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ABSTRACT

Application of the bounded-derivative and normal-mode methods to a simple linear barotropic model at a
typical middle latitude shows that the two methods lead to identical constraints up to a certain degree of
approximation, Beyond this accuracy the two methods may differ from each other.

When applied to a global nonlinear barotroplc model using real data, again the two methods lead to similar
balanced initial states. The gravity oscillations in the unbalanced height field, which have amplitudes of up to
60 m with a dominant periodicity of about 5 to 6 h, are practically eliminated by both initialization methods.
The rotational wind component is smooth even for the unbalanced initial state. The small-scale spatial features
of the irrotational wind component are drastically reduced by initialization. Both the nonlinear normal-mode
and the bounded-derivative initialization methods yield similar divergence ficlds centered around the areas of
highest orography.

The comparison shows that there is no significant loss of information in the mass and momentum fields,
despite the fact that the bounded-derivative method employs only the original, rotational wind component to
construct a balanced initial state compared to the normal-mode method, which, in addition, makes use of the
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unbalanced divergent wind and height fields.

1. Introduction

In the field of numerical weather prediction, it is
desirable to use the primitive equations, which are the
Eulerian or Lagrangian hydrodynamical equations
modified by the assumption of hydrostatic balance.
These equations govern two types of motion. One is
low-frequency motion, which is responsible for weather
patterns generally observed on synoptic weather charts.
The second category belongs to high-frequency, gravity
inertia motions, which in the real atmosphere play a
secondary role.

Regarding numerical models, unwanted gravita-
tional waves are superimposed on the low-frequency
motions, which are meteorologically significant.
Therefore, it is desirable to eliminate or effectively sup-
press the generation of these motions. There are two
relatively new methods that have been developed to
specify appropriate balance concerning initial data in
order to control the excitation of gravitational motions,
namely, the normal-mode (NMI) and bounded-deriv-
ative (BDI) initialization methods.

The NMI method has been used extensively since
it was introduced independently by Baer (1977) and
Machenhauer (1977). This method requires the con-
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struction of free normal modes where frequency is de-
termined as the eigenvalue. The existence of a sepa-
ration gap in frequency between gravitational and me-
teorological modes allows construction of a balanced
initial state free of high-frequency motion tendencies.
Earlier application of the NMI method encountered
many severe problems (Daley, 1981). Recently, how-
ever, considerable progress has been made in under-
standing some of these difficulties. For instance, Puri
(1985) has unveiled some of the reasons for the diffi-
culties experienced when diabatic heating is included
in the NMI process. New advances have also been made
regarding some long-standing convergence problems
associated with Machenhauer’s iteration scheme (Ki-
tade, 1983; Rasch, 1985). Tribbia (1984) has proposed
a new approach for obtaining higher-order corrections
to Machenhauer’s scheme. In this method, the projec-
tion of the nonlinear forcing on the gravitational man-
ifold is expanded in Taylor series around the initial
time. The result is a generalized iteration equation
where the first term corresponds to the standard, non-
linear, normal-mode initialization. A more refined ini-

tial balance can be obtained to any order by incorpo-
rating higher-order terms in the expansion. The pros-
pect of extending the application of NMI to limited
area domains has also attracted much attention. For
instance, Briere (1982) and Bourke and McGregor
(1983) have presented encouraging results in this re-
ga{d but considerable difficulties have yet to be re-
solved.
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Recently, Kreiss (1979, 1980) gave a general theory
of filtering motions of unwanted time scales by bound-
ing the time derivatives of symmetric hyperbolic sys-
tems similar in form to equations for atmospheric mo-
tion and plasma physics. To apply the bounded-deriv-
ative method, the first step is to define the characteristic
scales of motion of primary interest. The terms that
contribute to large time derivatives are identified
through scale analysis of the dynamical equations.
These terms are constrained to ensure that the time
derivatives are on the order of the slow time scale. The
larger the number of higher-order time derivatives for
which this condition is satisfied, the smoother is the
time evolution of the solution. Browning et al. (1980)
introduced the application of the bounded-derivative
initialization method to numerical weather prediction
to obtain balanced data for a barotropic model, in-
cluding the effect of orography. Browning (1982) ad-
dressed the problem of extending the application of
the bounded derivative method to domains with open
boundaries. In another important study, Kasahara
(1982) theoretically investigated the connection be-
tween the BDI and NMI and showed that the two
methods are equivalent within a certain degree of ap-
proximation. A priori, it is not clear whether the same
degree of agreement will prevail when real data are
used. Moreover, the BDI has not really been tested
using realistic initial data.

