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Abstract

Variational data assimilation is performed using either a T40 18 layer version of the Na-
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1 Introduction

Numerical modeling has now become a major tool for the study of atmospheric dynam-
ics. These models are constructed based on the physical laws that govern the temporal
evolution of the flow and that express the mass, momentum, and energy of the fluid. In
numerical form, they appear as a computer code that uses as independent variables (or in-
put), the initial condition from which the model must be integrated and many parameters
that define the physical and numerical conditions of the time integration. The dependent
variables (or output), of models consist of the temporal sequence of meteorological fields
produced by the integration, and also of the many derived quantities that one may wish
to compute from that sequence of meteorological fields.

In many real-life situations, meteorologists are led to consider the following problems:

a) To determine values of part of the input parameters, such as initial conditions and/or
model parameters, corresponding to given values of output parameters (i.e., ob-
servations). Such problems will normally be solved by optimal control of partial
differential equations as unconstrained optimization problems. A prescribed scalar
function, the cost function, measuring the misfit between the output parameters
and the observed quantities will be defined and the optimal values of the input
parameters will be found out using various large-scale unconstrained minimization
algorithms which require information of function and gradient with respect to the
input parameters. Two typical examples of such problems are variational data as-
similation and parameter estimation.

b) To determine to which input parameters are some quantities calculated from the
output parameters most sensitive. In some situations, one will be interested in
the sensitivities of one forecast aspect (called the response ) with respect to a large
number of input parameters.

In all these situations one is required to determine the gradient of a function or a
response with respect to a large number (∼ 106) of input parameters. The method of
adjoint model equations provides an efficient way of solving such problems, which would
of course be totally prohibitive if one were to use the only other method that could be
considered for numerically determining the gradient: namely the finite-difference scheme.

In this chapter we will discuss variational 4-dimensional data assimilation. For pa-
rameter estimation see Smedstad and O’Brien (1991) and Zou, et al. (1992b) and for
sensitivity analysis using the adjoint method, see Cacuci (1981a,b), Hall, et al (1982),
Hall and Cacuci (1983) and Zou, et al. (1993d) and the references therein.

The complete and accurate specification of the 4-dimensional structure of the atmo-
spheric state is a basic problem in meteorology. The conventional observational network
alone is not capable of providing this complete description of the atmospheric state, since
the observational density is not high enough in either space or time. For this reason it is
desirable to include additional information (i.e., statistical or dynamical information) into
the data assimilation system. There are many techniques used in data assimilation. De-
tailed reviews of data assimilation are given in Navon (1986), LeDimet and Navon (1989),



Ghil and Mananotte-Rizzoli (1991) and Daley (1991). Recently, considerable attention
has been focused on variational data assimilation, which fits the data as well as possible
in a least-square sense and satisfies the dynamics of the forecast model by adjusting only
the initial fields. It originates in the control theory of partial differential equations and
produces high-quality analyses of the atmosphere for the production of reliable forecasts.
The basis of variational data assimilation is to use all the available information, obser-
vations which are distributed more or less regularly in both time and space and vary
greatly in their nature and accuracy as well as numerical prediction model itself which
describes physical conservation laws, in order to produce the best possible initial state in
a least-squares norm optimal sense. The goal aimed at can be described as optimizing
a cost function which measures the distance between model states and observations plus
some prior knowledge. For the underlying optimal control theory see Lions (1971) and
for a general description of its application to meteorology, see LeDimet and Talagrand
(1986). Since then, a sizable amount of research has been carried out in this area in
meteorology such as by Derber (1985), Lewis and Derber (1987), Courtier and Talagrand
(1987), Talagrand and Courtier (1987), Zou, et al. (1992a), Thépaut and Courtier (1992),
Navon, et al. (1992), Zou, et al. (1993a,c) and Zupanski (1992).

Apart from its conceptual simplicity and its adaptability, variational data assimilation
possesses many advantages. First, it can be shown that it is equivalent to the optimal
Kalman Filter in the linear context and under the hypothesis of a perfect model (Daley,
1991; Lorenc, 1986; Rabier et al., 1992). In the nonlinear case and if the model is
still assumed to be perfect, results from variational data assimilation or the extended
Kalman Filter are expected to be very close if the tangent-linear hypothesis is valid for
the duration of the assimilation period. Comparison of variational data assimilation with
simplified classic sequential assimilation by Rabier, et al. (1992) shows a significantly
better performance of variational data assimilation scheme, as it yields consistently better
analyses than its sequential counterpart and as the error grows in the subsequent forecasts
at a lesser rate.

The model forecast error can also be considered in the context of variational data
assimilation by introducing an additional term in the model equation (Derber, 1989, Zu-
panski, 1992). The initialization problem, aiming at establishing balanced initial condi-
tions without high frequency gravity wave noise, can also be incorporated into variational
data assimilation by adding a penalty term into the cost function (Thépaut and Courtier,
1992; Zou, et al., 1992a; Zou, et al., 1993a).

The main limitation of variational data assimilation is that it remains rather com-
putationally expensive and extensive testing has to be carried out before its possible
operational implementation.

This chapter presents the main aspects underlying a rigorous derivation of variational
data assimilation. As this chapter is intended to be self-contained, the basic formalism of
the variational problem including the linkage between the nonlinear model, tangent linear
model, adjoint model, cost function and the gradient of the cost function with respect to
the initial conditions is briefly reviewed in Section 2. This section is divided into four main
parts. Section 2.1 presents variational data assimilation theory for nonlinear systems with
a standard cost function. The system of nonlinear operator equations and the associated



cost function, gradient calculation, and adjoint are introduced and described in Section
2.1; altogether, they are intended to be sufficiently general to include the mathematical
representation of a large number of problems arising in a wide variety of fields. Section
2.2 centers on practical coding of adjoint models and their verification. State-of-the-art
large-scale unconstrained minimization schemes are described and summarized in Section
2.3, where different limited-memory quasi-Newton methods and truncated Newton meth-
ods as well as their relative performance are briefly reviewed. As an illustrative example,
the formalisms in Sections 2.1-2.3 are applied in Section 2.4 to perform a twin exper-
iment of variational data assimilation using a shallow-water equations model. Theory
and numerical results concerning the impact of incomplete observations on the unique-
ness of the solution and the convergence rate of the minimization processes are presented
in Section 3. Methods aimed at the specification of suitably balanced optimal initial
fields, i.e., applying different penalty terms in the framework of variational data assimila-
tion to control gravitational oscillations, are provided in Section 4. A sequential penalty
method is applied to a shallow-water equations model in Section 4.1 and different simple
penalty terms constraining directly the time tendency of model variables are applied to a
3-dimensional adiabatic version of the operational primitive equations model at the Na-
tional Meteorological Center (NMC) in Section 4.2. The computational aspects and the
difference in the retrieved initial fields due to the inclusion of “threshold” processes, i.e.,
large-scale precipitation and deep cumulus convection, are presented in Section 5. These
“threshold” processes represent locally nondifferentiable phenomena. Finally, Section 6
summarizes and highlights the main points underlying variational data assimilation and
discusses the potential of using adjoint techniques to further extend the scope of this
theory for meteorological applications.

2 Basic Framework of Variational Data

Assimilation

2.1 Variational Data Assimilation Formalism

Cost function

The objective of variational 4-D data assimilation is to find the solution to a numerical
forecast model which will best fit a series of observational fields distributed over some
space and time interval. One possible measure of the lack of fit, the cost function J ,
consists of a weighted least square fit of the model forecast to the observations:

J(x(t0)) =
1

2

R∑

r=0

(
Cx(tr)− xobs(tr)

)T
W(tr)

(
Cx(tr)− xobs(tr)

)
(1)

where tr represents the time when an observation occurs in the assimilation interval
[t0, ta], R is the total number of time levels in the assimilation interval when observations
are available, x(tr) is the N -component vector in space RN containing values of model
variables at time tr, xobs(tr) is the M -component (M ≤ N) vector in space RM containing



values of observations at time tr, C is a projection operator from the space RN to the
space RM , and W(tr) is an M×M weighting matrix. If W(tr) are taken as unit matrices,
J is defined as an L2 norm of Cx − xobs. One can also choose an energy norm to define
J , which will provide a natural weight for different model variables.

The values of x(tr), r = 0, 1, . . . , R are obtained by integrating a numerical model
which can be written in a general form

dx

dt
= F(t,x) (2)

from the initial state x(t0). In time discretized form, (2) will assume the following general
form

x(t0 + ∆t) = F1 (x(t0)) + L1x(t0) (3)

x(tr + ∆t) = F (x(tr)) + L(tr)x(tr −∆t) + m(tr)x(tr), (4)

for r = 1, 2, . . . ,

where F1(x) and F(x) are nonlinear operators and L1, L and m are linear operators.

