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ABSTRACT

Optimal control theory is applied to a variational data assimilation problem in
the context of the assimilation of altimeter data in a quasigeostrophic ocean model�
Related to the issue of the minimization of the cost function� a sensitivity analysis
is applied to the optimality system to derive the sensitivity of the retrieved control
variable � here the initial condition � with respect to the observations� The derivation
of the sensitivity of a response function in the case of data assimilation is reviewed
and a new method of performing the derivation of this sensitivity is proposed �
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� Introduction

The basic equations used for numerical weather prediction are those of �uid dy�
namics� therefore numerical modelling in atmospheric or oceanic sciences is just a
specialization of techniques used in �uid dynamics�
Nevertheless these geophysical �uids have a fundamental speci�city
 a particular

situation cannot be reproduced� The classical methods of experimental sciences such
as the duplication of an experiment cannot be used� in this instance�This fact should
be taken into account in the methodology of modelling of geophysical �ows�
The knowledge of initial conditions � and sometimes even the boundary con�

ditions � in both oceanography and meteorology is a very di�cult problem� One
cannot perform a good prediction with a model without a good knowledge of its ini�
tial conditions � assuming that the boundary conditions are known �� With a good
model at our disposal� the �rst and most important problem to solve if we wish to
carry out numerical prediction is the determination � or the approximation � of the
initial conditions� But the problem cannot be solved unless we possess additional
information� A natural additional piece of information needed is an observation of
the phenomenon studied�
In terms of prediction� whatever the quality of a model� it cannot be used by

itself to carry out a prediction� On the other hand� whatever the quality of a set of
data� they cannot yield a prediction all by themselves�
As a consequence the important concept in numerical weather prediction is nei�

ther the model nor the data� but the couple consisting of the data and the model�
Therefore the problem is to derive methods having the ability to take into account
simultaneously the information contained in the equations of the model and in the
data�
Optimal control methods � Le Dimet������ Le Dimet and Talagrand� ���� �

ful�ll these requirements� They permit to retrieve atmospheric or oceanic �elds in
agreement with the model and the observations and to predict the evolution of the
atmosphere or the ocean starting from a coherent situation�
In our point of view� this approach is not just a technical trick� but it creates a

new and powerful perspective on numerical modelling in Earth Sciences�
As a consequence� the by�products of numerical modelling such as sensitivity

analysis or predictability studies should be carried out in a slightly di�erent way
than used in classical modelling� The fundamental reason being that in variational
analysis the result is obtained not only by solving the model� but by solving the
optimality system�
Retrieved �elds resulting from data assimilation processes on meteorological or

oceanographical circulation models depend on data sets� Data assimilation in mete�
orology and in oceanography has improved considerably over the past two decades
and the beginning of the current one� This is due to the fast improvement of both the
techniques � and means � of data acquisition� and of the methods and algorithms for
assimilation �Kalman Filter� Extended Kalman Filter� Optimal Interpolation and
Variational Data assimilation�� Some of the principal factors of this progress in
oceanography are the adaptation of techniques used in meteorology � where there is
an extensive accumulated experience in data assimilation �� and the availability of
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new types of data
 satellite altimetry� di�usiometry and acoustic tomography�
The data sets are characterized by con�gurations depending on both temporal

and spatial sampling� In satellite altimetry� a data con�guration is directly related
to the orbital parameters � inclination angle� repeat period� altitude� ��� etc � which
are referred to here as observation parameters�
In the present work� we are interested in variational assimilation of altimeter

data in an oceanic quasi�geostrophic general circulation model� and the sensitivity
of retrieved �elds with respect to the observation parameters�
The �rst part of this paper is devoted to theoretical results
 we will show how

to correctly derive sensitivity analysis in presence of data�
The second part of the paper will focus on sensitivity with respect to obser�

vations� An application to the estimation of optimal orbital characteristics of a
network of satellites for observation of the ocean will be carried out�

� General Sensitivity Analysis

Let us consider a general formulation of a model by the system


F �X�K� � 	 ���

where X may also be a function of time� K is some parameter of the model� By
parameter we mean any input of the model
 classical parameters� initial or boundary
conditions� or a combination of all of them�
For most geophysical problems F is a nonlinear partial di�erential operator� In

computational applications it becomes a mapping in a �nite dimensional space�
For the sake of simplicity� we will assume that when K is given then ��� has a

unique solution X�K��
Let G be a given real function of X� It will be called the response function� �G

can also be a real function of both X and K�� By de�nition� the sensitivity of G
with respect to K is the gradient of G with respect to X� G is an implicit function
of K trough X� Therefore the problem is 
 how to estimate the gradient �
In order to estimate the gradient� we have to go trough the following steps

i�The Gateaux derivative �F of F in a given direction k is computed


�F �X�K�k� � lim
���

F �X�K � ��k�� F �X�K�

�

From ��� we get


�F

�X
� �X �

�F

�K
�k � 	 ���

�X being the Gateaux derivative ofX in the direction k and �G the Gateaux derivative
of G is obtained by exhibiting the linear dependance of �G with respect to k�

ii� Let us introduce the adjoint variable P of X� which will be de�ned later
according to our convenience� If we take the inner product of ��� with P � then
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transpose� it comes
 �
�X�
�F t

�X
� P

�
�

�
k�
�F

�K
�P

�
� 	

By de�nition

�G � �rG� k� �

�
�F

�X
� �X

�
���

iii� If P is de�ned as the solution of 


�F t

�X
�P �

�Gt

�X
�
�

Then we obtain 


rG � �
�F t

�K
�P ���

Therefore the sensitivity analysis is carried out in the following way

i� The direct model is solved� according to ���� for the value of the parameter in

the vicinity of which the sensitivity analysis is requested�
ii� The adjoint model �	� is solved giving P the adjoint variable�
iii� From �
�� the sensitivity with respect to K is computed� The computation

of the adjoint permits to evaluate the sensitivity of the model with respect to any
perturbation� This method needs only one evaluation of the model and one evaluation
of the adjoint model�

� Variational Data Assimilation

During the last few years� an abundant research literature has been devoted to this
�eld� The problem is to retrieve the state of the ocean or atmosphere using both a
model and a set of observations�
Let us assume� that between times 	 and T� the state of the ocean � or the

atmosphere �� represented by X is governed by the di�erential equation


dX

dt
� F �X� ���

During this period the ocean is observed� For convenience� we assume that this
observation is continuous in time� A more realistic assumption would only make the
notation more complicated but would not change the essence of the method�
With an initial condition


X�	� � U

equation ��� has a unique solution on the interval �	� T �� Let J be a cost function
measuring the discrepancy between the observation and the solution of ��� associated
to the initial condition U � J may be given by







J�U� �
�

�

Z T

�

kC�X�t��Xobs�t�k
�dt ���

Here C is a mapping from the space of the states of the ocean to the space of ob�
servations� The best �t between model and observation is achieved by minimizing J �
The problem can be stated as
 �Determine U� minimizing J �� The determination
of U� is carried out in two steps


i� Characterization of U�

To minimize the cost function U� should be a stationary point of J � and a
necessary condition for optimality is

rJ�U�� � 	

where rJ is the gradient of J with respect to the initial condition� The derivation
of the gradient is obtained by introducing the adjoint model� An analysis similar
to these performed above can be carried out� pointing out that a transposition with
respect to the time is nothing else than an integration by parts� it yields that U� is
the solution of the following so�called Optimality System


dX

dt
� F �X� ���

X�	� � U ���

dP

dt
�

�
�F

�X

�t
� P � Ct�C�X �Xobs� ��	�

P �T � � 	 ����

rJ�U�� � �P �	� � 	 ����

The optimality system is nothing but the Euler�Lagrange system of equations of
the optimization problem� It is worth mentioning at this point that all the available
information �i�e model and data� is included in this set of equations�

ii� Computation of the optimal initial condition�
The algorithm for the determination of the optimal initial condition consists in

starting from a �rst guess� the direct model being integrated forward then the adjoint
model being integrated backward� The gradient of the cost�function is deduced
from the adjoint variable by ����� Then the gradient is used in some unconstrained
optimization algorithm � see Fiacco and McCormick ��� � to improve the guess�

� Sensitivity in Presence of Data

Let K be a large parameter of a model governed by a di�erential equation


dX

dt
� F �X�K�

X�	� � U

The initial condition being issued from a variational procedure as described above�
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The traditional way for estimating the sensitivity of a given response function G
with respect to K consists in integrating the model and its adjoint then in identifying

