-steps
(or at each time-step) so that certain functionals, rep-
resenting the discrete integral invariants conservation
relations, take prescribed values. Usually, the modifi-
cation of the smallest norm to the value predicted by
the finite-difference scheme at the given time-step is
chosen. )

It was pointed out by A. Miele (private communi-
cation) that an approach simpler than any of those
mentioned above is available. This approach, called
the constraint restoration algorithm, starts by assuming
that the vector x

X ="+ Bn, D"+ D, ™ - - P, (33)

at the time ¢ = nA¢, is in the vicinity of the optimal
point x*, which satisfies the equality constraints

$(*) =0 (34)
where
1(x)
d(x) = . |, r<3N.N,=N. (35)
?(x)

Let us call x the nominal point not consistent with
constraint (24), and let X denote a varied point (see
also Miele and Heideman, 1968, Miele et al., 1969)
related to the nominal point as follows:
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X=%+0x, (36)

0x being a perturbation of x about the nominal point.
By using quasilinearization, we obtain that equation
(34) is approximated by

$(x) + 6¢(x) =0, (37
where
d¢(x) = AT(x)dx (38)
and where A(x) is the N X p matrix
[ 3]
ox; Ox ax;
9 . O¢»
6x2 . é)xz
A(x)= ) (39)
01 ¢z 9
L Ixy Oxy oxy |

where the jth column is the gradient of ¢; with respect
to the vector x. We obtain the relation

&(x) +AT(x)ox =0

from Egs. (37) and (38).

In order to prevent the perturbation éx from becom-
ing too large, we embed equation (40) into the one-
parameter family of equations

(40)

ad(x)+ AT(x)dx =0, (41)
a being a prescribed scaling factor in the range
O<sax<l. 42)

If the position vector x is an approximation to the de-
sired solution, we wish to restore constraint (34) while
causing the least change in the coordinates of x. There-
fore we look for the minimum of the functional
1
J=3 oxTox, (43)
subject to the linearized constraint (41).
As shown in Miele and Heideman (1968), by using
standard methods of the theory of maxima and min-
ima, the functional to be minimized is

F= %5xT¢$x + \T[¢(x) + AT(x)éx], (44)

where A is the p component Lagrange multiplier vector:
At

. (45)
The optimum change éx is obtained when the gradient

of the scalar function F with respect to the vector éx
vanishes, i.e.
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ox = —A(X)\. (46)

By combining equations (46) and (40) and eliminating
0x, we obtain an explicit expression for the Lagrange
multiplier of the form:

ag(x)—B(x)A =0, (47)
-where B(x) is the p X p matrix
B(x) = AT(X)A(x). (48)

In the case where x is a large vector (i.e. N = 3N, N,
~ 10% and p is a small number of constraints (in our
case p = 3), we can easily calculate the Lagrange mul-
tipliers, i.e.

A= aB~(X)é(x). (49)

From Egs. (46) and (49) we obtain that the optimum
restoration correction is given by

ox = aA(X)B™ (x)@(x). (50)
If we define a scalar performance index
P=¢T(x)¢(x), (51)

then clearly, if P = 0, the vector x satisfies the equality
constraints ¢(x) = 0 and P > 0O otherwise.
By taking the first variation

8P = 2¢T(x)AT(X)6x (52)

of the performance index, and using relationship (41)
Eq. (52) reduces to

0P =—2a¢T(x)p(x) = —2aP. (53)
Since P > 0, Eq. (53) shows that for « > 0 the first
variation of the performance index is negative, and
hence for small enough « the decrease of the perfor-
mance index is guaranteed. The CRM method and the
Bayliss-Isaacson (1975) conservative method are
equivalent. For a proof of their equivalence see appen-
dix B, and for a presentation of the Bayliss—Isaacson
method see Navon (1981).

b. Scaling of the constraints

Due to the different physical units the integral con-
straints have different magnitudes. We therefore scaled
the variables and the constraints so that after scaling
they should be of similar magnitude and of order unity
in the region of interest. We employed here the same
method presented as in Navon and de Villiers (1983).

Here, x is a vector given by Eq. (33), while ¢(x) is a
three-component equality constraints vector

¢ | [H-H
dx)=| ¢2| = | 2"-2° |, (54
¢3 En_EO
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where
¢1=H"—H°= 3 hiAxAy—H°
Ij
AxA
¢2=Z"‘ZO=_—Z
2
Vi1, = Vi Uljer — ULj- : 0
X - +fil —Z
2 u( 2Ax 24y 5
¢s=E"—E°= AxAy

—— U+ v +ghhHh:.  (55)
p .

