
Variational Data Assimilation�

Optimal Parameter Estimation and Sensitivity Analysis

for Environmental Problems�

I� M� Navon

Department of Mathematics and
Supercomputer Computations Research Institute�

Florida State University� Tallahassee� Florida� U�S�A�

�� INTRODUCTION

Optimal control theory of partial di�erential equations ���� ��� has emerged as a new way to
attack problem of 	
D atmospheric�oceanic data assimilation problems� These variational
techniques attempt to achieve a best �t between data 
observations� and forecast model
subject to some �a priori� criteria� This review paper presents new trends for utilizing
model adjoint equations for variational data assimilation� parameter �tting and sensitivity
analysis in general� as applicable to many areas of meteorological� oceanographic and
environmental research�

�� VARIATIONAL DATA ASSIMILATION FORMALISM

The objective of variational 	
D data assimilation is to �nd the solution of a numerical
forecast model which best �ts a series of observational �elds distributed over some space
and time interval�

The distance between the solution and observations is given by
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where tr represents the time when an observation occurs in the assimilation window �t�� ta��
R is the total number of time levels in the assimilation window when observations are
available� x
tr� is the N 
component vector in the space RN containing values of forecast
model variables at time tr� x

obs
tr� is the M 
component 
M � N� vector in space RM

containing values of observations at time tr� C is a projection operator from space RN to
space RM 
i�e�� a matrix N �M� and W
tr� is an M �M weighting matrix� J is de�ned
as an L�
norm of Cx � xobs� One can also choose an energy norm in �nite dimensional
space�

The values of x
tr�� r � �� �� � � � � R are obtained by integrating numerical model of
form
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from the initial state x
t��� In time discretized form� 
�� will assume the following general
form
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where F�
x� and F
x� are nonlinear operators and L�� L and m are linear operators�
To minimize the cost functional J � we need to use large
scale e�cient minimization

algorithms which require the gradient of cost function with respect to control variables

such as initial and�or boundary conditions��

To calculate the gradient of the cost function with respect to the initial condition� we
will de�ne a quantity J ��
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i�e�� the change in the cost function resulting from a small perturbation x�
t�� about the
initial conditions x
t��� In limit as kx�k � �� J � is the directional derivative in the x�
t��
direction and is given by
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Equating 
�� and 
�� results in
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It is clear that if x�
tr� can be expressed as a function of x�
t��� then the gradient of
the cost function with respect to the initial conditions can be found�

Since x�
tr� is the perturbation at time tr in the forecast resulting from the initial
perturbation x�
t��� it can be obtained by integrating the tangent linear model� which in
turn can be obtained by linearizing the nonlinear model 
��
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which may then be rewritten symbolically as

x
�
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where Pr represents the result of applying all the operator matrices in the linear model
to obtain x�
tr� from x�
t���

Using the tangent linear model 
���� 
�� becomes
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where PT
r � r � �� �� � � � � R are the corresponding adjoint operators of the linear operators

Pr� r � �� �� � � � � R in the tangent linear model� Therefore� the gradient of the cost function
may be obtained by a single integration of the adjoint model from �nal time ta to initial
time t� of the assimilation window with zero initial conditions for the adjoint variables at
time ta while the weighted di�erences
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are inserted on the right
hand
side of the following adjoint model

�x
t�� � PT �x
ta�� 
�	�

whenever an observational time tr
r � R�R� �� � � � � �� is reached� where �x represents the
adjoint variables�

�� PARAMETER ESTIMATION

Parameter identi�cation refers to the determination from observed data of unknown pa

rameters in the system model such that the predicted response of the model is in some sense
close to the process observations� Some of the parameters represent physical properties
which cannot be measured readily� while others belong to parameterization schemes�

A sizable amount of work on adjoint parameter estimation was carried out in ground

water hydrology and petroleum reservoirs along with advances in the mathematical com

munity�

In meteorology� Courtier 
����� ����� ���� �	� estimated orography of a shallow
water
equations model� Zou et al� 
����� ��� estimated modeling coe�cients in operational
weather prediction spectral model�

In oceanography� early work was carried out by ��� for bottom drag coe�cients in a
tidal channel�

Typically ��� use a cost function de�ned by
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where �P are the estimated parameters� the K are speci�ed weighting matrices di�erent
for the weighting matrix W � The scalar product ��� is usually in L�� X is model forecast
in RN and Xo � Xobs�

The adjoint model equation and the gradient of the cost function are
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Here we took C � I � otherwise we need to use the Moore
Penrose unique generalized
inverse of C�� We see that an additional term �PTQ was added to the left
hand side of
the adjoint model equation and the gradient of the cost function with respect to P is

rpJ � �
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Q here are the adjoint variables�
A priori one may expect some forecasts to manifest insensitivity with respect to some

parameters� so we intend to choose parameters by a �adjoint sensitivity analysis��



Another strategy is to optimally estimate classes of carefully chosen parameters re

lated to a given physical environmental process at a time� e�g�� precipitation� pollutant
concentration and proceed to another class 
say radiative transfer� only after in depth ex

perimentation with the �rst set of parameters yielded satisfactory results� This approach
called �history matching� was used to �ne true parameters in a computationally feasible
way ����

Some parameters are bounded within a range of acceptable values� so one has to solve
constrained optimization problem� For such solutions see work of ��� and references therein�

In depth mathematical analysis of the parameter estimation problem includes work of
���� ����� ���� and ���� and references therein�

Issues of identi�ability and uniqueness of the solution as well as whether the solution
of optimal parameter estimation depends continuously on the observations 
stability� will
be addressed in some detail in my talk 
see ����� �����

	� SENSITIVITY ANALYSIS

Sensitivity is a measure of the e�ect of changes in a given input parameter on a selected
response 
any forecast aspect�� The general de�nition of sensitivity of a response to
variations in system parameters is the G�ateau di�erential�

The G di�erential V R
X�����hx�h�� of a speci�c response R
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at the nominal values 
X������ where � is a model parameter vector� for increments

hx�h�� around 
X����� is given by
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N is the dimension of the vector of model parameters and P is the dimension of the model
variable�

If a variation occurs solely in the n
th parameter the corresponding variation hn� of
the parameter vector is
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and the corresponding sensitivity is V Rn�
The relative sensitivity Sn is the dimensionless quantity
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The relative sensitivity clearly demonstrates the measure of the importance of the input
parameter� The higher the relative sensitivity� the more important the input parameter
in question� Thus� one of the crucial aspects of sensitivity analysis is to identify the most
important input parameters whose changes impact the most the chosen response� The



magnitudes of relative sensitivities can serve as a guide to ranking importance of model
parameters for use in choosing candidates for optimal parameter estimation�

For models that involve a large number of parameters and comparatively few responses�
sensitivity analysis can be performed very e�ciently by using deterministic methods based
on adjoint functions� It can be shown ��	� that the changes in the response function can be
expressed in terms of adjoint dynamics q
t�� which is an adjoint variable corresponding to
the model variable x
t�� The use of the adjoint model eliminates the need to calculate� by
forward integration� �x
t� 
� x
t�� x�
t��� a quantity whose dynamics is governed by the
so
called linear tangent equations� where x
t� and x�
t� are the perturbed and the actual
model trajectories in phase space� These forward calculations happen to be explicitly de

pendent on the changes in the initial conditions �x
t�� and the model parameters changes
and must be repeated every time these are altered the formulation using the adjoint solu

tion to the linear tangent dynamics does not su�er from this shortcoming and is therefore
extremely economical when dealing with large models possessing several parameters�

Based on work of ����� ����� ��	� extended sensitivity analysis to general operator type
responses such as time and space dependent functions of the model state variables and
parameters� This since the most interesting and revealing meteorological cases involve
sensitivity with respect to operator responses that depend on both time and space� We
intend to use those methods to carry out extensive sensitivity studies using the NMC
model with physics and its adjoint�

Sensitivities amongst other may quantify the extent that uncertainties in parameters
contribute to uncertainties in model results� Furthermore the adjoint sensitivity analysis
may also provide a quantitative measure of the importance of data or a region in phase
space in contributing to an adequately chosen response function� One limitation of such
sensitivity study is the restriction of each result to one of the forecast aspects� Therefore�
one should carefully select di�erent responses�

Sensitivity studies with the full physics adjoint model will be carried out with the
intention of using a strati�cation based on various meteorological seasons corresponding
to di�erent meteorological situations 
 for instance� seasonally dependent sensitivities 
see
������ In our ranking of model parameters to be used in the parameter estimation� we shall
use various response functions and compare resulting parameter rankings� This implies
strati�cation of relative sensitivities both by response and by season 
 thus implying that
the subset of model parameters chosen is of real impact on the model response� It is
well known that the adjoint sensitivity approach indicates both geographical areas and
meteorological parameters to which a given model function is most sensitive �����
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