The purposes of this study are the extension of the
application of the BDI method to real data and the
comparison of the resuits with NMI. In section 2 we
briefly review some concepts regarding the BDI and
NMI methods using a simple linear model. A nonlinear
global barotropic model is introduced in section 3. The
BDI and NMI schemes for the model in section 3 are
described in section 4. The comparison of BDI and
NMIl is discussed in section 5 for the fourth-order GLA
(Goddard Laboratory for Atmospheres) global baro-
tropic model and concluding remarks are presented in
section 6.

2. Linear model

Before discussing the results arising from the non-
linear model experiments, it is useful as a reference to
examine some implications of a simple or linearized
one-level model in X, ¢ coordinates. In this section we
first rescale this model and then use the BDI method
to obtain the relevant constraints that the initial data
must certify in order to yield a smooth forecast. We
also independently derive initial constraints following
the NMI method and compare them with the BDI
constraints. Lastly, forecasts based on the linear model
are performed to examine the impact of various initial
conditions, including the ones based on the BDI and
NMI methods. Linearization is performed about a basic
state, which consists of a uniform zonal current U and
geostrophically balanced height 4. We express the lin-
earized system in the form
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u,+ ghy—fo=—Uu,
v+ fu=—-0v, ,
b+ hu, = U(fo/g— hy)

where x is the Cartesian coordinate directed westward;
t is time; u, v and h are deviations of zonal velocity,
meridional velocity and height, respectively, from the
basic state. As usual, g is the acceleration due to gravity
of the earth and fis the Coriolis parameter. It is con-
venient to assume harmonic dependence and assume
that

2.1

u i
v | =] 7} exp[ikx],
h h

where i, ¥, and / are functions of time only. Also, i is

the unit complex number and k is the wavenumber.

Substituting (2.2) into (2.1) yields a pure initial value
problem of the form

i+ ik Ui+ igkh— f6=0

O, +ikUb+fi=0

b+ ikUh— Ufd/g + ikhii=0

Next, we scale (2.3) and assume that the characteristic

scales of a typical, middle-latitude synoptic disturbance
are

(2.2)

(2.3)

horizontal scale ~ 10°m

height perturbation ~ 10*m
height mean ~ 10*m

horizontal particle speed ~ 10ms™"
(=L/V)=10°s

characteristic wavenumber ~ 10 m™

. (24
1

gravity acceleration ~ 10 ms™2

QAR N T oo

Coriolis parameter = 105! J

By introducing the prime notation to identify the scaled
quantities that are of order unity we write

@=a/V, x'=x/L ]

=9V, k'=k/K

h=hH, g=gG \. (2.5)
t=yT, U=0/V

h'=h/H, f'=f]F

Substitution of (2.5) into (2.3) leads to the scaled system
of equations. Dropping the primes for simplicity but
remembering that all quantites are of order unity except
the scaling parameter, ¢ = O(107!), we find that
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i+ ikUii+ e (igkh— f8) =0
O+ ikUd+ € Yii=0
b+ ikUh — Ufo/g + € 2ikhii=0

To ensure that u,, v, and A, are on the order of the slow
time scale, i.e., O(1), we follow Browning et al. (1980)
and express the first-order constraints as

igkh—f¥=ea
fii=eb ¢,
ikhii = ¢

where g, b and ¢ are smooth and of order unity. The
simplest way to satisfy these conditions is to assume
a=b=c=0att =0, in which case (2.7) leads to

igk/f

(2.6)

2.7

> <
I

(2.8)
=0

/),

The constraints described by (2.8) are identical in form
to the geostrophic balance conditions applied by Hin-
kelmann (1951). To obtain better initial balance we
turn to second-order constraints (Kasahara, 1982). Re-
writing (2.6) by using the definitions in (2.7), we get
4+ ikUii+a=0
b, +ikUd+b=0}.
b+ ikOh—fUd/g+c=0

(2.9)

Therefore, 4, 0, and A, are of order unity if and only
if a,, b, and ¢, are of order unity. Differentiating (2.7)
with respect to time yields