Here H", Z" and E" are the values of the discrete in-
tegral invariants of mass, potential enstrophy and total
energy at time t, = nAt, while H°, Z° and E° are the
values of the same integral invariants at the initial time
t=0.

The scaling can also be represented as a modified
performance index by redefining

P=¢'Wo (56)

where W is a positive definite diagonal weight matrix
given in our case by

L7 0 0
0 LV? 0 (57)
o o v’

where L is the typical horizontal length, ¥ typical ve-
locity and we used a scaled time T as well

T=LV!

chosen so as to satisfy scaling constraints.

(38)

¢. The constraint restoration algorithm

1) Assume a nominal point x.

2) At the nominal point compute the constraint
vector ¢, the matrix A with equation (39) and matrix
B = AT(x)A(x) with equation (48), as well as the per-
formance index P with equation (51).
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3) Assume the restoration of step-size « = 1 and
determine 6x, using Eq. (50).
4) Compute the varied point X by

x=x+06x [Eq.(36)]. (59)

5) At the varied point compute the performance in-
dex P. If P < P, the first iteration is completed and the
scaling factor o = 1 is acceptable. If this inequality is
violated, i.e., P > P, instead of conducting a step-size
search, Mlele et al. (1969, 1971) propose a bisection
process, i.e. « is bisected several times until the con-
dition .

-P<P (60)
is met. This is guaranteed by the descent property. [This
means o must be replaced by some smaller value in
the range (42)].

6) After a value of « in the range 0 < o < 1 has
been found such that P < P, the first iteration is com-
pleted. The point X = x + dx is employed as the nom-
inal point x for the second iteration; this procedure is
repeated until a desired degree of accuracy is obtained,
namely until the performance index satlsﬁes the in-
equality

P<e,

(61)
where ¢ is a small number.

In our case e = 10719, j.e., we continued iterations
until

P<107', (62)

d. Application of the restoration algorithm for the en-
Jforcement of integral invariants of the shallow wa-
ter equations

Here we will demonstrate the application of the res-
toration algorithm to our problem and in the process
also emphasize the simplicity and adaptability of this
algorithm.

1) We calculate the (N X 3) matrix A(x), which cor-
responds to ¢ (x).
Its entries are:

g_%=0 g—zfj=%“x(4i,j+1“(1i,j—l) a_(;f—AXAyuuhu
=0 Ge=Teantan) o axyuihy
g'% = AxAy g%j - _A;Ay a;? %ﬁ—; A’;Ay (uf + v+ 2hy). (63)
We have omitted the subscript » for the time nAt for the sake of simplicity of notation. Also note that
a5 }ll_y(viﬂ’é;;i_u _ uz;i+12;;‘i,j~l +f,) ) (64)
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Having calculated A(x), we calculate the (3 X 3) matrix
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B(x) = AT(x)A(X) (65)
[ (061\2 <30 02 31 03 ]
2GR =g s
7 \oh; 5 Ohy ahy 5 Ohi; Ohy;
9¢, 02 8¢:\* | (32\> | (92 (3¢2 O¢3  O¢y 03 0, 8¢3)
= ——; —) +H=) +H{=) |; — =4 = (66)
2 2 2
ST, (Ul 200 Sl 0 (00 +(%z;)]
We then calculate the Lagrange multiplier vector
(three components) A, assuming « = 1 and using for- d¢,
mula (49), i.e. 3_%
A=B7l0000 = [ATWACI 00 (6T) _adfcoshy (0= via; _teign = thosy p
3) We determine 6x by calculating 2 | A\ 2ad cosh 2ad /
dx=p=—A(x)A (vector of length N=3N,N,) (68) _ €080, (Viya ;= Vi Uisiju1 = Uinrj—1 + f-)
and 6x = ap. hi+1;\2ad cosb; 2ad /
Then the restorati lgorithm takes the same form
as in section 3¢, o PO a0 @ cosy o~ vyt T
ohy; 2 hy | 2adcost 2ad /
e. The spherical case OE &
- e n on 98 %05 a*d*u;;h;; cost;
In the spherical case our definitions of H”, Z" and duy duy
E" are, respectively 3E 3
. ¢3 2.32
—=—=a’d"v;h; cosb;
H= dsin(d/2) > hyj cost; dv; vy e
.y
dE 4 a’d?
Z=(ad)zzcosﬂj Vitr,j Vi1, Ujrr — Uij— v ’ %=$=T(uyz+vjj2+2gh,‘j) cost;. an
2 hy | 2ad cosb, 2ad 1’ v
_lady¥ o, ., . .
E= - 2 (U + o5+ ghyhy cost;, (69) 4. Numerical experiments
i
where a. Numerical results of long-term integrations
d=A0=A¢. (70 Our hemispheric mesh consisted of a grid of (128