X � X

P � P

F �X�K� �
dX

dt
� F �X�K� ����

and then the general analysis is used to obtain the gradient of G with respect to K�
This procedure is not always correct
 if some perturbation k is applied to the

parameter K� then the initial condition is no longer optimal� this change in the
optimal initial condition should be taken into account in the subsequent sensitivity
analysis�
Let Kad be the set of all the admissible values of the parameter K� When K

spans the set Kad then U will span a set Uad of all the admissible initial conditions�
A perturbation on K will induce a perturbation on U � The problem can then be
stated as

�What is F in variational data assimilation � �
A common error is to consider���� and to use the adjoint of the meteorological or

oceanographical model to derive the sensitivity� The state of atmosphere or ocean is
not a direct solution of an equation� but the solution of a problem of optimization�
In order to apply the general sensitivity analysis� the equation to be considered is
only the equation of which the optimal state of the ocean �or the atmosphere� is a
solution i�e� the solution of the optimality system� Therefore in order to take into
account the dependance of the perturbations we should consider the following


X �

�
X

P

�

F �X�K� �

�
BBBBB�

dX

dt
� F �X�K�

dP

dt
�

�
�F

�X

�t
� P � Ct�CX �Xobs�

�
CCCCCA

It means that in the context of variational data assimilation� the concept of model
should be extended to the Optimality System� The observation Xobs is considered
as the parameter K of the general theory�
In order to estimate the sensitivity with respect to the parameter K� �i�e with

respect to the observation �� let us apply a perturbation in a direction k on this
parameter� The Gateaux derivatives �X of X and �P of P are found as solution of
the equations


d �X

dt
�

�
�F

�X

�
� �X �

�
�F

�K

�
k ��
�

�



�X � 	 ����

d �P

dt
�

�
�F

�X

�t
� �P �

�
��F

�X�

�X

�t
� P � CtC �X ����

�P �T � � 	 ����
�P �	� � 	 ����

Let P �

�
Q

R

�
be the adjoint variable to X �

�
X

P

�
� Equation ��
� is multiplied

by Q and ���� by R �trough a suitable inner product�� then they are integrated
between times 	 and T � It comes


Z T

�

�
	
�
d �X

dt
�

�
�F

�X

�
�X�Q

�
�

�
�d �P
dt
�

�
�F

�X

�t
�P�R

�
A


� dt� Z T

�

�
�F

�K

�

�
Z T

�

�
	
�
�
�
��F

�X�

�t
� P�R

�
A�

�
CtC �X�R



�
�
Ctk� R



� dt � 	
After integrating by parts we obtain


�
�X�T �� Q�T �



�
�
�X�	�� Q�	�



�
Z T

�

�
� �X�

dQ

dt
�

�
�F

�X

�t
�Q �

�
��F

�X�
R

�t
� P � CtCR

�
A dt

�
Z T

�

��
�F

�K

�
k�Q

�
dt�

�
�P �T �� R�T �



�
�
�P �	�� R�	�



�
Z T

�

�
�P �
dR

dt
�

�
�F

�X

�
R

�
dt � 	

Let us assume that the response function is an integral of the form 


G �
Z T

�

G�X�dt

G being a scalar function� Therefore if Q and R are de�ned as the solution of


dQ

dt
�

�
�F

�X

�t
�Q�

�
��F

�X�
P

�t
�R � CtCR �

�
�G

�X

�
����

dR

dt
�

�
�F

�X

�
�R � 	 ��	�

Q�	� � 	 ����

Q�T � � 	 ����

Then the gradient is given by


rG � �

�
�F

�K

�t
�Q ����

��� If there is an observation at time T � the �nal condition for the adjoint of the
direct model ���� becomes P �T � � Ct �CX�T ��Xobs�T �� and the perturbed opti�

mality system ���� becomes �P �T � � Ct
�
C �X�T �� k



� Therefore� ���� is changed
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to Q�T � � CtCR�T � � 	� However expression ���� yielding the gradient remains
unchanged� although the values probably change as a consequence of the respective
changes in Q and R�
��� We obtain a coupled system of two di�erential equations� The second one

is nothing other but the so�called linear tangent model� The �rst equation has
both initial and �nal conditions� the condition Q�	� � 	 being chosen to cancel the
dependance with respect to the variation on the optimal initial condition� On the
other hand� the second equation does not have any prescribed boundary condition�
��� If G � J the cost function� it is clear that R � 	 is a solution and we will