€= lgkh’ —fﬁt

eb, = fil,

626‘, = ikhﬁt
Again we assume a; = b, = ¢, = 0. Obtaining the first-
order time derivatives from (2.6), we find that (2.10)
reduces to a simple coupled system of simultaneous

equations for (ii/h) and (#/h). In matrix form, (2.10)
can be written as

[(e— ol h/f+ € 'f) ZiUk][a/h]
kO — Y| o/h
leading to the following solutions
(k) = EgkU/[(k*gh + f 2 — 26k20?
(®/h) = (igh/f )1 + Ek2T/(kgh + f 2 — 263k 0?)) } '
(2.12)

Neglecting O(¢®) terms in the denominator of (2.12)
and then setting ¢ = 1 to unscale the remaining terms
leads to constraints identical to the ones derived by

(2.10)

[—gkll']/f

Ctigk ] 2.11)
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Philips (1960) through application of quasi-geostrophic
considerations. Next, we turn to the balanced condi-
tions based on NMI. The derivation is given in appen-
dix A and here we simply state the results as follows:

(d/h) = gk*U/(k*gh+ [~ 2k*T?) ,
(@/h) = (igh/f Y1 + K20%/[k*gh + 2= 20%)] |
(2.13)

which is identical to the unscaled BDI constraints in
(2.12) except for the scaling parameter €. In section 3
we shall seek solutions of the prognostic system (2.1)
and examine the impact of applying a hierarchy of
initial conditions, including the BDI/NMI constraints
given by (2.12)/(2.13).

In subsequent analysis it is instructive to note that
the harmonic dependency assumed in (2.2) implies that
#i/h and 9/h are proportional to divergence and vortic-
ity, respectively. To obtain analytical solutions of (2.1)
we follow Hinklemann (1951) and therefore assume
that

BN

3
U= é ho X A, eik(x—c‘,,:)

f n=1
. 3 )
v= %‘ ho 2 Bne™C=C | (2.14)
n=1 '

3
h - hO 2 Cn eik(x—é,,t)

n=1 J

where Ay is the amplitude of A; and 4,, B, and C,
depend purely on the initial values of ¥ and v. We
assert

3

>C,=1.

n=1
The C, is the phase velocity and represents the eigen-
value of the problem. For details regarding the com-
putation of these quantites we refer the reader to Hin-
kelmann (1951). Concerning the computations, it suf-
fices to consider only the real part of (2.14) at a single
coordinate point x = 0. In this case, according 1o (2.2)
the variables u, v and & are equivalent to the tilde
quantities 7, ¢ and A. .

We consider three different types of initial condi-
tions. The first case corresponds to an imbalanced state
where the vorticity (¥) is geostrophic and given by (2.8).
The divergence, (i) is assigned an arbitrary but realistic
value of (0.14)|5,|. Here |0, (=gkho/f) is of O(10 m
s™') and corresponds to the magnitude of the geo-
strophic speed in (2.8). The second case corresponds
to geostrophic conditions (2.8), in which case the vor-
ticity is identical to the first case but the divergence
vanishes initially. Lastly, the third set of initial con-
ditions are determined by BDI (2.12) or NMI (2.13).
Again the vorticity is geostrophic and therefore the
same as the first two cases, but the divergence has a
different value.
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The model constants are U =30ms™', 7 = 10* m,
g=98ms™? f=10"* s}, the wavelength L = 3
X 10° m, and, as usual, k = 27/L. We evaluate (2.14)
at intervals of 300 s.

For purposes of interpreting the results in Figs. la-
1c, the height is normalized by Ay, which is its ampli-
tude initially and is representative of typical synoptic
motion in middle latitudes. Therefore, h/hy is of O(1)
for this type of motion. The time evolution of the
height, vorticity and divergence, which arise from an
unbalanced initial state, is dominated by the presence
of high-frequency gravitational oscillations. Applica-
tion of the first-order constraints of the BDI, which in
this case is equivalent to geostrophic balance, results
in some improvement over the unbalanced case. In
particular, the height amplitude of the gravitational
modes is reduced by one order of magnitude. The high-
frequency oscillations in the vorticity are practically
eliminated. However, the divergence of the gravita-
tional modes still persists and is the same order of mag-
nitude as the one associated with the meteorologically
significant Rossby mode. The remaining high fre-
quency oscillations in the height and divergence, which
geostrophic balancing fails to remove, are virtually
eliminated by the application of the BDI or NMI.