Weighting

Weights in the cost function serve the following purposes: (i) scale the cost function J to
become a non-dimensional quantity; (ii) reflect the confidence we have in the quality of the
observed data, and (iii) provide also initial conditioning essential in efficient minimization.
Weights are usually chosen as the inverses of the covariance matrices of the observation
errors. However, these variances are difficult to specify properly and much more research
work is necessary in this area. Thépaut and Courtier (1992) used an energy norm to define
the cost function. The choice of an energy form defines a physical measure of atmospheric
fields as well as a natural weighting for the different model variables. In the variational
data assimilation experiments of Navon et al. (1992) with the adiabatic version of the
NMC spectral model, a diagonal weighting matrix is used with Wχ,Wψ,WT ,Wln ps and
Wq as W’s diagonal submatrices. These submatrices represent the weighting factors for
the potential velocity (χ), stream function (ψ), temperature (T ), surface pressure (ps)
and moisture (q) fields, respectively. The submatrix Wψ, for instance, is calculated by
the following formula

Wψ =
1

maxi,j,k |ψobsi,j,k(t0)− ψobsi,j,k(tR)|2 (5)

with similar expressions for the velocity potential, temperature, surface pressure, and
moisture fields, i.e., the inverse of the maximum difference between the two observational
fields at times t0 and tR. In the experiments of Zou, et al. (1992a) using a shallow-
water equations model, a constant diagonal weight is used with values of 10−4m−2s2

and 10−2m−2s2 as the weighting coefficients for geopotential and wind fields respectively.
Courtier and Talagrand (1990) used a temporal weighting in which weights given to in-
dividual observations varied linearly with time, the total sum of the weights assuming



the same value as the reciprocal of squared estimates of the statistical root-mean-square
observational errors. The idea is that the model not being perfect, it cannot adjust uni-
formly to the whole set of observations at intermediate times. In the case of variational
data assimilation, where one performs a forecast starting from the final time of the assimi-
lation period, a better adjustment to later observations is obviously preferable, and larger
weights are assigned to more recent observations in the definition of the cost function.

Gradient

To find the minimum of the cost function J , most of large-scale efficient minimization
algorithms require the user to supply values of the gradient of the cost function with
respect to control variables which in our case are the initial conditions.

To calculate the gradient of the cost function with respect to the initial condition, we
will define a quantity J ′:

J ′(x(t0)) ≡ J (x(t0) + x′(t0))− J (x(t0))

=
R∑

r=0

(
W(tr)

(
Cx(tr)− xobs(tr)

))T
Cx′(tr) +

R∑

r=0

O(x′2(tr)). (6)

i.e., the change in the cost function resulting from a small perturbation x′(t0) about the
initial conditions x(t0). In limit as ‖x′‖ → 0, J ′ is the directional derivative in the x′(t0)
direction and is given by

J ′ (x(t0)) = (∇J (x(t0)))
T x′(t0). (7)

Equating (6) and (7) results in

(∇J (x(t0)))
T x′(t0) =

R∑

r=0

(
W(tr)

(
Cx(tr)− xobs(tr)

))T
x′(tr). (8)

It is clear that if x′(tr) can be expressed as a function of x′(t0), then the gradient of
the cost function with respect to the initial conditions can be found.

Since x′(tr) is the perturbation at time tr in the forecast resulting from the initial
perturbation x′(t0), it can be obtained by integrating the tangent linear model, which in
turn can be obtained by linearizing the nonlinear model (3)-(4):

x′(t0 + ∆t) =
∂F1 (x(t0))x

′(t0)
∂x

+ L1x
′(t0) (9)

x′(tr + ∆t) =
∂F (x(tr))x

′(tr)
∂x

+ Lx′(tr −∆t) + m(tr)x
′(tr), (10)

for r = 1, 2, . . . ,

which may then be rewritten symbolically as

x′(tr) = Prx
′(t0) (11)



where Pr represents the result of applying all the operator matrices in the linear model
to obtain x′(tr) from x′(t0).

Using the tangent linear model (11), (8) becomes

(∇J (x(t0)))
T x′(t0) =

R∑

r=0

(
W(tr)

(
Cx(tr)− xobs(tr)

))T
CPrx

′(t0). (12)

This implies

∇J (x(t0)) =
R∑

r=0

PT
r C

TW(tr)
(
Cx(tr)− xobs(tr)

)
, (13)

where PT
r , r = 1, 2, . . . , R are the corresponding adjoint operators of the linear operators

Pr, r = 1, 2, . . . , R in the tangent linear model. Therefore, the gradient of the cost
function may be obtained by a single integration of the adjoint model from final time ta
to initial time t0 of the assimilation window with zero initial conditions for the adjoint
variables at time ta while the weighted differences

CTW(tr)
(
Cx(tr)− xobs(tr)

)
, r = R,R− 1, . . . , 0 (14)

are inserted on the right-hand-side of the following adjoint model

x̂(t0) = PT x̂(ta), (15)

whenever an observational time tr(r = R,R− 1, . . . , 0) is reached, where x̂ represents the
adjoint variables.

2.2 Adjoint models

The discretized atmospheric models are implemented by rather long and complicated
codes. The models are in permanent evolution and are constantly subject to modifications.
The possibility of routinely performing work involving adjoint model integration requires
that, whenever a modification is made on the direct model, a corresponding modification
should also be made on the adjoint. Experience shows that even minor mistakes in the
adjoint model code can render it totally useless. This requires that the adjoint code
must be developed directly from the basic direct code (and not, for instance, from the
partial differential equations from which the direct code is built). It also implies that the
components of the adjoint code will be in one-to-one correspondence with the components
of the direct code: to each subroutine of the direct code, there is a mirror subroutine of the
adjoint performing the corresponding adjoint task. Since the adjoint operator PT is based
on the tangent linear operator P, the above discussion implies that discrete operations in
the forward nonlinear model have unique corresponding discrete operations in the tangent
linear model with only one exception: all the nonlinear terms in the original model are
linearized locally.

For an adiabatic primitive equations forecast model, the only nonlinear terms are
those due to the quadratic terms introduced by the advection processes. Linearization of



this type of nonlinear terms is quite simple. For example, a term u ∗ T in the nonlinear
model becomes two terms u ∗ T ′ + T ∗ u′ in the tangent linear model. However, when
the nonlinear model includes physical processes, the linearization of these processes is not
at all evident due to the high degree of nonlinearity and the appearance of either table
lookups or iterative procedures which were employed in the direct code. For example, in
the case of table lookups, the values in the tables are built for the nonlinear calculation.
The original analytical formulas used to build the lookup tables are then required in order
to derive the tangent linear version of the nonlinear model. When an iterative method
is used to solve a highly nonlinear equation in the nonlinear model, the tangent linear
version of this part can not be derived directly from the nonlinear code, i.e., by linearizing
all the procedure of the iterative process. One is required to derive the analytical tangent
linear equation of the relevant equation which is solved iteratively in the direct code and
then write the independent linear code of this part using the same variable notations as
in the direct code. These tasks are rather tedious and complicated since normally one
has at his disposal the direct code but does not always possess the corresponding updated
complete documentation of the direct code. A check of the correctness of the tangent
linear model is crucial in these situations.

To date, adjoint models have been used, in the context of meteorology, only at the
experimental level. Meteorologists write adjoint models with few basic underlying princi-
ples in mind. The first and foremost basic rule for writing the adjoint code is the matrix
method, i.e., each DO loop in the direct code corresponds to a matrix/vector multipli-
cation: youtput = Axinput. The adjoint code can be developed based on the equality:
x̂output = AT ŷinput, where x̂ represents the adjoint variables corresponding to x. A simple
example of the construction of the discrete adjoint code from the discrete linear code
based on this matrix method is provided in the Appendix A of the paper by Navon, et al.
(1992).

If we view the linear model as the result of the multiplication of a number of operator
matrices:

P = A1A2 · · ·AN , (16)

where each matrix Ai(i = 1, · · · , N) represents either a subroutine or a single DO loop,
then the adjoint model can be viewed as being a product of adjoint subproblems

PT = AT
NAT

N−1 · · ·AT
1 , (17)

i.e., the adjoint model has to be written backward from the tangent linear model. The
second rule is the rule of locality: whenever a local modification is made in the direct
model, a corresponding modification must be made locally in the adjoint code. This
requires transparent notations, between the direct and adjoint codes, in as far as subrou-
tine and variable names, instruction labeling, etc. are concerned. Some examples may be
found in the paper by Talagrand (1991). The third principle of building the adjoint code
is the trajectory management when an IF statement is encountered in the direct code.
The adjoint model will have to follow the same route of the direct model but backward
in time.

The above formulated rules must of course be applied with some discernment, since
there are situations where there is simply no need for them. A typical example is the



Fourier transform, which being unitary, has as adjoint its own inverse. There is therefore
no need to develop the adjoint of a Fourier transform and it is sufficient in the adjoint
code to invoke the inverse transform at the appropriate location.

In other words, the discrete adjoint model can be obtained directly from the discrete
linear model, which in turn is obtained from the original nonlinear model by linearization
around a model state. The linearization is made locally in the code and the structure
of the linear model is exactly the same as that of the nonlinear model. These rules
simplify not only the complexity of constructing the adjoint model but also avoid the
inconsistency generally arising from the derivation of the adjoint equations in analytic
form followed by the discrete approximation since there is no commutativity between
adjoint and discretization.

The correctness of the adjoint can be checked at any level of the code of the develop-
ment of the discrete adjoint model by applying the following identity

(Ax)T (Ax) = xT
(
AT (Ax)

)
, (18)

where A represents either a single DO loop or one/several subroutines and x represents
the input of A.

2.3 Large-scale minimization algorithms

Limited-memory quasi-Newton and truncated Newton methods

Once the values of the cost function J (obtained by integrating the nonlinear model for-
ward) and its gradient with respect to the control variables (obtained by integrating the
adjoint model backward in time) are found, the optimal initial condition x∗(t0) of min-
imizing J can be obtained by any unconstrained minimization algorithms which require
the user to supply the values of the cost function and its gradient. Since the model already
taxes the capability of the largest available supercomputers and the optimization of the
initial conditions must conform to the operational requirements of timeliness, the choice
of a robust and efficient minimization algorithm is crucial.