The term d sin(d/2) in H comes from a spherical area
average and g is the radius of the earth. In such a case
the entries of the (N = 3) matrix A(x), which corre-
sponds to ¢,(x), are:

d¢: _ f)ﬂ _ d sin(d/2) co

9.
6h,, 6h,, w s 7
01 _94:_,,
ou; oy
02
8u,-j
ad[cosf;y (Vis1,j+ “Vic a1 Ui Uy
Yy - +f:i+l
2 hiJ+1 2ad C050j+1 2ad
_ €001 (Vigrj1 — Vimtj—1 Uy~ Ui +f
hi,j—l 2ad COSGj_l 2ad i~

X 32) grid points, corresponding to a spacing of 2.8135°
in Af and AX. The initial conditions were taken from
a geostrophically balanced 500 mb level data with
equivalent depth of 5 km.

A time step of 450 sec was used with the Turkel-
Zwas scheme, withp =2 and g = 1.

We first conducted hemispheric runs of the Turkel-
Zwas scheme with realistic initial conditions for ten
days, monitoring the conservation of total mass, total
energy and potential enstrophy, respectively. As a de-
crease in the potential enstrophy was noted (see Fig.
1), we decided to carry out a second experiment in
which the constraint restoration method was applied
at each time step that a constraint violation, defined
in terms of a predetermined relative change accuracy,
was detected.

Figures 2 and 3 depict the behavior of the relative
values of the total mass, potential enstrophy and total
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FIG. 1. Time variation of the potential enstrophy as function of its initial value without constraint
restoration (continuous line) and with constraint restoration (quasi-constant spiky line). The
dashed line delineates the limit acceptable for constraint violation.
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F1G. 3. The evolution of total energy, potential enstrophy and total mass, as in Fig. 2,
for 10 days for the T-Z hemispheric scheme. The constraint restoration (CRM) applied.

ration applied at those time steps where a constraint
violation was detected). Time-steps of 240 sec, 450 sec
and 720 sec were used for p = 1 to p = 3, respectively.

Figures 8, 9 and 10 show the height field after 8 days
of integration with the Turkel-Zwas method with p
=1, p = 2 and p = 3, respectively, and ¢ = 1 and
constraint restoration.

In another experiment we obtained the difference
fields for a run of the Turkel-Zwas scheme with p
= 2, g = 1 with and without application of the CRM
method. The difference fields after 2 days and after 9
days are presented in Figs. 11 and 12.

Visual inspection shows that the impact of the con-
straint restoration becomes more important as the in-
tegration period augments. We have noticed that for
long-term integrations and large time steps (9 days and
longer), there was a tendency towards instability when
the CRM method was not applied. More research is
required in order to assess whether the CRM method
improves long-term forecasts as there is no skill in
barotropic models after two days.

b. Computational efficiency of the constraint restora-
tion algorithm

In order to assess the computations efficiency of the
constraint restoration algorithm, we performed a com-
parison between the Augmented Lagrangian algorithm
(see Navon and de Villiers 1983) and the new algorithm
for a typical repair time where we required that the
three integral invariants of the shallow-water equations
be satisfied and we measured the CPU time required
for the full repair time.

For a partially vectorized version of the code run on
the CDC-205, the CPU requested per time step of the
model (for a time step of At = 450 sec) was 0.5 sec.
During 10 days of integration we had a total of 157
repair times requesting, in total, 31.6 sec CPU when
the CRM method was used, i.e., 0.2 sec for a repair
time. The CRM was applied once every 14 time steps
on the average. Application of an Augmented-Lagran-
gian nonlinear constrained optimization method (Na-
von and de Villiers (1983), Navon and de Villiers
(1986) with the same accuracy criteria at the same re-
pair points required 1.2 sec CPU time per repair, i.e.,
the use of the constraint restoration method results in
a computational economy factor of 6.