3. The barotropic model

We use the global barotropic model described by
Takacs and Balgovind (1983). The effect of orographic
forcing is explicitly included in the model. The equa-
tions of the model are
du u au v 6_u _ uvtang

ot acosg M a do a

g Ooh

—fo+ —= 1
P a cos¢ oA 0 G
dv u dv vov uutang gdh
at acosd>8)\ a8¢ +f+ ¢_0 (3.2
oh 1
i p— 5(uh) + —(vh cos¢)
u_OH 2_o (33

“a cosp AN a 3¢

where 4 is the deviation of height from the mean A
(=9.2 km), u and v are the zonal and meridional wind
components, respectively, § is the divergence, fthe Co-
riolis parameter, H the height of orography, and s is
(ho — H). Conventional notation is used for longitude
(\) and latitude (¢). The time-differencing scheme is
Matsuno or leap-frog with a time step of 450 s. We use
horizontal resolution of 5° longitude by 4° latitude,
and the domain is global. Apart from the inclusion of
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orography, the present version of the model is identical
to the one described by Takacs and Balgovind (1983).

4. Initialization schemes
a. The bounded-derivative initialization (BDI) method
We adopt the BDI approach proposed by Browning

et al. (1980). In spherical coordinates the scaled balance
relationships are

6=(1l/as cos¢)[u— + v cos¢ H] 4.1)

: OH | s O OH
gV2%h—(g/a’s cos cb)[a)‘ Py 08°¢ 3% 36

o puy [ dud) _u @
a? cos¢ ONdp 8¢ ON| acos¢ AN
vadd |, 1 )
— = — (2 +
ade a? cos¢ 6¢(u2 v%)sing + 5a cos¢
% u_ du ggzi_uvtamb_ﬁ’ o0H _1_
acos¢6‘>\ add a 8>\

u @+2§2+uutan¢
acosp ON ade a

where ¢ = O(107"). The equations are similar to the
ones used by Browning et al. (1980) except for the ad-
ditional terms, which arise from considerations of
spherical geometry. ‘

To determine the balanced state using (4.1) and (4.2),
we assume that the observations consist only of the
rotational wind field, which is calculated from the vor-
ticity of the original field. The divergence is determined
by using (4.1), from which we compute the irrotational
wind. The total wind vector is obtained by sum-
ming the rotational and divergent wind components.
The derivation of (4.1) and (4.2) and the numerical
algorithm we adopted to solve them are given in ap-
pendix B.

+ fu]£ =0, 4.2)

b. Normal-mode initialization (NMI) method

In general we adopt the standard method suggested
by Machenhauer (1977). More specifically, we follow
the iterative procedure described by Williamson and
Temperton (1981). The normal-mode projector
(Bloom, 1983) applied here was developed for the GLA
fourth-order GCM. Since the GLA GCM has the same
horizontal finite difference discretization as the present
model, we adopted the external mode projector with
an equivalent depth of 9.2 km to design our NMI
scheme. A reasonable balance was achieved in five
Machenhauer iterations, leading to a reduction of about
four orders of magnitude in the total balance, which
is computed in the usual way and thus defined by
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NORMALIZED HEIGHT DEVIATION
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- F1G. 1. Time evolution of (a) normalized height (4/ho) for the linear model, (b)

normalized vorticity (V/V,), and (c) normalized divergence (U/ | V). The horizontal
axis is time in hours.
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FIG. 1. (Continued)
ac\/dc\* the orography (Fig. 2) is very high, which presents an
BAL = 2}% ath\atl (4.3)  interesting case to examine the nature of adjustment
m le

where ¢ = normal mode coefficient, m = zonal wave-
number, and / = latitudinal indices for the gravity (G)
manifold-mode coeflicients; BAL is thus the sum of
squares of time tendencies of gravity coefficients.

Perhaps we should mention that balanced data based
on NMI are constructed by using all the basic prog-
nostic variables of the unbalanced state, namely, u, v
and A. In constrast, the BDI used only vorticity to ob-
tain a balanced initial state. We shall compare the initial
balanced states of BDI and NMI and their correspond-
ing time evolutions at selected grid points to examine
if there is any significant difference in the information
that is retained after initialization.

The initial data for our initialization experiments
consist of global fields of wind and geopotential heights
at 300 mb. They are real data of 0000 GMT 9 January
1979 and were interpolated from the adjacent sigma
(o) levels of the GLA GCM.

5. Discussion of results for the global barotropic model

During subsequent discussions we shall confine our-
selves to a limited region in order to permit a more
concise comparison. We choose the Asiatic area
bounded by latitudes 2°S and 62°N, 60° and 120°E.
This window has a number of interesting features. First,

between mass and momentum using different initial-
ization methods. Also, we shall compare the impact of
BDI and NMI in the presence of an analysis problem
concentrated over this region.