Limited-memory quasi-Newton (Shanno and Phua, 1980; Buckley, 1978; Gill and Mur-
ray, 1979; Buckley and Lenir, 1983, 1985; Buckley, 1989; Liu and Nocedal, 1989; Nocedal,
1980) and truncated Newton (Nash, 1984a,b, 1985; Schlick and Fogelson, 1992a,b) meth-
ods represent two classes of algorithms which are attractive for large-scale problems be-
cause of their modest storage requirements. They use a low and adjustable amount of
storage and require the function and gradient values at each iteration. Limited-memory
quasi-Newton methods can be viewed as extensions of conjugate-gradient methods in
which the addition of some modest storage serves to accelerate the convergence rate.
Truncated Newton methods attempt to retain the rapid convergence rate of classical
Newton methods while economizing storage and computational requirements so as to
become feasible for large-scale applications.

Limited-memory quasi-Newton algorithms have the following basic structure for min-
imizing J(x), x ∈ RN :



1) Choose an initial guess x0, and a positive definite initial approximation to the inverse
Hessian matrix H0 (which may be chosen as the identity matrix).

2) Compute

g0 = g(x0) = ∇J(x0), (19)

and set

d0 = −H0g0. (20)

3) For k = 0, 1, . . ., set

xk+1 = xk + αkdk, (21)

where αk is the step-size obtained by a safeguarded procedure.

4) Compute

gk+1 = ∇J(xk+1) (22)

5) Generate a new search direction, dk+1, by setting

dk+1 = −Hk+1gk+1, (23)

6) Check for convergence: If

‖gk+1‖ ≤ ε max {1, ‖xk+1‖}, (24)

stop, where ε = 10−5. Otherwise continue from step 3.
In practice, limited-memory quasi-Newton methods update formula (Liu and Nocedal,

1989) forms an approximate inverse Hessian from H0 and k pairs of vectors (qi,pi), where
qi = gi+1−gi and pi = xi+1−xi for i ≥ 0. Since H0 is generally taken to be the identity
matrix or some other diagonal matrix, the pairs (qi,pi) are stored instead of Hk (which
requires a large memory), and Hkgk is computed by a recursive algorithm. All the limited-
memory quasi-Newton methods presented below fit into this conceptual framework. They
differ only in the selection of the vector couples (qi,pi), the choice of H0, the method for
computing Hkgk, the line search implementation, and handling of restarts.

Just as limited-memory quasi-Newton methods attempt to combine modest storage
and computational requirements of conjugate-gradient methods with the convergence
properties of the standard quasi-Newton methods, truncated Newton methods attempt
to retain the rapid (quadratic) convergence rate of classic Newton methods while making
storage and computational requirements feasible for large-scale applications. Recall that
Newton methods for minimizing a multivariate function J(xk) are iterative techniques
based on minimizing a local quadratic approximation to J at every step. The quadratic
model of J at a point xk along the direction of a vector dk can be written as

J(xk + dk) ≈ J(xk) + gTk dk +
1

2
dTkHkdk (25)



where gk and Hk denote the gradient and Hessian of J , respectively, at point xk. Min-
imization of this quadratic approximation results in a linear system of equations for the
search vector dk known as the Newton equations:

Hkdk = −gk. (26)

In the modified Newton framework, a sequence of iterates is generated from x0 by the rule
xk+1 = xk + αkdk. The vector dk is obtained as the solution (or approximate solution)
of the system (26) or, possibly, a modified version of it, where some positive definite
approximation to Hk, H̃k, replaces Hk.

When an approximate solution is used, the method is referred to as a “truncated”
Newton method because the solution process of (26) is not carried out to completion. In
this case, dk may be considered satisfactory when the residual vector rk = Hkdk + gk
is sufficiently small. Truncation may be justified since accurate search directions are not
essential in regions far away from local minima. For such regions, any descent direction
suffices, so the effort expended in solving the system accurately is often unwarranted.
However, as a solution of the optimization problem is approached, the quadratic approx-
imation of (25) is likely to become more accurate and a smaller residual may be more
important. Thus, the truncation criterion should be chosen to enforce a smaller residual
systematically as minimization proceeds. One such effective strategy requires

‖rk‖ ≤ ηk‖gk‖ (27)

where
ηk = min{ c

k
, ‖gk‖}, c ≤ 1. (28)

Other truncation criteria have also been discussed (Nash, 1984a,b; Schlick and Fogelson,
1992a,b).

The quadratic subproblem of computing an approximate search direction at each step
is accomplished through some iterative scheme. This produces a nested iteration structure:
an “outer” loop for updating xk, and an “inner” loop for computing dk. The linear
conjugate-gradient method is attractive for large-scale problems because of its modest
computational requirements and theoretical convergence in at most N iterations (Golub
and van Loan, 1989). However, since conjugate-gradient methods were developed for
positive definite systems, adaptations must be made in the present context where the
Hessian may be indefinite. Typically, this is handled by terminating the inner loop (at
iteration q) when a direction of negative curvature is detected (dTq Hkdq < ξ where ξ is a
small positive tolerance such as 10−10); an exit direction that is guaranteed to be a descent
direction is then chosen (Dembo and Steihaug, 1983; Schlick and Fogelson, 1992a,b).
An alternative procedure to linear conjugate-gradient for the inner loop is based on the
Lanczos factorization (Golub and van Loan, 1989), which works for symmetric but not
necessarily positive definite systems. It is important to note that different procedures for
the inner loop can lead to a very different overall performance in the minimization.

Several comparisons have been made on different large-scale unconstrained minimiza-
tion algorithms. Navon and Legler (1987) compared a number of different conjugate-
gradient and limited-memory quasi-Newton methods for problems in meteorology and



concluded that the Shanno-Phua (1980) limited-memory quasi-Newton algorithm was the
most adequate for their test problems. The studies of Gilbert and Lemaréchal (1989)
and Liu and Nocedal (1989) indicate that the L-BFGS method is among the best limited-
memory quasi-Newton methods available to date. Nash and Nocedal (1989) compared the
L-BFGS method with the truncated Newton method of Nash (1984a,b, 1985) on 53 prob-
lems of dimensions ranging between 102 - 104. Their results suggest that performance is
correlated with the degree of nonlinearity of the objective function: for quadratic and ap-
proximately quadratic problems, the truncated Newton algorithm outperformed L-BFGS,
while for most of the highly nonlinear problems L-BFGS performed better.

Zou, et al. (1993b) compared four of the state-of-the-art limited memory quasi-Newton
methods and two truncated Newton methods on several test problems including problems
in meteorology and oceanography. Their results confirm that the L-BFGS algorithm of Liu
and Nocedal (1989) seems to be the most efficient, particularly robust and user-friendly.
It deals with the critical issue of storage in large-scale problems. The L-BFGS update
formula generates matrices using information from the last m Quasi-Newton iterations,
where m is the number of quasi-Newton updates determined by the user(generally 3 ≤
m ≤ 7). After having used the m vector storage locations for m quasi-Newton updates,
the quasi-Newton approximation of the Hessian matrix is updated by dropping the oldest
information and replacing it by the newest information. A new search direction, which
is an estimate of the relative change to the current variables vector that produces the
maximum reduction in the cost function, is then computed. It employs a cubic line search
required to satisfy a Wolfe (1969) condition and a unit stepsize is always tried first. This
algorithm uses a limited amount of storage and the quasi-Newton approximation of the
Hessian matrix is updated continuously. The general algorithm for L-BFGS and other
limited-memory quasi-Newton algorithms and truncated Newton methods can be found
in the paper of Zou, et al. (1993b).

Scaling

The term “scaling” is invariably used in many meteorological applications in a vague sense
to discuss numerical difficulties whose existence is universally acknowledged, but cannot
be described precisely in general terms. Therefore, it is not surprising that much confusion
exists about scaling. One normally considers the effect on problem scaling of replacing the
original variables x of the problem by a set of linearly transformed variables y: x = Ly,
where L is a fixed non-single matrix. The choice of the value of L depends upon what
does one wishes to scale. There are four scaling methods: by variable, by constraint,
by gradient, and by Hessian (Gill, et al., 1981). In theory, such a transformation does
not affect the optimal solution; however, the scaling of variables may have an enormous
effect on the behaviour of finite-precision calculations. One example of poor scaling is
an imbalance between the values of the function and changes in x in the sense that
the function values may change very little even though x changes significantly, or vice
versa. The effect of poor scaling is to invalidate the criteria of the line search used to
accept the step length. This will lead to the failure of a step-length algorithm to find
an acceptable point along the search direction. Let F (y) denote the function of the



transformed variables:
F (y) = J(Ly). (29)

The derivatives of the function F with respect to the transformed variables y are

∇yF (y) = L∇xJ(x), ∇2
yF (y) = LT∇2

xJ(x)L. (30)

One instance of bad scaling can occur when the variables x have widely differing orders
of magnitude. A basic rule for scaling is that the variables of the scaled problem should be
of similar magnitude and of order unity because within optimization routines convergence
tolerances and other criteria are necessarily based upon an implicit definition of “small”
and “large” and thus variables with widely varying orders of magnitude may cause serious
difficulties for some minimization algorithms (Gill, et al., 1981). One simple direct way
to determine the scaling factor is to use the typical values for different fields (for instance
10−5 can be used as the scaling factor of vorticity), i.e.,

x = Dy (31)

where dj is set to a typical value of the j-th variable, causing each variable to be of
similar “weight” during the optimization. Another form of bad scaling occurs when the
partial derivatives of a function with respect to a particular variable are not “balanced”.
A scaling based on the first derivative can be used where dj = (1+ |J(x)|)/(2|∇xj

J |) (see
Gill, et al., 1981).

Therefore, scaling is a crucial issue in the success of nonlinear unconstrained optimiza-
tion problems and some research has been carried out on scaling nonlinear programming
problems. It is well known that a badly scaled nonlinear programming problem can be
almost impossible to solve (see also Navon and de Villiers, 1983; Courtier and Talagrand,
1990). An effective automatic scaling procedure would ease these difficulties, and could
also render problems which are well scaled easier to solve by improving the condition
number of their Hessian matrix which controls the rate of convergence of the conjugate-
gradient and quasi-Newton algorithms (Thacker, 1989).