The application of the Augmented-Lagrangian
method of nonlinear constrained optimization pro-
duced almost identical results to the CRM and its re-
sults are therefore not displayed.

Thus, the use of the constraint restoration method
results in a computational economy by a factor of 6.
It should, however, be realized that we are only looking
at a particular type of constrained minimization prob-
lem where, at a given time step, we are already in the
vicinity of the minimum.

In other instances, when we are not in the vicinity
of the minimum, the constraint restoration method
loses its validity and we have to use the Augmented-
Lagrangian method.

¢. Accuracy tests

In order to provide a basis for comparison between
the constraint restoration method applied to the Tur-
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kel-Zwas hemispheric run and an unconstrained run
of the same method—we used the same method as in
Navon (1981), i.e. we assume the exact solution wgy
of the shallow-water equations to be a run of the Tur-
kel-Zwas method computed with a fine discretization
mesh refined by a factor of 2 for a latitude and longitude
and a time step of 20 sec. The exact run did not use
the constraint restoration method. The test shows that
the relative error increases with p the coarseness factor,
but that the application of the CRM method for en-
forcing conservation of the integral invariants slightly
affects the relative error. Similar findings were found
by Sasaki and Reddy (1980) when testing a variational
method for enforcing conservation of potential enstro-

phy. They found a slight increase in the rms norm
error.

The number of CRM corrections increased with the
time step Az, i.e., more corrections were needed for the
case p = 2 than for the case p = 1. In all of the cases
we used the Gustafsson (1971) relative error norm

|E.pl
72)
| Waxl ‘
and where E p = Wyp — Wgy, and
W= (u’ v, ¢)ijT, (73)

W 4p being the particular method compared to the “ex-
act” run. The norm in (72) is defined by considering
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all vector functions of the form (73). The inner product
of two vectors « and 3 is defined by

Ne Ny—1
(,B)=AxAy 3 { 2 au B+ ap’ Bi+ aly,B;, Ny}
j=1 k=1

(74)

and the norm by
lell?= (e, @). (75)

Using p = 2 and g = 1 for the hemispheric run of
the Turkel-Zwas method, we carried out a 48 h run
with no constraint restoration—and one with a con-
straint restoration. In both cases we used the Gustafsson
(1971) relative error norm (see Navon, 1981). We also
tested the p = 3 and g = 1 case.

The results are given in the following:

TABLE 1. Relative error.

p=1,q=1 =2,g=1 =3,q=1
Ar=240sec  At=450 sec At =720 sec
No constraints :
after 48 h 0.1173X 1072 0.3441 X 1072 0.4674 X 1072
With constraint )
restoration
after 48 h 0.1335X 1072 0.3752X 1072 0.4518 X 1072

The constraint restoration method appears to affect
the relative error only slightly (see Navon and de Vil-
liers, 1983).

5. Conclusions

A space-splitting scheme, the Turkel-Zwas scheme,
was applied to a hemispheric shallow-water equations

model. When careful polar region treatment was ap-
plied, the method allowed the use of a time step almost
3 times larger than that allowed by the CFL condition
for the explicit time integration leap-frog scheme. The
T-Z method is the space alternative of the time-split-
ting or split-explicit time integration methods which
use different time steps for the slow Rossby-wave gen-
erating terms and the fast gravity-wave generating
terms. Application of a constraint restoration method
due to Miele et al. (1969) and which is equivalent to
the Bayliss-Isaacson (1975) conservative method has
proved to be very efficient and computationally eco-
nomical for our case.

Issues for further research should concern first the
applicability of the Turkel-Zwas space-splitting scheme
in operational models and its computational efficiency
versus the split-explicit method of Gadd (1978a,
1978b). As was pointed out by E. Turkel (personal
communication) the T-Z scheme will perform better
if starting from normal-mode initialized conditions,
with periodic application (every 12 h or so) of the nor-
mal mode initialization. Another issue to be addressed
is the total phase error for the different scales of motion
due to the use of different grids for the gravity-wave
generating terms and the Rossby waves, respectively,
of the T-Z scheme. The use of the CRM method pre-
vented nonlinear instability in long-term runs. As was
pointed out by Gadd (1978) conservation of mass, total
energy and enstrophy is significant for medium-range
forecasts (4-10 days) and their preservation constituted
a problem in long-term integrations for the split-explicit
integration scheme, unless the Coriolis term was treated
implicitly. The use of different resolution grids for
problems with different time scales, provides a new
perspective for meteorological problems when explicit
time-differencing schemes are used, and it is hoped that
this paper should stimulate research in this field.
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APPENDIX A