�nd Q � P the adjoint variable� If G �� J then R � 	 is a solution of the second
equation� Formally we obtain an equation similar to the adjoint equation but with
a di�erent r�h�s�� It is clear that there is no reason to obtain Q�	� � 	 after the
integration of the equation and therefore the sensitivity cannot be deduced from
this �pseudo�adjoint� variable as is current practice in sensitivity analysis�

�� The weakness of the method which consists to use this �pseudo�adjoint� is

made evident when sensitivity with respect to the observation is sought� This is
due to the fact that the observations are not explicit in the direct model� They
are explicit in the optimality system and therefore from the formal point of view�
they can be considered as any parameter in this new model which is the optimality
system� For some response function G depending on X and therefore implicitly on
Xobs� a similar analysis� as the one above� can be carried out and we �nd


rG � �Ct�R ��
�

In what follows� we propose a method � an algorithm � for solving this last system�
given suitable hypothesis insuring existence and uniqueness of its solution� and hence
the computation of the gradient de�ned by ���� or ��
�� We proceed in this way


� Choose an initial condition V for ��	� 
 R�	� � V

� Integrate ��	� forwards

� In the case of the preceding remark ����� use the �nal coupling condition to
deduce Q�T �� otherwise

� Integrate backwards ����

Then we obtain Q�	� as an implicit function of V 
 Q�	� � Q�	� V �� The problem
is then to choose a V � such that Q�	� V �� � 	�

Theorem ��� If the Hessian of the cost function with respect to the initial condition
of the direct model is positive de�nite� then there exists a unique V � such that

Q�	� V �� � 	

The existence and uniqueness of V � prove the existence and uniqueness of the solu�
tion of our system�

�



Proof
Let us �x a vector V and set R�	� � V � We want to solve the system


�I�

�����������
����������

dQ

dt
�

�
�F

�X

�t
�Q�

�
��F

�X�
P

�t
�R� CtCR �

�
�G

�X

�

dR

dt
�

�
�F

�X

�
�R � 	

Q�	� � 	
Q�T � � 	

and we seek a V to satisfy Q�	� V �� � 	� Let �Q�� R�� be the solution of


�II�

�����������
����������

dQ�

dt
�

�
�F

�X

�t
�Q� �

�
��F

�X�
P

�t
�R� � CtCR� � 	

dR�

dt
�

�
�F

�X

�
�R� � 	

R��	� � V

Q��T � � 	

using the linearity of �I�� we can write 


Q � Q� �Q� ����

R � R� �R� ����

where �Q�� R�� are de�ned by


�III�

������������������
�����������������

�Q�

�t
�

�
�F

�X

�t
�Q� �

�G

�X

�R�

�t
�

�
�F

�X

�
�R� � 	

Q��T � � 	

R��	� � 	

where R� is identically null� Q�� Q�� R�� R� are uniquely de�ned and


Q�	� � Q��	� �Q��	� ����

System �II� is nothing but the second order adjoint �SOA� described by Wang and
al����� And in the same paper the authors show that

Q��	� � H�V ����

where H is the hessian of the cost function with respect to initial condition of the
direct model� Thus

Q�	� � H�V �Q��	� ����

�



Therefore� if H is positive de�nite � by de�nition H is symmetric �� then there exists
a unique V � such that Q�	� � 	�
��� The computation of the full H and its inversion are computationally pro�

hibitive� but the product H�V is available trough the �SOA� for any V � Therefore�
V � can also be characterized as the solution of


f�V �� � Minff�V �� V � Einig ��	�

where

f�V � �
�

�
V t�H�V �Q��	��V ����

and then an e�cient conjugate gradient descent method can be used for this mini�
mization�
��� V � is nothing but the sensitivity of the optimal initial condition with respect

to a perturbation on the parameter � or on the observations ��
��� The hypothesis of the theorem above is neither strong nor restrictive� but it

is a natural necessary condition for the existence of the solution of the optimization
problem�

� Example

Let us consider a model given by the ordinary di�erential equation


dX

dt
� �X

With the initial condition

X�	� � U

X is a scalar variable and � is a constant� on the interval �	� �� and we assume that
the observation Xobs of X is � which is constant on �	� ���
The cost function J is


J�U� �
�

�

Z
�

�

�X�t�� ���dt

We consider the response function


G��� �
Z

�

�

X�t�dt

G is an implicit function of � trough X� Let us compute the sensitivity of G to ��
The solution of the di�erential equation is


X�t� � Ue�t

J is explicitly computed as a function of U 


J�U� �
�

�

Z
�

�

�
Ue�t � �


�
dt

�	



Setting the value of the derivative of J with respect to U equal to 	 yields the
optimal value of U namely