In meteorological problems, the variables in the control vector have also enormously
different magnitudes varying over a range of 8 orders of magnitude. Scaling by variable
transformation converts the variables from units that reflect the physical nature of the
problem to units that display desirable properties for the unconstrained minimization
process. In our experiment with the NMC spectral model, the scaling constants for the
different fields are calculated by

Lψii = max
i,j,k

|ψobsi,j,k(t0)− ψobsi,j,k(tR)|/2, (32)

where ψ represents the stream function field, and similarly for χ (velocity potential), T
(temperature), ln ps (log of the surface pressure), and q (specific humidity).

For complicated functions, difficulties may be encountered in choosing suitable scaling
factors. There is no general rule to determine the best scaling factors for all minimization
problems, and a good scaling is problem dependent. Further improvement of the condition
number can be obtained by a more sophisticated scaling (Gill, et al., 1981; Bertsekas, 1982;
Luenberger, 1984).



Preconditioning

Preconditioning is a way to speed-up the convergence and to “relax” ill-conditioning of
the Hessian matrix by altering both the condition number as well as the distribution of
eigenvalues “clustering” within the spectrum (Axelsson and Barker, 1984). The condi-
tioning of the Hessian matrix at the solution of an unconstrained problem determines the
accuracy with which the solution can be computed in different directions. In particular,
when the Hessian is ill-conditioned, the cost function will vary much more rapidly along
some directions in RN than along others. An ill-conditioned Hessian at the solution is
thus a symptom of bad scaling, in the sense that similar changes in the control variables
‖x‖ do not lead to similar changes in the cost function J .

We can briefly describe preconditioning as follows:

The solution of

Hx = −b (33)

can be found by minimizing

f(x) =
1

2
xTHx− bTx. (34)

The transformation

y = ETx (35)

leads to the problem of minimizing

f̃(y) = f(E−Ty) =
1

2
yT H̃y − b̃Ty (36)

where

H̃ = E−1HE−T , b̃ = E−1b. (37)

If the spectral condition number of the preconditioned matrix H̃ is such that

κ(H̃) < κ(H) ≡ λmax

λmin

, (38)

the rate of convergence is improved (see Axelsson and Baker, 1984).

The matrix H̃ has the same eigenvalues as the matrix
(
EET

)−1
H. The matrix Q =

EET is called the preconditioning matrix.

One can prove that

(i) Q is a good approximation to H if and only if

Q = αH, (α is a scalar), (39)

since in this case, κ(H̃) = 1.

(ii) Q needs not to be a particular good approximation to H since if Q = I, κ(H̃) = κ(H).



For the preconditioning of the conjugate-gradient method, the preconditioning matrix
Q can be taken as Q = M−1, where M is obtained by performing r steps of a limited-
memory quasi-Newton method from the one-parameter family of quasi-Newton updates.
The matrix MH has r unit eigenvalues. This is roughly equivalent to choosing Q so that
the condition number of H̃ is as small as possible. In nonlinear problems, the matrix
Q will vary from iteration to iteration. For example a limited-memory approximate
Hessian matrix may be used as preconditioning matrix. A preconditioning based on a
diagonal scaling is often used in practice, which is a less sophisticated technique that
has been applied to general problems. Recently, a new preconditioning method was
proposed by Zupanski (1993), which can be used for any minimization algorithm if the
preconditioned steepest descent is used in the first iteration. His preconditioning is based
on the requirements that the control variable adjustment is balanced by the calculated
gradient norm and that a second order Taylor series expansion approximation is valid in
the vicinity of the first guess. A significant improvement was found in his experiments. For
recent research on preconditioning methods applied to discretized shallow-water equations
model see Navon And Cai (1993) as well as the code NSPCG (Holter, et al., 1991).

2.4 A simple example of variational data assimilation

A simple 2-D limited-area shallow water equations model is used to evaluate a quadratic
objective function. The equations in Cartesian coordinates may be written as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv +

∂φ

∂x
= 0 (40)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+

∂φ

∂y
= 0 (41)

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ φ(

∂u

∂x
+
∂v

∂y
) = 0, (42)

where f is the Coriolis parameter, u, v,and φ are the two components of the velocity field
and the geopotential field, respectively; both are spatially discretized with a centered
finite-difference scheme in space and an explicit leapfrog integration scheme in time. A
rectangular domain of size L = 6000km,D = 4400km is used along with space and time
mesh increments of ∆x = 300km,∆y = 220km and ∆t = 600s, respectively.

This model is widely used in meteorology and oceanography since it contains most of
the physical degrees of freedom (including gravity waves) present in the more sophisticated
3-D primitive equation models. It is computationally less expensive to implement and
results using this model can be expected to be similar to those obtained from a more
complicated primitive equation model.

The objective function is defined as a simple weighted sum of squared differences
between the observations and the corresponding prediction model values:

J = Wφ

Nφ∑

n=1

(φn − φobsn )2 +WV

NV∑

n=1

[(un − uobsn )2 + (vn − vobsn )2], (43)



where Nφ is the total number of geopotential observations available over the 10 hour
assimilation window (t0, tR), and NV is the total number of wind vector observations.
The quantities uobsn , vobsn , and φobsn are the observed values for the northward wind com-
ponent, the eastward wind component and the geopotential field respectively, while the
quantities un, vn, and φn are the corresponding computed model values. Wφ and WV

are weighting factors, taken to be the inverse of estimates of the statistical root-mean-
square observational errors on geopotential and wind components respectively. Values of
Wφ = 10−4m−4s4 and WV = 10−2m−2s2 are used. The objective function J is viewed as
a function of x0 = (u(t0), v(t0), φ(t0))

T .
For the numerical experiments, the observational data consist of the model-integrated

values for wind and geopotential at each time step starting from the Grammeltvedt ini-
tial conditions (Figure 1, Grammeltvedt (1969)). Random perturbations of these fields,
performed using a standard library randomizer RANF on the CRAY-YMP (shown in
Figure 2) are then used as the initial guess for the solution. A grid of a resolution 21× 21
points in space results in a control variables vector of dimension 1323.

Two different scaling procedures were considered: “gradient” and “consistent”. The
first scales the gradient of the objective function. The second makes the shallow water
equations model nondimensional.

The limited-memory quasi-Newton method of Liu and Nocedal (1989) —L-BFGS—
was successful only with gradient scaling. The limited-memory quasi-Newton method of
Gill and Murray (1979) —E04DGF — (see NAG, 1990) worked only with the nondimen-
sional shallow water equations model. It appears that additional scaling is crucial for the
success of the minimization algorithms.

Due to the different scaling procedures employed in the different minimization methods
the minimization is stopped when the following convergence criterion

‖gk‖ ≤ 10−4 × ‖g0‖ (44)

is satisfied.
The performance of the truncated Newton often depends on the specified maximum

number of permitted inner iterations per outer iteration (MXITCG). Our experience sug-
gests that different settings for MXITCG have small impact on the performance of the
truncated Newton method of Nash but a rather large impact on that of the truncated
Newton method of Schlick and Fogelson (see Table 1). This results from our current un-
preconditioned implementation for the truncated Newton method of Schlick and Fogelson,
since the inner conjugate gradient linear equation solver will require more iterations to
find a search direction.

To clarify this idea and to see which differences in performance between the two
truncated Newton methods were due to the different truncation criteria, conjugate gra-
dient versus Lanczos, and preconditioning, we performed minimization for the truncated
Newton method of Nash without diagonal preconditioning. The results are presented in
Table 1. Similar trends are identified for both the truncated Newton method of Nash
and the truncated Newton method of Schlick and Fogelson in this case: the cost for
large MXITCG is much lower than that for small MXITCG. However, the truncated
Newton method of Schlick and Fogelson with MXITCG=50 performs much better than



Figure 1: (a) Geopotential fields based on the Grammeltvedt initial condition and (b) the wind field
calculated from the geopotential fields in Fig. (a) by the geostrophic approximation. Contour interval is
200 m2s−2 and the value of maximum vector is 29.9 ms−1.



Figure 2: Random perturbation of (a) the geopotential and (b) the wind fields in Fig. 1. Contour interval
is 500 m2s−2 and the value of maximum vector is 54.4 ms−1.



Table 1: Initial condition control problam in meteorology

MTM FTM
algorithm MXTITCG Iter Nfun NCG (total CPU time) (function calls’

CPU time)
TN1 3 19 20 50 12.20 11.31
TN1 50 20 26 54 13.79 12.89
TN1 3 63 64 170 38.82 37.15

(no prec.) 50 39 40 165 32.78 31.53
TN2 3 81 82 242 68.68 67.21

50 4 5 91 16.41 16.30

Table 2: Meteorological problem with the limited memory quasi-Newton and truncated Newton methods

MTM FTM
Algorithm Iter Nfun (total CPU time) (Function calls’ CPU time)
E04DGF 72 203 36.89 33.56
L–BFGS 66 89 15.53 14.76

TN1 19 70 12.20 11.31
TN2 4 96 16.41 16.30

the truncated Newton method of Nash with MXITCG=50 in terms of Newton iterations,
conjugate-gradient iterations, function evaluations, and CPU time. This strongly suggests
that with a suitable preconditioner for the problem in meteorology, the truncated Newton
method of Schlick and Fogelson might perform best. Thus, the use of preconditioning in
the truncated Newton method of Nash accelerates performance as expected.