All of the numerical experiments are performed with
the Matsuno time-differencing scheme except for one
experiment (UBL), which will be described later. We
begin the comparison with the height fields for the un-
balanced data (UBD), BDI and NMI in Figs. 3a, b, c,
respectively. The initialized fields for BDI and NMI
are smoother than the unbalanced state; they are also
in close agreement. The most noticeable impact of ini-
tialization is the suppression of the intense high cen-
tered at about 30°N, 90°E, hereafter referred to as
the “China high.” This feature is a result of the well-
known computational problem of interpolating height
data between sigma and pressure vertical coordinates.
This problem is frequently encountered in most data
objective analysis schemes, and clearly, the GLA
scheme, which was used to obtain the initial data, is
no exception to this shortcoming (Halem et al., 1982).
Usually, this problem is most severe in the vicinity of
steep slope mountains, but it may occur at other places
as well (Gary, 1973). In the present case, the Himalaya
mountains are the main sources of the problem.
Therefore, one of our objectives is to examine the im-
pact of BDI and NMI over this region with a severe
systematic analysis problem.
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FIG. 2. Orography (m).

It is clear from the comparison of the height field
(Fig. 3a) and the vorticity field (Fig. 4a) that the China
high is not in quasi-geostrophic balance. Therefore, its
absence in the initial state balanced by BDI is not sur-
prising since this method makes use of the vorticity to
construct initial conditions.

The results of NMI can be interpreted by first noting
that the changes made in the uninitialized state tend

to be dictated by the quasi-geostrophic adjustment
process. Previous studies (for instance, Williamson and
Kasahara, 1971) have demonstrated that for large
equivalent depths, such as the one employed in the
present study, mass adjusts toward the winds for
“short” scale motions. Conversely, at long scates the
wind tends to adjust toward mass. In a recent study,
Kalnay et al. (1986) discuss the relative importance of

3

S

~.

<

8
3
8

FI1G. 3. Heights (m) of the free surface: (a) UBD initial state,
(b) BDI initial state, and (c) NMI initial state.
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F1G. 3. (Continued)

mass and wind data in numerical weather prediction.
Using theoretical arguments based on the conservation
of potential vorticity, they point out that the typical
scale separating short and long scales for slow (Rossby)
modes is about 20 000 km for the external mode.
Therefore, with the exception of wavenumber 1 and
2, the remaining wavelengths are of short scale, indi-
cating that the China high mass perturbation over the
Himalayas, in the unbalanced initial data, is of short
scale as well. Consequently, it is clear that as a result

of applying NMI, this feature cannot survive the ad-
justment process since the mass tends to adjust toward
the wind field at such scales. If we want to retain the
China high, then its projection on the slow manifold
must be enhanced, possibly by applying a local geo-
strophic wind correction that is consistent with the mass
perturbation. In fact, this is the basic rationale behind
the application of the geostrophic wind correction nor-
mally employed in four-dimensional objective data
analysis to avoid rejection of information which often
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FIG. 4. Vorticity (107° s™!): (a) BDI/UBD initial state, (b) NMI, (c) vorticity (107 s™");
BDI/UBD minus NMI. Contour interval is 2.5 X 10~ 57! in (a) and (b), and 107 s™! in (c).

results from direct assimilation of mass data (Kistler

and McPherson, 1975). A more rigorous approach,,

however, would entail application of constrained NMI

" (Daley, 1979) by assigning large confidence weights to

the relevant variable in the vicinity of trusted obser-
vations.

Regarding the motion field, it suffices to consider

only the divergence and vorticity. Figure 4a displays

the vorticity field for the BDI that is identical to UBD.
The corresponding field for NMI is presented in Fig.
4b. The close similarity to UBD/BDI is undisputable.
To some extent this justifies the approach in the BDI
that does not allow adjustment in the rotational motion
during the initialization process. Despite the excellent
agreement, a small difference exists between the two
fields. In Fig. 4c we show the difference BDM(UBD)
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minus NMI. The difference field is typically two orders
of magnitude weaker than the actual fields from which
it is derived. The most significant feature is the weak
vorticity dipole. It is either due to the China high or is
a response of initialization to the steep orography in
the area. However, the latter possibility was ruled out
by performing additional experiments of NMI in which
mountains are removed (results not displayed). The
dipole vortex persists, which suggests that it is a rem-
nant of the China high. This result is consistent with
Puri (1981). Puri showed that directly inserted data
with no correction in the wind field is largely projected
to the fast manifold. However, a small proportion is
also projected to the slow manifold. Unlike the NMI,
the BDI cannot retain any proportion of the China
high since, in addition to reasons cited earlier, the vor-
ticity is not allowed to change. To some extent this
can be argued to imply that the BDI suffers from slight
loss of information about the slow manifold contained
in the height field. Perhaps this problem can be over-
come by designing a BDI scheme that employs height
data rather than vorticity, but this question is not pur-
sued any further in this investigation. In any case the
actual difference between the information retained by
BDI and NMI is insignificant even under the extreme
conditions prevailing under the present considerations.