Uopt �
��

e� � �

leading to the explicit estimate of G as a function of �


G �
��

�

�
e� � �

e� � �

�

From which the sensitivity is deduced by taking the derivative of G with respect to
�


rG �
��

��e� � ��

�
�e�

e� � �
�
e� � �

�

�

On the other hand� if the adjoint were used to estimate the sensitivity we would
have to consider the di�erential equation


dP

dt
� �P � �

with the condition

P ��� � 	

The solution of this equation being


P �t� �
�

�

�
�� e�e��t




then the sensitivity of G would be given by


rG � �
Z

�

�

X�t��P �t�dt

Using the explicit solutions of both the direct model and the adjoint model would
give


rG �
U

�

�
e� �

e� � �

�

�

Writing U explicitly yields 



rG �
��

��e� � ��

�
e� �

e� � �

�

�

The two expressions for the sensitivity are di�erent� Figure ��� shows the variations
of both estimated sensitivities as function of �� The second sensitivity estimate is
erroneous since it does not take into account the derivative of U with respect to ��
Let us now apply the new sensitivity analysis as developed above to this problem�

The optimality system corresponding to the minimization of J is


�A�

���������
��������

dX

dt
� �X

X�	� � Uopt

dP

dt
� �P � X � �

P ��� � 	

��



Figure �
 Gradients computed� A�direct analysis�exact result�� B� using the adjoint equa�

tions� C� absolute di�erence of A and B� Left and right curves correspond respectively to

negative and positive values of � represented on the x�axis

with solution

X�t� � Uopte

�t

P �t� �
Uopt

��

�
e�t � e��e��t



�
�

�

�
e�e��t � �



The gradient of J with respect to U is


rJ�U� � �P �	� � �
Uopt

��

�
�� e��



�
�

�
�e� � ��

and equating rJ�U� to zero leads to

Uopt �
��

e� � �

which is equal to the one obtained in the direct analysis�
A perturbation �� is applied to �� and we derive the second order adjoint equa�

tions as described above to compute the sensitivity of G� The system to be solved
is


�B�

���������
��������

dQ

dt
� �Q � ��R

dR

dt
� �R

Q��� � 	
Q�	� � 	

And the sensitivity is given by


rG��� �
Z

�

�

�R�t�P �t��Q�t�X�t��dt ����

��



System �B� is solved in the way proposed in the general theory �section 
�� We set
R�	� � V and look for V � such that Q�	� � 	 and we �nd

V � �
�

e� � �

� Therefore the solution of system �B� is


R�t� �
�e�t

e� � �

Q�t� �
�

�

�
�

e� � �

�
e��e��t � e�t



�
�
e�e��t � �


�

and if we substitute in ����� the expressions of X�P�R�Q we obtain


rG��� �
��

��e� � ��

�
�e�

e� � �
�
e� � �

�

�

which is the expected result � the one obtained by direct computation in this simple
example��
We may also consider G as a function of � since the optimal state X depends on

�� This is of great importance in data assimilation where the retrieved �elds depend
on data� The gradient of G with respect to � is therefore its sensitivity with respect
to a perturbation on the data�

G��� �
Z

�

�

X�t�dt �
���e� � ��

��e� � ��

and its gradient


G���� �
��e� � ��

��e� � ��

Using the second order technique above� system �B� is unchanged � and hence its
solution�� but the gradient in this case is given by the formula


rG��� �
Z

�

�

R�t�dt �
��e� � ��

��e� � ��

If we use the cost function at the optimum as a function of �� i�e G � J then solving
system �B� yields
 R � 	 and Q � P � The sensitivity computed directly is � also in
this case � equal to the one obtained by the �SOA��

� Application

We apply the method �of computing the sensitivity� described above for the as�
similation of observations in oceanography� We consider a quasigeostrophic general
circulation model of the North Atlantic ocean� The model is governed by a system
of partial di�erential equations � derived from the primitive Navier�Stokes equations

��



of �uid dynamics 
 see Pedlosky ���� �� for k � �� ����� N � N being the number of
layers into which the ocean has been subdivided �

D�

Dt

�
� k � f �

f�

H

�
hk� �

�

� hk� �

�


�
� Fk � Tk ����

D�

Dt
�
��

�t
� J� k� �� ��
�

J� k� �� �
� k

�x

��

�y
�
� k

�y

��

�x
����

 k is the stream function in the layer k� f � f� � �y is the Coriolis force� F is the

wind stress� T is the dissipation term� hk� �

�

�
f�

g�k� �

�

� k�� � k� and hN�
�

�

is the

bottom topography height� g�k� �

�

�
g��k�� � �k�

��
The domain in which we integrate these equations is a square box of 
			kms by

size and �kms of depth at mid�latitude� The discretization is carried out by using
homogeneous �nite di�erences in space for both zonal and meridional directions 	x �
	y � �	kms � and a leap�frog time di�erencing scheme is used with 	t � �	min� The
observations are simulated from integrations of the model� and are made available
only along satellite ground tracks that have also been simulated� The cost function
we seek to minimize assumes the form 
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where
 NT 
 is the number of time steps of integration of the model
 we take
NT � 
�
 corresponding to �	 days�
Ni 
 is the number of observed points at time ti  

k
��ti� 
is the value of the �eld at

point k and time ti
U 
 is the initial condition of the model 
 
 is the regularization �penalty�
parameter which plays a very important role in variational data assimilation� In
sensitivity analysis with respect to the observations� we may assign small values to

 so that the discrepancy between the model solution and the data always dominates
the regularization �penalty� term during the minimization process�
We carried out the validation of our assimilation by means of a twin experiment�

We ran the model and stored a reference state� then used a fully decorrelated �rst�
guess � The unconstrained minimization algorithm is of a quasi�Newton limited
memory type with stopping criterion either on the number of iterations or on the
norm of the gradient of the cost function�
We have tested the correctness of our computations for both �rst and second

order adjoint by the Taylor!s formula� The correctness of the gradient of the cost
function and the product H�V where H is the Hessian matrix of the cost function
are obtained by
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Figure �
 The initial condition of the reference state� It is the 	eld to retrieve

Figure �
 The fully decorrelated 	rst guess and the initial r�m�s
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Figure 

 The initial condition retrieved and the rms between retrieved and reference

states for � 
 ����

Figure �
 The initial condition retrieved and the rms between retrieved and reference

states for � 
 ����
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Figure �
 The correctness of the gradient of the cost function �left� and of the Hes�

sian
Vector product �right�
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We applied a �" perturbation on the data in order to carry out the sensitivity
analysis on the optimality system� and we also computed the r�m�s between the
retrieved �elds related to the perturbed data and the reference state�

��



Figure �
 The initial condition retrieved with �� perturbation on the data and the rms

between retrieved and reference states for � 
 ����

This �gure shows the sensitivity of the retrieved initial condition with respect
to the �" perturbation of the observations� We observe that the more points are
closed to the tracks� the less they are sensitive to the perturbation�

� Summary and conclusions

In this paper we have used optimal control theory of partial di�erential equations
and applied it to a variational data assimilation problem in a one�layered quasi�
geostrophic ocean model where only the initial conditions served as control variables�
The Limited�Memory quasi�Newton method of J�C Gilbert and C� Lemar#echal ��
�
was applied to the problem of minimizing the cost function consisting of the weighted
sum of squares between the model computed �eld and known observations� plus some
regularization �penalty� term� The observations were created from model integra�
tion �i�e� a twin type experiment�� The variational assimilation process shows its
ability to retrieve the perfect initial conditions�
We have carried out a sensitivity analysis and applied its theoretical results to

the optimality system to derive the sensitivity of a suitable response function� and
also � having carried out a perturbation on the observations �� the sensitivity of the
retrieved initial condition to the data� The use of simulated altimeter data shows
that grid points in the computational domain in the proximity of satellite ground
tracks are less sensitive to the noise of the data than grid points further away from
the satellite ground tracks�
This paper shows clearly that in the context of variational data assimilation� the

sensitivity of a response function cannot be obtained by the use of adjoint equations
of the direct model� but rather by using the adjoint equations of the optimality
system�
In order to compute the sensitivity of the retrieved initial condition to the data�

��



Figure �
 Ground tracks at the initial day and the sensitivity of the initial condition�

we use a conjugate gradient algorithm for the large�scale unconstrained minimization
of a quadratic functional whose matrix is the hessian of the cost function with respect
to the control variables� This Hessian matrix is ill�conditioned in the case of the
model used in this study and so� the convergence rate of the minimization is very
slow unless a regularization �penalty� term is included in the cost function and
convexi�es it�
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