Table 2 presents the performance of the E04DGF, L-BFGS and the two truncated
Newton methods. We observe from Table 2 that most of the CPU time is spent on
function calls rather than in the minimization iteration. By comparing the number of
function calls and CPU time, we find that the computational cost of L-BFGS is much
lower than that of E04DGF. In 66 iterations with 89 function calls, L-BFGS converged.
In contrast, E04DGF required 72 iterations and 203 function calls to reach the same
convergence criterion. This produces rather large differences in the CPU time spent in
minimization. L-BFGS uses less than half of the total CPU time required for E04DGF.
The truncated Newton methods are competitive with L-BFGS and the truncated Newton
method of Nash is slightly better than L-BFGS.

The differences between the figures showing the retrieved initial wind and geopotential
and the one in Figure 1 are imperceptible (figures omitted). Table 3 gives the maximum
differences between the retrieval and the unperturbed initial conditions. An accuracy of
at least 10−3 is reached for both the wind and geopotential fields using any of the afore-
mentioned four minimization codes This clearly shows the capability of the unconstrained
limited-memory quasi-Newton and the truncated Newton methods to adjust a numerical



Table 3: Maximum absolute differences between the retrieval and the unperturbaed initial wind and
geopotential fields using the limited memory quasi-Newton and truncated Newton methods

Algorithm (u′2 + v′2)1/2 |φ′|
E04DGF 7.5× 10−3 1.2× 101

L–BFGS 3.8× 10−2 9.0× 10−1

TN1 8.9× 10−3 5.4× 101

TN2 5.8× 10−3 4.1× 101

weather prediction model to a set of “observations” distributed in both time and space.
Recently, Wang, et al. (1993) indicated that the performance of the truncated Newton

method of Nash can be significantly improved by using a more accurate Hessian/vector
product which is required when solving the Newton equation (26) to obtain the search
direction. A second order adjoint model was integrated backwards in time instead of using
a finite-difference approximation to obtain the value of the Hessian/vector product.

3 Incomplete observations

3.1 Uniqueness of the solution

In real situations, meteorological observations are temporally and spatially distributed,
and are inhomogeneous both in quality as well as in quantity. The question arises as to
what will happen if we have only a limited number of the observations in space and time.
This is mathematically equivalent to determining the necessary condition for a unique
solution of the problem of optimal control of distributed parameters.

The solution U∗ for the problem (1) will be unique if the functional J is strictly
convex., i.e. if

J(λU + (1− λ)V ) < λJ(U) + (1− λ)J(V ), λ ∈ [0, 1], U, V ∈ RN . (45)

A geometric interpretation of (45) is that the graph of J is under any chord between
U and V .

If J is only convex, i.e., the inequality in (45) is not strict, and then the minimum is
not necessarily unique and the functional J may have no minima, one or several minima
or a continuum of minima. J may also have stationary points which are not minima, but
rather maxima or saddle points.

If J has a second derivative then J will be convex if its Hessian matrix H is positive
semi-definite and J will be strictly convex if H is positive definite.

A difficulty encountered with non-convex functionals is that there is no global charac-
terization of the absolute minimum and only a local analysis can be carried out.

Therefore, the uniqueness of the solution of minimizing problem (1) depends on the
structure of the Hessian matrix H. (1) has a unique solution U∗ if the Hessian matrix H
is positive definite.



By definition, the functional J depends upon the observations, therefore, computing
the Hessian of J , where J is defined by (1), permits one to estimate the link between the
observations and the retrieved fields.

In the linear case, the forecast model can be written as

dx

dt
= Ax, (46)

where A is an N ×N constant matrix independent of x.
An explicit expression for the gradient∇J(U) and the Hessian matrix H can be derived

by

∇J(U) = P (0) =
R∑

r=0

eA
T trCT (CeAtr · U − xobs), (47)

H =
R∑

r=0

eA
T trCTCeAtr , (48)

where H is a symmetric matrix (HT = H).
It was proved (Zou, et al., 1992a) that H is positive definite if and only if the rank of

A =




C
CA
·
·
·

CAn−1




(49)

is equal to N .
We see from (48) or (49) that the Hessian H is independent of the observation it-

self, depending only on the model (represented by the operator A) and on the operator
C mapping the meteorological variables into the space of observations. Therefore, the
uniqueness of the solution is dependent on the model and the mapping operator.

In the nonlinear case, however, J is no longer quadratic with respect to the control
variable U , where U represents model initial state. Due to the nonlinearity of the forecast
model, no global results may be obtained. However since J is bounded from below we know
that there exists at least one local minimum U∗ which is characterized by ∇J(U∗) = 0. A
sufficient condition for U∗ to be a unique local minimum is that H(U∗) be positive definite.
Since U∗ is not known in practice, one can only estimate uniqueness of the solution by
calculating the value of the Hessian at the initial guess point assuming that the initial
guess is not far from the solution. Due to the large dimension of the control variable
(104 to 106) in variational data assimilation, the computation of a full Hessian may be
prohibitive for real applications. However, one can estimate the minimum eigenvalues
λmin(H) of the Hessian of the cost function by using an iterative power method or a
Rayleigh quotient method(Golub and Van Loan, 1989), both of which require only the
value of the Hessian/vector product, which can be obtained by integrating the so-called
second order adjoint model (Zou, et al., 1992a, Wang, et al., 1992). If λmin(H) > 0, H is
positive definite and the solution of J is unique.



3.2 Results with incomplete observations

In this subsection, some numerical experiments, similar to the one in section 2.4, are
carried out to estimate the influence of the distribution of available observations on the
uniqueness of the solution and on the rate of convergence to the local minimum.

First we decreased the number of the observational fields. Suppose that only the wind
fields (u and v ) are observed and there are no observations of the geopotential field (φ).
The numerical results show that the minimization of the cost function defined in (43)
without the first summation was able to retrieve a unique minimum, i.e., not only perfect
initial fields for the u and v components but also a smooth balanced φ field. If only
the geopotential field is observed, the minimization of the cost function was also able to
retrieve a unique minimum for u and v which is consistent (i.e., in geostrophic balance)
with the Grammeltvedt (1969) initial φ field. Using a linearized shallow-water equations,
one can derive that the rank of A (the linearized model operator) is equal to N for both
cases. This shows that our numerical results are consistent with the theoretical conclusion
of (49), which determines the sufficient conditions for the existence of a unique minimum
of the cost function.

Next we decreased the number of grid points where observations are available. If we
reduce the observational data in grid space (i.e., in the horizontal space dimension) by
alternating the available observational data in both the x and y directions, for instance
by assuming that data was available only every two grid points in each direction (i.e. the
number of observations was decreased from 21× 21 to 11× 11), the minimization process
fails. Namely after 71 iterations, the minimization stops due to rounding errors before
a smooth solution was obtained. No reasonable retrieval is obtained and the objective
function and the norm of gradient decrease by only about 2-3 orders of magnitude, which
is roughly half of the orders of magnitude known to be necessary from our experiment to
reach a smooth solution. If we continue to further decrease the number of observations in
both space directions to every 4 grid points for instance, no significant difference from the
case of every 2 grid points is observed and also no satisfactory convergence and retrieval
are obtained. It seems that the performance of the minimization depends on the number
of available observations at the grid points. At least, this is the case for the limited-area
shallow-water equations random perturbation test, where the control variables are only
the initial conditions.

One could wonder whether the results from the experiment in which data is given
every two grid points could be partially improved if instead of a random perturbed field,
a first guess field lacking small scale structure, e.g. a complete flat field, was used to start
the minimization. Minimization starting from a flat initial guess yields similar results.
This shows that the failure of the minimization with observations available only every
two grid points is independent of the fact that we used a randomly perturbed noisy initial
guess.

Finally observational data are reduced in time dimension. Suppose that observations
are available, say for instance, every 2, 10, 30 or 60 time steps instead of at each time
step. We observe that the performance of the minimization is very similar to the case
where observations were available at every time step, with the convergence rate of the



Table 4: Values of the maximum and minimum eigenvalues (λmax, λmin) and the condition number (κ(H))
of the Hessian of the cost function at the initial guess point using the power method and the shifted power
method (with the convergence criteria: |λk+1 − λk| < 10−8)

Problems λmax λmax κ(H)
complete observations 2.20× 10−4 4.89× 10−7 449.2
less observations in

time space (30 steps) 1.84× 10−4 1.08× 10−7 1695.5
less observations in
grid space (2 grids) 2.90× 10−4 −1.66× 10−5 17.53

former being slightly slower than that of the later. A satisfactory retrieval of initial wind
and the geopotential height fields is obtained even for all the cases. The difference fields
between the retrieved and unperturbed initial wind and geopotential are several orders of
magnitude smaller than the initial fields.

In Table 4 we calculated the maximum and minimum eigenvalues and the condition
number of the Hessian at the initial guess of the minimization and we find that the
reduction of observations in the grid space produces a negative minimum eigenvalue of
the Hessian. Thus, we obtain an indefinite Hessian, pointing to the existence of either
multiple minima or saddle points. The condition number in the case that observations
are available at each grid point but only every 30 time steps (case 2) is larger that in the
case of complete observation, which explains that the convergence rate in the case of less
observations in time space is slightly slower than that in the case of complete observations
in time space.

4 Control of gravitational oscillations

Gravitational oscillations with unrealistically large amplitudes may be generated in nu-
merical models due to the insertion of erroneous data or due to errors in models. Methods
aimed at the specification of suitably balanced initial fields, which will not give rise to
spurious gravity oscillations, are known as initialization methods. Variational data assim-
ilation, by its nature, can be used to assimilate data which was not previously initialized.
Problems arise as to how to efficiently control high frequency gravity wave oscillations in
variational data assimilation when assimilating noisy data.