The divergence fields corresponding to the UBD,
BDI and NMI are displayed in Figs. 5a, b, ¢. The un-
balanced divergence is completely replaced by new
balanced divergence, which is similar for both BDI and
NMI. After initialization the typical intensity drops by
a factor of 2 or 3 in comparison to the divergence of
the uninitialized initial state. As expected, the balanced

divergence is centered around regions of highest or-
ography. Similar patterns were found by Semazzi
(1985). Typically, divergence prevails over the wind-
ward slopes while convergence resides over the leeward
slopes of mountains.

The results of each initialization experiment were
used as initial data for a 24 h forecast. At intervals of
1 h the values of the height field at two grid points were
written to a “grid point history file.” The two grid points
are B (10°S, 20°E) and A (50°S, 90°E). They represent
low and midlatitude locations.

To facilitate a more complete comparison, two ad-
ditional experiments were performed. In one of these
experiments (UBL), the leap-frog time-differencing
scheme is used instead of the Matsuno scheme, which
is adopted for all the other experiments discussed in
this paper. This experiment is equivalent to the UBD
experiment except for the change in the time-differ-
encing scheme. In the second additional experiment
(CBE) the classical balance equation was applied to
initialize the flow at ¢ = 0. This corresponds to the case
when the orography is zero in the BDI constraints (4.1)
and (4.2). Figure 6a shows the time evolution of the
height corresponding to UBD, UBL, CBE, BDI and
NMI at coordinate A. The forecast starting from UBL
suffers from considerable contamination by high-fre-
quency oscillations with a dominant period of about
6 h. At this grid point the Matsuno scheme effectively
suppresses high-frequency motions by the end of the
24 h, even without applying initialization. However,
during the first part of this forecast the amplitudes of
the gravitational oscillations are significant and ini-
tialization of the flow at ¢ = 0 is necessary to suppress
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FIG. 5. Divergence (107 s™!): (a) UBD initial state, (b) BDI initial conditions, and (c) NMI
initial conditions. Contour interval is 1075 s~! in (a) and 2.5 X 107 s™" in (b) and (c); the maximum
contour is (30, 15, 15) X 1075 57! in (a), (b), and (c), respectively.

them. Regarding CBE, BDI and NM]I, the time evo-
lution is smoother than UBL and UBD. At 24 h of the
forecast the impact of the Matsuno scheme in sup-
pressing gravitational motions is comparable to appli-
cation of BDI or NMI at ¢ = 0. The classical balance
equation also performs well at this high latitude. The
plots for the time evolution for coordinate B are pre-

sented in Fig. 6b. Notice that the balance equation per-
forms relatively worse than the NMI and BDI. This is
mainly because the balance equation is not capable of
handling the gravity waves over regions of low latitude.
In this case these waves are excited by the high elevation
over equatorial Africa. For the height-field perturba-
tions we note that at low latitudes the amplitudes as-
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FiG. 5. (Continued)

sociated with synoptic waves are typically one order of
magnitude smaller than at high latitudes. However, the
amplitudes for gravitational motions are similar when
we use unbalanced data. This indicates the importance
of performing suitable initialization over the low lati-
tude regions of the earth, particularly for purposes of
short-range numerical weather predictions.

6. Conclusions

The relationship between the BDI and NMI is ex-
amined first, using a simple linear model and then using
a nonlinear barotropic model in the presence of realistic
initial data.

The calculations based on the linear model indicate
that the BDI and NMI are equally effective in sup-

pressing high-frequency oscillations. This is consistent .

with results of Bijlsma and Hafkenscheid (1986). The
initial divergence required to achieve this is of order
1077 s7!, thus in agreement with results of earlier
studies.