Proof of Stability Condition for the
Turkel-Zwas Method

Let us consider a stability analysis of the shallow-
water equations and let us for simplicity assume /= 0.
If we approximate the shallow-water equations by a
centered difference approximation of leap-frog type,
we obtain (see Kreiss and Oliger, 1973)

u 0 1
w(t+AD=w(it—A)—2At]| 0 u O |Dow(2)
¢ 0 u
v 1 0
~2Atl ¢ v O |Dow(®) (Al)
0 0 v

where
w(t) = (u(x, ¥, 1), v(x, 3, 1), ¢(x, y, 1)) (A2)

denotes the solution of the difference equations and

Dy, and Dy, are the central difference approximations
in the x and y directions, respectively, i.e.

n —_yn
_ Ui j— U

DOxu:'jl'_ ZAX s

[ C— u'.’ -
Doyul =2t Miim uﬂsz i1
(A3)

If we consider the equations (A 1) with constant coef-
ficients by replacing the coeflicient matrices in (A1) by

u O 1 v 1 O
0 u O} and |¢p vp O (A4)
do 0 U 0 0 Vo

where 1, vy, ¢o > O represent a constant flow.
To symmetrize the problem let us introduce a new
variable

1 0 0
=10 1 0 |w (A5)
0 0 Voo
And our difference approximation (A1) becomes
w(t + Af) = p(t — Af) — wAtQo u(2) (A6)
where
U 0 ¢
Q=1 0 u O Dy
%> 0 u
vO ¢01/2 0
+ 4)0”2 Vo 0 Doy (A7)
0 0 Vo

and it has now symmetric coefficients.

Using a theorem of Kreiss and Oliger (1973, p. 36)

we know that the approximation is stable if
At Qoll <1

where the norm of Q, is given by

(A8)
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1Qoll =(Q, 0" (A9)

and ( , ) is the L, scalar product.
Let us take the Fourier transform of Az|| Qoll, At]| Qo
(we know that At||Qoll = Atl| Qy|| by Parseval’s relation).
The eigenvalues of AtQ, are

Ky = %“(uo sinf + vy siny) (A10)

IAt . .
k23 == {uy sinf + v, siny

* [Voo(sin’¢ +sin’p)]}  (A11)
where
h=Ax=Ay, E=wAx=wh, n=wAy=wh (Al2)

and w is the real dual variable to x. Then

- At
x| Qoll = max|x;| <‘}T(|uo| +1vol +V2¢0)  (A13)
J
and the approximation is stable if
At 1 (Al14)

——<————_——_—
B Jugl + ool + V20

If we use the Turkel-Zwas method, i.e., we differ-
entiate the ¢ terms over a grid p times coarser we obtain
for the ¢ terms:

e —e P jsingp
D = = AlS
0px¢ ¢0 ZAXD D ( )
e —e " jsingp
D, = = Al6
0py¢ ¢0 2Ayp p | ( )
- At 2
210l = maxl| < (1l + 1o +222), 1)
J
and the approximation is stable if
At 1 (A18)

—< .
B fuol + |vol + (V260/p)
This concludes the proof for Eq. (9). -

APPENDIX B

Relation between CRM and the
Bayliss-Isaacson Method

When we minimize Eq. (33) subject to the con-
straints ¢(x*) = 0, then the problem is equivalent to

min [l 5xTox + NTop(x + 6x)]. (B1)
wax,\ | 2
Taking the minimum with respect to \ gives
5‘%(131)=¢,(x+5x)=0 1<i<p (B2
!
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and taking the minimum with respect to dx; we obtain

——IB1|~6xk+ 2 >\ ‘oo (x+6x) 0, I<ks<N.
X
(B3)
(B3) is approximated by expanding about éx = 0:
9o,
ax 1 (X)
ox; ) g(b’ (x)
sl 7 =0 (B4)
. ! .
dxn 9¢,
axN(x)

This is the same as the corrective function of Bayliss—
Isaacson (see Navon, 1981)

p
V(n+1)= > o gradG,+P
k=1

with P = 0, if @, = =, for 1 < r < p. This proof has
been suggested by Prof. E. Isaacson.

(B3)
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