Courtier and Talagrand(1990) indicated that gravity wave noise can be efficiently
eliminated by adding a penalty term, defined by the normal modes of the model, to the
cost function and carrying out the variational data assimilation. The penalty method
follows the logic of tending to reduce the time tendency of the gravity wave component
of the flow to a very small value. However this approach involves a sizable computational
effort, namely, it requires the availability of both the normal modes of the model and
that of the adjoint of the normal mode initialization (NMI) procedure. Other penalty
terms controlling the total time tendency of the flow were proposed by Zou et al. (1992a,



Figure 3: Case no. 1 initial geopotential field produced by one grid point local perturbation on the
Grammeltvedt initial geopotential field condition no. 1. Contour interval is 200 m2s−2 and values on
the isolines are scaled one grid point local perturbation on the Grammeltvedt initial geopotential field
condition no. 1. Contour interval is 200 m2s−2 and values on the isolines are scaled by 103.

1993a). The proposed method requires less memory and computational effort than the
method of combined penalty and NMI proposed by Courtier and Talagrand (1990).

In the following, both the shallow-water equations model and the primitive equations
model are used to test the performance of the penalty method on controlling gravitational
oscillations.

4.1 A 2-dimensional problem

In this subsection experiments similar to the one described in section 2.4 are carried out
using the shallow-water equations model. In order to assess and compare the performance
of the quadratic penalty method in damping the small scale gravity waves present in the
initial fields, a small perturbation was added to the initial height field defined in section
2.4 in the following way

φ′(i, j) = φ(i, j) + αi,j × φ(i, j), i, j = 8, 12 (50)

where α10,10 = 0.9%, αi,j = 0.45% when i or j equal 9 or 11, and αi,j = 0.3% when i or j
equal 8 or 12, where i and j relate to grid locations in the x and y directions, respectively.

The isoline graphs of the perturbed height fields φ′ are plotted in Figure 3. We see that
the height field thus obtained contains one local grid point perturbation. This perturbed
initial condition was used to produce model-generated observations. The variational data



assimilation with or without the penalty term is implemented by starting from a model
atmosphere at rest and minimizing the cost function defined in (43). When the prescribed
convergence criterion

‖~gk‖ ≤ εmax{1, ‖xk‖}, (51)

is met, the minimization process was stopped, where ~gk is the gradient of the cost function
at the k-th iteration and ε = 10−14, a number close to the machine accuracy of the CRAY-
YMP, was chosen based on expecting to obtain a perfect solution, i.e. one in which
no visible difference with the initial condition used to produce the observations to be
assimilated is observed. However the weights used to define the cost function may also be
interpreted as variances of the data. Errors in the retrieved fields with this convergence
criteria are, however, much smaller than the error implied by these weights. The cost
function is reduced more than the value of the sum of mean square data errors and it
corresponds to an overfitting. This is quite acceptable in an “identical twin” approach with
an abundance of data available which corresponds to our case. In a real data experiment
where model and data might be inconsistent (biased), this would lead to the appearance
of spurious large-amplitude high-frequency gravity-wave noise in the solution.

Now, instead of minimizing the cost function defined in (43), a penalized cost function
Jr is minimized, where Jr is defined as

Jr = J + r

∥∥∥∥∥
∂φ

∂t

∥∥∥∥∥
2

. (52)

The gradient of the penalized cost functions can be easily calculated by integrating
the same adjoint model with different forcing terms added to the adjoint model, that
is, besides adding the usual forcing terms 2W (tr)(x(tr) − xobs(tr)) in the adjoint model
whenever an analysis time tr (r = 0, 1, · · · , R) is reached, we also add at every time step
the following additional terms

2rA∗∂φ
∂t
, (53)

to the right hand side of the adjoint model.
For comparison, a minimization of the cost function J0, which does not include a

penalty term, was carried out to serve as a benchmark. The minimization terminated
successfully after 104 iterations and 153 function calls. The cost function decreased by 10
orders of magnitude while the norm of gradient decreased by 6 orders of magnitude. The
variational assimilation was thus able to perfectly retrieve the original initial conditions
(not shown).

Then a number of minimizations are carried out which minimize Jr, (r 6= 0) to damp
the perturbation shown in Figure 3. One might have thought at the beginning that
the gravity waves may be damped to any desired accuracy by simply choosing a very
large value of the penalty parameter r, and then carrying out a single unconstrained
minimization. However from our experiments, we found out that for smaller values of
the penalty parameter r (say for instance r < 105) the retrieved geopotential field was
not smooth enough while for larger values of r (> 105) the minimization failed. For
a value of r = 105, a single minimization cycle performed very well at first but after



Figure 4: Variation of the value of ‖∂φ/∂t‖2 with the number of iterations during the minimization of
the penalized cost function with a penalty parameter r = 105.

105 iterations with 141 function calls, the minimization failed again before the same
convergence criteria (51) was attained. However upon examination of the geopotential
field after 105 iterations, we found out that a smooth initial geopotential field has already
been obtained. A measure of the efficiency of the penalty method is given by the following
corresponding variation of the quantity ‖∂φ/∂t‖2 which decreased from 0.77× 102m4s−6

to 0.70 × 10−1m4s−6 in the course of the minimization (see Figure 4), i.e., a decrease of
three orders of magnitude in the squared time tendency of the geopotential field, pointing
out to a successful filtering of high-frequency gravity-waves.

The sensitivity of the performance of the minimization for different values of penalty
parameter r is not surprising since it is well-known that the condition number of the
Hessian matrix evaluated at the minimum increases as r becomes larger (the so-called
ill-conditioning effect of the penalty method) (Gill, et al., 1981, see also Appendix A of
the paper by Zou et al., 1992a). The conditioning of the Hessian matrix has a special
significance in this case. If the initial value of r is “too large”, even a robust unconstrained
minimization algorithm (as the one used in our case) will typically experience great dif-
ficulty in its attempts to compute the minima due to the slow convergence induced by
the increasingly larger condition number of the Hessian of the penalized cost function.
Therefore, in order to solve the problem by a penalty function method, a sequence of
unconstrained minimization problems has to be solved, with moderately increasing values
of the penalty parameter (a method called the exterior quadratic penalty method, see
Fiacco and McCormick, 1968 and Rao, 1983). In the exterior penalty function method,
each successive ~x∗(rl) is used as the starting point for solving a minimization problem
with the next increased value of the penalty parameter, until an acceptable convergence
criterion (i.e. a satisfactory solution) is attained for the first time (where ~x∗(rl) is the
minimum point obtained using the preceding penalty parameter rl ). Another elegant
method avoiding the ill-conditioning of penalty methods is the augmented Lagrangian



Table 5: Numerical results of the variational data assimilation with application of the exterior penalty
function method to assimilate observations with one local perturbation (4 cycle)

k rk Iter Nfun J∗/J0 |∇J∗/∇J0| ε

1 102 48 74 4.46× 10−6 1.41× 10−4 10−12

2 103 16 26 7.85× 10−1 1.76× 10−1 10−13

3 104 19 28 4.20× 10−1 1.02× 10−1 ?5× 10−13

4 105 26 37 3.96× 10−1 3.13× 10−2 10−14

method (Navon and de Villiers, 1983).

An exterior penalty function numerical experiment with r1 = 102, c = 10, l = 1, 4 was
carried out, in which each subsequent minimization cycle uses an increasingly stringent
convergence criteria as shown in Table 5 (also see Navon and de Villiers, 1983). Again
most of the large scale characteristic features are retrieved after the first minimization
cycle (Figs. 5a-b). The gravity wave oscillations were damped out gradually till the
fourth minimization cycle ended with r4 = 105. The solution for the geopotential field
is practically the same as that in previous exterior experiment. The total number of
iterations and function evaluations are 102 and 165, respectively. The computational cost
of this procedure is comparable with the computational cost of the base minimization.

If we examine the performance of the above experiments, one can easily find out that
the minimization with a small penalty term or without a penalty term at all but with
a looser convergence criteria can retrieve most of the large-scale features of the initial
condition fields while a minimization with larger penalty terms can damp out almost all
the small scale gravity wave features present in the meteorological fields. This implies
that only two successive minimizations are required to obtain a smooth solution devoid
of gravity wave oscillations.

We conducted therefore, another experiment in which the first unconstrained mini-
mization was carried out without a penalty term being included in the cost function and
which was terminated when a convergence criteria of 10−12 (instead of the stringent one
of 10−14) was reached. The minimization solution of the case where no penalty term was
included is then taken to serve as the first guess for the next minimization cycle with a
large penalty term being included in the cost function (r = 105). The minimization of the
penalized cost function was then terminated when a convergence criterion of ε = 10−14

was reached. We call this two- stage minimization the “short-cut” penalty method. We
found that the distribution of the retrieved initial height fields after the two minimizations
is the same as in Figure 5(d). As far as the computational cost is concerned (see Table 6),
this experiment required a total of only 86 iterations and 120 function calls for the whole
procedure, i.e. it was computationally cheaper than the base experiment.

To illustrate the effectiveness of this two stage minimization procedure on damping
the gravitational oscillations, a number of 24 h forecasts (14 h real forecast due to a length
of 10 h assimilation window) starting from the variationally data assimilated initial state
with and without the inclusion of a quadratic penalty term in the cost function were
carried out. In Figure 6 we plot the time variation of the geopotential field at a given



Figure 5: Retrieved initial geopotential height after each cycle of the exterior penalty function method
with a penalty parameter set to (a) r1 = 102, (b) r2 = 103,(c) r3 = 104 and (d) r4 = 105, respectively.
The Case No. 1 observations were assimilated, where the initial guess for the first minimization cycle is
set to zero, the solution of the ith penalized minimization was used as the initial guess for the (i + 1)th
minimization, i = 1, . . . , 3. Contour intervals and scaling factor for the values on isolines are the same as
in Figure 3.