Concerning the nonlinear model, the results show
that despite the difference in the amount of initial data
used in either the BDI or the NMI, the balanced states
are in close agreement. In particular, both methods
eliminate a spurious high present in the unbalanced
initial data. If we had confidence in the physical exis-
tence of this feature it would be imperative to resort
to constrained variational techniques capable of re-
stricting changes in the height field but permitting ad-
justments in the motion field. Regarding NMI, such
an approach was suggested and successfully tested by
Daley (1978), but the development of constrained

variational BDI is yet to be accomplished. The time
evolution of height at selected coordinate points in
space during a 24-h period indicates that the unbal-
anced data are dominated by large-amplitude gravi-
tational oscillations. Both the BDI and the NMI elim-
inate this noise, and the corresponding forecasts are in
close agreement. The results show that the classical
balance equation is not as effective as the BDI or NMI
methods, particularly in the tropics. Without initial-
ization, the Matsuno time-differencing scheme is in-
capable of suppressing high-frequency gravitational
motions to acceptable levels during the early part of
the forecast. However, toward the end of the first day
of the forecast its accumulative impact is comparable
to the application of BDI or NMI at the initial time.
The vorticity of the unbalanced data is only slightly
changed by NMI. The divergence field is centered
around the regions of high orographic elevation. This
distribution is consistent with Semazzi (1985), where
divergence prevails over the windward slopes and con-
vergence resides over the leeward slopes of large-scale
mountains for both westerly and easterly basic currents.

Lastly, we should note that the present results must
be viewed in context of the external mode. The quasi-
geostrophic adjustment process, which governs the
changes during application of unconstrained initial-
ization, is sensitive to the magnitude of the equivalent
depth. Consequently, it is conceivable that the agree-
ment between BDI and NMI in the context to which
they have been applied in this study may diminish as
smaller equivalent depths are considered, for instance
in case of a baroclinic model.
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APPENDIX A
Application of NMI to the Linear Model (2.1)
First, it is convenient to set U = 0 in (2.1). We get

u,—fo+gh,=0
v +fu=0 (A1)
A+ hu,=0
We define
i=u
i=v , (A2)
h=c"gh
where _
c=(gh)"?,
so that (A1) may be expressed in the form
W,+ LW=0, (A3)
where
i
w=|6], (A4)
h
0 _f C( )x
L= f 0 0 (A5)
cC )x O 0
We assume harmonic dependency such that
W = H expli(wt + kx)], (A6)

where w is the frequency, k the wavenumber, and H
the model vector. Substituting (A6) into (A3) results
in a cubic equation with roots given by

wR=0 }

A7
weg= (K + D)2 = %qg (A7)

where wp, is the low frequency of the Rossby mode and
w.g denotes the high frequency of the eastward- and
westward-propagating gravity waves. The correspond-
ing eigenvectors are
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0

fIR=0’G‘l ikc

f

(A8)
-1 i’io’G
oG

Hyg=—=| —f
V2 —ikc

Multiplication by H*g, the complex conjugate of H.g,
isolates the gravitational eigenmodes (Kasahara, 1982).
Before we make use of this convenient property, we
first present (2.3) in the form

] —ft+ickZ —ik(Zﬁ
7|+ fi = —ikU0 |, (A9)
7 ickii cYfOb - ikUz
where
Z=c"'gh, (A10)
by defining
W= iwsgil + ike? — £
0T [GeatT f] (A11)
Nig=ikU(f0— W.s)
and then operating H¥; on (A9) yields
(Wie) +iwsGWie = Naig. (A12)

We treat (A12) as if it is a nonlinear equation with N.¢
representing the nonlinear forcing (Phillips, 1981).
To perform NMI we follow the approach proposed
by Machenhauer (1977). In this case we require the
time tendency of the gravity modes in (A 12) to be zero.
This condition, together with the use of (A11), yields

5 7\~1
Wtc,,:ﬂf,;(“,k_‘{) .

(CEYed W+G

(A13)

We can obtain # and ¥ corresponding to (A13) by using-
the definition of W, in (A1) and solving the resulting
coupled system of equations. This gives

a_ gk*U
% = (igh/f 1 + K20Y(k3gh+£? ~ 20%)]
APPENDIX B
Derivation of the BDI Balance Constraints
(4.1) and (4.2)

Recently, Browning et al. (1980) discussed initial-
ization schemes based on BDI for a barotropic model,
separately for equatorial and middle latitude S-planes.
Their results indicate that the balance constraints based
on equatorial considerations are similar but more re-
strictive than the ones for middle latitudes. A suitable,
unified initialization scheme for the entire globe is the
one based on the constraints for the low latitudes.