Figure 5: (Continued)



Table 6: Numerical results of the variational data assimilation with combination of the non-penalized
assimilation and penalized assimilation to assimilate observations with one local perturbation

k rk Iter Nfun J∗/J0 |∇J∗/∇J0| ε

1 0 52 75 4.46× 10−6 1.41× 10−4 10−12

2 105 34 45 7.85× 10−1 1.76× 10−1 10−14

Figure 6: Time variation of the geopotential fields for 24 h at grid point (10,10) after variational data
assimilation with (dotted line) and without (solid line) a penalty term being included in the cost function
when the Case No. 1 observations are assimilated.

grid point for a variationally assimilated integration without the inclusion of a penalty
term as well as the results from the integration with the penalty term being included
in the cost function. From the the hourly evolution of the geopotential field for the
short-range forecast (24 h) with the penalized variational data assimilation and a run
without the inclusion of a penalty term, we observe the occurrence of a major impact
for the first 6-10 hours of the numerical integration. A perfect damping of the short
gravity waves is observed, matching in every respect similar results obtained by the use of
nonlinear normal mode initialization. However the present method has several advantages,
the first being the fact that no explicit knowledge of the normal modes of the model is
required, the second being that by using the penalty function approach it is possible to
take into account data distribution in time. However, the variational data assimilation
procedure itself (without the inclusion of any penalty term) remains computationally
expensive. The initialization here results as a by-product of the adjoint model integration
and involves little additional computational cost beyond the computational cost required
by the variational data assimilation.

The results obtained compare favorably with those obtained by other researchers using
implicit normal mode initialization of the shallow-water equations model over a limited



area domain (See Juvanon du Vachat, 1986; Semazzi and Navon, 1986; and Temperton,
1988).

4.2 A 3-dimensional problem

Variational 4-D data assimilation combined with a penalty method constraining time
derivatives of the surface pressure and divergence is implemented on an adiabatic version
of the NMC 18 level primitive equations spectral model (NMC, 1988) with surface drag
and horizontal diffusion.

High-frequency fluctuations in the surface pressure tendency reflect the presence of
external gravity waves. A way to suppress these external gravity waves consists in impos-
ing as a constraint the vanishing of the time tendency of the surface pressure: ∂ ln ps

∂t
. A

quadratic penalty term of the form

Jr1 = r1
R−1∑

i=0

(
∂ ln ~ps(ti)

∂t

)T (
∂ ln ~ps(ti)

∂t

)
, (54)

was thus augmented the cost function J , where ln ~ps is an M dimensional vector of the
logarithm of the surface pressure, M is the total number of Gaussian grid points used in
the definition of the cost function, and R is the number of time steps in the time interval
spanning the window of assimilation. Variational data assimilation with a penalty term
Jp1 included in the cost function means that while minimizing the distance between the
model solution and data, the high frequency oscillations presented in the surface pressure
field are also controlled.

We may also impose a constraint on the time tendency of the divergence to damp
high-frequency oscillations of internal gravity waves in a manner similar to (54). We
define a penalty term

Jr2 = r2
R−1∑

i=0


∂

~D(ti)

∂t



T 

∂
~D(ti)

∂t


 , (55)

where ~D is the M × K dimensional vector of divergence and K is the total number of
vertical levels.

The penalized cost function thus assumes the following form

Jr1,r2 = J + Jr1 + Jr2 . (56)

The gradient of the penalized cost function can be obtained by integrating the same
adjoint model as the one used in obtaining the gradient of the non-penalized cost function.
The only difference is that more forcing terms are added to the right-hand-side of the
adjoint equations model besides the weighted differences between the model solution and
data (Zou, et al., 1993a).

Numerical experiments are devised as follows: initial conditions for the model and
analyzed data were obtained from the Global Data Assimilation scheme at NMC. The
variational data assimilation was carried out adiabatically, as well as with a surface drag
and horizontal diffusion terms included in the model. Two uninitialized state vectors,



separated by a 6 hour time interval, were taken as analyzed data to be assimilated. The
cost function was defined as

J(x(t0)) =
1

2

(
x(t0)− xobs(t0)

)T
W

(
x(t0)− xobs(t0)

)

+
1

2

(
~X(tR)− ~Xobs(tR)

)T
W

(
~X(tR)− ~Xobs(tR)

)
(57)

where x is the model state vector, W is a diagonal weighting matrix whose values are
calculated as the inverse of the maximum squared difference between the two analyzed
data fields at times t0 and tR. The time difference between the two analyzed times is 6
hours. A limited-memory quasi-Newton method (Navon and Legler, 1987) due to Liu and
Nocedal (1989) was employed throughout the minimization experiments.

In order to illustrate the performance of the penalty method we calculated the amount
of residual gravity wave component in the retrieved initial state, which was 0.076. The
amount of residual gravity wave component before and after the application of nonlinear
NMI are 2.56 and 0.15 respectively, which provides a benchmark here for assessing the
efficiency of filtering gravitational oscillations by the simple penalty method developed
within the framework of variational data assimilation. We see that the solution of the min-
imization with both penalty terms Jr1 and Jr2 being added to the cost function contains
a lesser amount of residual gravity component than the one contained in the nonlinear
NMI initialized data.

The minimization of Jr1,r2 with r1 = 1013 and r2 = 1019 performed very well with
both Jr1/r1 and Jr2/r2 decreasing by about 2 orders of magnitudes. To show that the
gravitational oscillations were damped out after minimizing the penalized cost function
Jr1,r2 and to confirm that after the high-frequency gravity wave oscillations have been
completely eliminated by the penalty procedure while the Rossby modes are not degraded,
and furthermore that once these oscillations have been eliminated, they do not seem to
re-occur, a closer inspection of the integration results was carried out.

A 3 days forecast was carried out from the nonlinear NMI data and the retrieved
initial states without a penalty term and with the two penalty terms, using the adiabatic
version of the NMC spectral model with surface drag and horizontal diffusion. Figure 7
shows the time variation of the surface pressure at Point 1 (a point in the Indian Ocean)
and Point 2 (a point near the Rocky Mountains) during this period. It is seen that the
value from the retrieved initial state without a penalty term oscillates around a slowly
varying value from the retrieved initial state with penalty terms at both points (solid
and dotted lines in Figure 7). This fact indicates that the gravity oscillations present in
the integration with the non-penalized retrieval neither grow nor influence significantly
the slowly varying part of the fields. This fact is confirmed by a comparison between
the penalization result and the nonlinear NMI result (dashed line in Figure 7). The time
variation of the surface pressure is nearly the same at Point 2 for the results obtained
from the retrieved initial state with penalty terms and from that obtained from the the
nonlinear normal mode initialized state, with the former being even smoother than the
latter. At Point 1 the time variation of the penalty result is smooth and exhibits a 12 hours
oscillation. However, after nonlinear NMI both the large amplitude 12 hours oscillations



Figure 7: Time variation of 3 days forecasts at Point 1 and Point 2. Solid line: no penalty term. Dotted
line: with penalty terms Jr1 + Jr2 . Dashed line: nonlinear NMI.



and the low amplitude high-frequency oscillations are reduced. After two and half days
the time variation is nearly same.

In view of these experimental results, we are led to the conclusion that adequate
penalization of the cost function is able to suppress undesirable high frequency gravity
wave oscillations. The constraints of requiring the vanishing of the surface pressure and
divergence at each time step were implemented weakly by the penalty method. The
Rossby waves are not affected by the penalty procedure. It is also worth noting that very
little additional computational cost is required to calculate the values of the penalized
cost function and its gradient, and that the number of iterations and function evaluations
is about the same as that required by the minimization without a penalty term. The
advantage of using of simple penalty terms over penalty terms including the model normal
modes results in a simplification of the procedure, allowing a more direct control over the
model variables, and the possibility of using weak constraints to eliminate high frequency
gravity wave oscillations. This approach does not require direct information about the
model normal modes. One of the encouraging results obtained is that the introduction of
the penalty terms does not slow down the convergence rate of the minimization process.

5 Inclusion of “on-off” processes in variational

data assimilation

In the last several years most attention on variational methods for 4-D data assimilation
has been focused on 2-D models (LeDimet and Talagrand, 1986; Derber, 1985; Lewis and
Derber, 1985; Hoffman, 1986; Talagrand and Courtier, 1987; Courtier and Talagrand,
1987; Zou et al, 1992a) or 3-D adiabatic models (Thépaut and Courtier, 1992, Navon et al.,
1992 , and Chao and Chang, 1992). The issue of the impact of “on-off” threshold processes
on variational data assimilation was addressed only recently (Douady and Talagrand,
(1990); Zou, et al., 1993c; Vukićecić (1993); Zupanski, 1993), when the inclusion of the
adjoint of diabatic processes is considered.

The specific problem related to the presence of “threshold”, or “on-off” processes, trig-
gered when a given parameter attains a prescribed critical value, is how to code the adjoint
of these processes and how will the minimization process behaves for locally nondifferen-
tiable terms. The mathematical modeling of these physical processes defies a convenient
quantification at the level of the resolution presently used in numerical forecast mod-
els. Different parameterization schemes are used and some involves special computational
treatment due to the complicated nonlinear relationship existing between variables and
the high cost of the computer time. Examples of these are, in the deep cumulus convection,
the calculation of the dew point temperature from the vapor pressure, the calculation of
the equivalent potential temperature (θ) from temperature and pressure fields at the lift-
ing condensation level (LCL), and the derivation of the temperature and specific humidity
of an ascending parcel from its potential temperature and pressure. In order to allevi-
ate the computational load, the operational model employs several pre-calculated tables
along with linear or bilinear interpolations. For the tangent linear and adjoint models,
one can no longer use the original tables which were employed in the direct nonlinear



model and linearize the nonlinear model technically and locally in the code as one does in
developing the tangent linear model of the adiabatic model. The values in the tables are
built for the nonlinear calculation. The original (analytical) formulas used to build the
lookup tables are required to compute the first derivatives. This is quite different from
the development of the adjoint of the adiabatic model, where the only nonlinear terms
present are those due to the quadratic terms. The “on-off” processes appearing in the
code as IF statements depend on the model variables’ value which produce a finite number
of first-order discontinuous points. These points represent the “on-off” switches in time
and space domains. The adjoint and gradient calculations assumes that the initial small
perturbation does not change when and where the “on-off” switch occurs. Therefore,
the adjoint model integration follows the same path backward as the nonlinear model’s
integration, i.e., the switches are determined by the basic state.

Once these problems of building the adjoint and calculating the value of the gradient
of the cost function defined by a model constraint involving “on-off” physical processes
are solved, the following questions arise: what will the computational load due to these
processes be, and whether the minimization will still work for first order discontinuous
points and moreover what will be the influence on the solution of the optimized initial
conditions?

As an initial estimation to these problems, some preliminary experiments of variational
data assimilation were carried out using a version of 18 vertical levels, triangularly trun-
cated at wavenumber T40, of the NMC operational spectral model. In the experiments,
the “observations” consisted of two complete states of vorticity, divergence, temperature,
surface pressure field and moisture from the NMC global operational data assimilation
system, 6-hour apart, which are denoted by xobs(t0) and xobs(tR). The adjustment was
performed on the 6-hour interval [t0, tR] preceding tR. The problem is to find an optimal
initial state x∗(t0) which minimizes the cost function J given by (57).

The computational cost of calculating the gradient of the cost function using the
adjoint technique is independent of the dimension of the problem, meaning

T (J,∇J)

T (J)
≤ c (58)

where T (J) and T (J,∇J) measure the CPU time to compute the cost function J and
the pair of (J,∇J), respectively, and c is a constant independent of n. This constant is
small, between 2 and 4, depending on the number of operations performed in the direct
model. Table 7 displays the CPU time used by the NMC T40, 18 layer model, its tangent
linear model and its adjoint model for a six hour time integration, with or without the
large-scale precipitation and deep cumulus convection, respectively. The time step is
1800s. All the “on-off” routes and the nonlinear model solutions at each time step were
stored in memory during the direct integration to avoid major recomputation costs in the
adjoint. We observe that the required CPU time increased from 16.65s for an adiabatic
model to 29.15s for the partially diabatic model due to the “on-off” physical processes.
The tangent linear model integration is slightly more expensive than that of the nonlinear
model integration, while the integration of the adjoint model is most expensive but still
less than twice the CPU time required for the integration of the nonlinear model.



Table 7: CPU time used by the NMC T40, 18 layer primitive equation model, its tangent linear model
and its adjoint model for a six hour time integration with a time step of 1800 seconds

CPU time
(second) nonlinear model linear model adjoint model
adiabatic 16.65 21.79 25.14

with “on-off”
processes 29.15 31.10 34.49

Table 8: CPU time used for calculating the cost function J and its gradient with respect to the initial
state ∇J

CPU time
(second) T (J) T (∇J) T (∇J)/T (J)
adiabatic 17.31 27.35 2.6

with “on-off”
processes 30.01 37.73 2.3

Table 8 displays the values of c for the gradient calculation. For the adiabatic version
of the model, c is equal to 2.6. When the “on-off” physical processes are included in
the direct model and the corresponding adjoint model, c = 2.3. In addition, we note
that the cost function calculation adds 1 second of CPU time, in both cases, to the
model’s integration. An additional 3 seconds are required for including the forcing term
in the adjoint model. Therefore, the direct access of data in the nonlinear model and
adjoint model, for both the model solution and the “on-off” route, is computationally
very efficient.

The first test consisted of two parallel assimilations with and without the large-scale
precipitation and cumulus convection, both including the horizontal diffusion and a sim-
plified surface drag (see Navon et al., 1992). The minimization was found to be similar
in both cases with the value of the cost function decreasing to about 15% of its original
value. The norm of gradient decreased about two orders of magnitude. The total CPU
times required for 60 iterations of the minimization with and without the physical pro-
cesses were 76 and 44 minutes, respectively. The maximum memory used was 7.4MW
and 6.4MW respectively.

From this experiment, we conclude that “on-off” threshold processes when included
in the model do not hinder the minimization process. Theoretically, if the gradient of the
cost function calculated by integrating the adjoint model is always a one-sided gradient,
i.e., the model integration follows the same “on-off” route at each iteration, the large-scale
unconstrained minimization will still work. We note however that this is not the case in
our minimization experiment, and despite this fact, the minimization process performed
successfully. Figures 8(a–c) show three examples of the large-scale saturation, evaporation,
and the cumulus convection during the first 3 iterations of minimization, respectively. In



Figure 8: (a) Large scale supersaturation amounts at the point (90oE, 35oN, 225mb) as a function of
time. (b) Cumulus convective heating of the environment at the point (25oW, 38oN, 920mb) as a function
of time. (c) Cumulus convective moistening of the environment at the point (25oW, 38oN, 920mb) as a
function of time.



Figure 8(a) we plotted the amount of δqc (the increment of specific humidity due to the
large-scale precipitation process) when large-scale saturation occurs (q > qs) at a model
grid point located at (90oE, 35oN, 225mb). We observe that the saturation process was
turned on from the fourth leap-frog time step during the first and second iterations.
During the third iteration, this process was also turned on at the fourth time step but it
was turned off at the last time step of the assimilation window. We can draw a similar
conclusion from Figures 8(b,c) for the cumulus convection process.

In the following, we compare the differences between the retrieved initial states from
the adiabatic and partially adiabatic runs. The root-mean- square of the retrieved di-
vergence field was found to increase slightly when the large-scale precipitation and the
cumulus convection processes were included in the variational data assimilation (Figure
omitted).

In order to observe the differences in the retrieved initial conditions with or without the
inclusion of the precipitation processes, we now consider the horizontal distribution of the
model’s variables displayed over an area encompassing North America and plotted in Fig-
ures 9(a,b) the difference of the divergence, vorticity, temperature and the moisture fields
at high and low levels respectively. In the area where the divergence in the higher layers
and the convergence in lower layers increases due to the inclusion of the “on-off” processes
in the minimization, (we shall call it the active region), the temperature and the vorticity
were also found to have increased. At the lower levels, as the convergence increased, the
temperature decreased and the moisture increased. In addition, a northwest- southeast
wave train is observed in the vorticity field which propagates toward the equator.

Figure 10 displays the retrieved initial stream functions near 500mb (level 9). We
observe that there is a trough upstream of the active region, and that the differences in
the minimization solution with or without the physical processes are strongly correlated
with the weather system.

We also carried out 6 h forecasts of the precipitation from the two initial conditions
(Figure 11). We find that the initial condition obtained by the variational data assimila-
tion including the “on-off” processes produces larger amounts of precipitation and greater
area coverage over most of the map. However, the amount of precipitation near Lake Erie
is smaller than the amount forecasted from the initial condition obtained without the in-
clusion of the physical processes. Since we do not have verifying data, we cannot conclude
which result is better. We have however demonstrated that differences near meteorologi-
cally active areas do result from the two respective minimizations.



Figure 9: The differences of divergence, temperature, vorticity and the moisture fields at (a-d) the 856mb
level and (e-h) the 225mb level between the two retrieved initial states. Contour intervals for divergence,
vorticity, temperature and moisture are 8.0 ×−7 s−1, 2.0 × 10−6s−1, 0.07K and 8.0 × 10−5gkg−1 in the
upper layer and 1.5−6s−1, 5.0×10−6s−1, 0.2K and 8.0×10−5gkg−1 in the lower layer respectively. Values
on the isolines of divergence and moisture fields are scaled by 108 and 106 respectively. Values on the
isolines of vorticity in the upper and lower layers are scaled by 108 and 107 respectively.



Figure 9: (Continued)



Figure 9: (Continued)



Figure 9: (Continued)



Figure 10: The distribution of the retrieved initial stream function at 500mb obtained by the minimization
including the “on-off” processes. Contour interval is 6.0×106 m2s−1 and values on the isolines are scaled
by 10−5.



Figure 11: The total 6 hour precipitation forecasted from the initial state with(a) or without(b) the
“on-off” processes. Contour interval is 2.0× 10−2 m and values on the isolines are scaled by 103.



6 Summary and Conclusions

The methods and concepts of optimal control theory have been employed to formulate
a variational 4-dimensional data assimilation for meteorological problems described by
systems of coupled nonlinear equations and the minimization of nonlinear cost functions.
The adjoint method is the most economical method to use, if the physical problem involves
a large data base.

It is of practical interest to mention that, in particular applications, additional con-
straints may be required to be imposed on the cost function. Inclusion of the penalty
term in the cost function while performing the minimization on uninitialized fields leads
to better numerical conditioning and ensures that the minimizing solution will not con-
tain an unacceptable amount of high frequency gravity waves. Other constraints such as
energy and enstrophy conservation, model bias, and observational errors can be included
in the cost function in different situations.

Inclusion of the “on-off” physical processes in the nonlinear and adjoint models does
not hinder the minimization processes. Along this line, further research is needed related
to the inclusion of additional physical processes in the adjoint model, such as the planetary
boundary layer processes, vertical diffusion, topographic variations, shallow convection
and radiation. Once the full adjoint of the operational model including the physics package
is obtained, it can be used to tune the forecast model by carrying out an adjoint sensitivity
study or a parameter estimation. As such the adjoint model constitutes a useful diagnostic
tool and helps explore the physical details of the numerical model.
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