In the present study we consider a global domain.
We assume the following characteristic scales for equa-
torial synoptic motion:
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adgp ~ ad\ ~ O(10°m)
u,v~0(10ms™)
t~0(10%s)
h~0O(10m)
s~ O(10*m)
g~0(10ms™2)
H~0(10°m)
a~0(10" m)
f~0(107%s7h ]

We make allowances for a global domain and assume
that (tang) can be as large as O(10). This simply ensures
that this term is not neglected during the scaling pro-
cess.

Scaling (3.1) and (3.3) using (B1) yields

du vdou wuvtang g @_

a cosg a\
(B2)

(B1)

ou u

b

goh_
3 =0, (B3)

v u v vdu  vutang 8
ade

__+ —_— R
Ot acos¢pdN ade

+fu+

% 1 [d(uh) 9 3
% + 7 cosd [— + % (vh) cos¢] +e°S6

A
¥ _OH voH]_ '
) [a cosp oA T2 1;] 0. ®4)

where all the variables are nondimensional and are of
order unity except the scaling parameter, ¢ = O(107").

Following Browning et al. (1980), the first-order time
derivatives u;, v, and A, are of order unity if and only

if
u OoH vo
— —_— - = 3
0 e(a cos¢ O\ aaZ) <G,

where C is smooth and of order unity.
To obtain a second constraint, we substitute (B5)
into (B4). The result is

o, Lo

(BS)

a
+-—(vh +C=0. (B6
dt  acosp| IA 6<i>( ) COS¢] (B6)
Therefore, the second-order time derivatives u,, vy,
h,; are also of order unity if and only if C; is of order
unity. By differentiating (B5) it is easy to show that the
second constraint is given by

oudH oh d
21 2 2 24 "
gV*h—(g/a*s cos d))[a)\ N +cos ¢a¢ % l

NP 3¢ ON

— ft—Bu+ 2 [au v u av] u 98

a? cos¢ " @ cosg ON
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v 3 1 0
____.62__—__ 2+ 2\ )
ad¢ a® cos¢ 0¢(u v’) sing

ou vdou wuvtang

e fv]

€ u_du oH
sa cosplacosp ON ad¢ a

DY

el u 6_v v 912_ uu tang
sajacos¢ N ad¢ a

o0H
+fu}6_¢'+ €3C1-

(B7)

The easiest way to satisfy (BS) and (B7) is to neglect
terms O(¢®) and set €C = C, = 0. Finally we set € = 1
to unscale the resulting system of equations and obtain
the balance constraints stated in (4.1)-(4.3).

To determine the initial divergence and height fields
using (4.1) and (4.2) we adopt the following iterative
scheme:

S+t =(1/as COS(f))(uk?E-"vk COSq)a— (B8)

aA )

ahk+l ai{+co 2¢8hk+l a_
N o X% 5s o

gv2hk+l _(g/aZS COSZd))[

2 [ou* vk duk avk u*
=S Buk = = o o |
a‘cosg| O\ ¢ d¢p ON| acosg
ak vvesk ., 18
- — —_ + 21 of
o\N a 0¢ (6k)\ a? cosp a¢[(”k) (©%’] sing
1 uk  ou* vkauk  ukvk
+ — = —fok
sa cosd>[a cosp N  a 9¢ tang —fo ]
OH 1[ ut vt vtav*
O\ as|lacos¢ ON a ¢
uku* <|oH
+ p tang + fu ]6¢>’ (B9)

where k =0, ..., K (=3). For k = 0, we assume the
motion is comprised of only the rotational components
of the original unbalanced initial state, which are com-
puted from the relations

Vy=¢
_ 1y
W 00 , (B10)
1 Y

Y= a cosg 5

where y is the streamfunction of the initial unbalanced
state and does not change during the iteration process,
¢ is the initial vorticity, and u, and v, are the zonal
and meridional components of the rotational flow.
Once divergence is determined from (B8), the irrota-
tional velocity components are calculated from
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szk=6k
uk= 1 .a_xk
"‘ acosp O\ . (B11)
1 9x*
k=__
Vx a d¢

J

The total motion field of the unbalanced state is ob-
tained by summing the irrotational and rotational
components. Then, these are substituted into (B9) to
compute the balanced height field." To be consistent
with other calculations in this investigation the spatial
derivatives are performed using fourth-order accuracy.
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