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ABSTRACT

This paper presents evidence of the sensitivity of a general circulation model (GCM) to the time-differencing
scheme employed when the physical parameterizations and space discretization are not changed. For this purpose,
two time-marching schemes—the leapfrog and the Matsuno schemes—are analyzed and tested on the National
Aeronautics and Space Administration-Goddard Laboratory for Atmospheric Studies (NASA-GLAS) fourth-
order GCM in terms of the stability and behavior of 2-month-averaged fields. Linear analysis suggests that
Rossby waves are slightly damped and slightly accelerated when the Matsuno scheme is used and that these
effects are scale selective, being smallest for the longest waves. It also suggests that such waves are accelerated
less and are not damped when the leapfrog scheme is used. An empirical orthogonal function analysis of the
meridional component of velocity at 46°N, keeping at least 70% of the variance, reveals less shortwave activity
in the numerical solution with the Matsuno scheme but does not lend support to the conclusion that the waves
are accelerated less in the solution with the leapfrog scheme.

The two-dimensional Eliassen-Palm (E-P) flux divergence and the eddy-induced mean meridional circulation
are found to be stronger in the simulation with the leapfrog time-differencing scheme than in the one with the
Matsuno scheme, suggesting that the transient-wave activity is damped by the Matsuno scheme. On the other
hand, the three-dimensional stationary-wave activity flux in the Northern Hemisphere simulated with the Matsuno
scheme is more intense than that simulated with the leapfrog scheme, indicating that the stationary waves are
more robust in the integration with the Matsuno scheme.

The GCM precipitation when integrated with the leapfrog scheme is much more intense over the tropical
western Pacific and the northeastern Pacific and less intense over the western North Atlantic Ocean. The kinetic
energy of waves with wavenumber greater than 9 simulated by the Matsuno scheme is consistently smaller than
that obtained by the leapfrog scheme. These results give evidence that climate simulations are sensitive not only
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to physical parameterizations of subgrid-scale processes but also to the numerical methodology employed.

1. Introduction

General circulation models (GCMs) are the most
elaborate of a hierarchy of mathematical models used
in the study of climate. A general review of atmospheric
GCMs presented by Simmons and Bengtsson (1984)
emphasizes the importance of physical processes in de-
termining the behavior of climatic systems. GCMs have
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been used for seasonal simulation (Shukla et al. 1981)
as well as for studying climate variability on time scales
of a month and upward. In particular, studies have
been conducted to determine the sensitivity of atmo-
spheric GCMs to changes in physical mechanisms such
as surface albedo (Charney 1975), sea-ice limits in the
Arctic (Herman and Johnson 1978), low-frequency
variability (Charney and Shukla 1981), and inadequate
orographic effects (Wallace et al. 1983).

Reviews of the numerical techniques used in nu-
merical weather prediction models and GCMs have
been presented by Mesinger and Arakawa (1976) and
Kasahara (1979). Numerical experiments in which the
earth’s climate is simulated using different numerical
schemes can play a valuable role in clarifying the nature
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of individual GCMs. This in turn may help in the de-
sign of more comprehensive models and aid in the in-
terpretation of results. A comparison of spectral and
finite-difference simulations of climate circulations was
carried out by Gutowski et al, (1990). Their results
showed that the spectral and gridpoint methods do not
produce identical model climatology. In this paper we
examine the effect of two different time-differencing
schemes, namely the Matsuno (Euler-backward) and
the leapfrog scheme, for a seasonal climate integration
of the National Aeronautics and Space Administra-
tion-Goddard Laboratory for Atmospheric Studies
(NASA-GLAS) fourth-order general circulation model.

The integration presented here uses seasonal varying
solar forcing and boundary conditions of sea surface
temperature (SST), soil moisture, sea-ice extent, snow,
and surface albedo. Section 2 presents a brief descrip-
tion of the model equations. Section 3 describes the
two time-differencing schemes and presents a brief sur-
vey of their numerical stability analysis. Comparison
of the model results using the two time-differencing
schemes to simulate the climate during January and
February are presented in section 4 for the Eliassen—
Palm (E-P) flux, the eddy-induced meridional circu-
lation, the three-dimensional wave activity flux, the
leading empirical orthogonal functions (EOFs), the
precipitation, and the kinetic energy spectrum. Section
5 gives a summary and discussion.

2. Model description

The model used for this study was the NASA-GLAS
GCM, which has been described in detail by Kalnay
etal. (1983). The model equations, expressed in sigma
coordinates and written in flux form, include the zonal
and meridional momentum equations, the thermo-
dynamic energy equation, the moisture balance, pres-
sure tendency, vertical velocity, and hydrostatic equa-
tions. The physical parameterizations include latent
heat release due to large-scale saturation that occurs
when the relative humidity exceeds 100%, clouds that
occur if and only if the model predicts large-scale sat-
uration or cumulus convection, cumulus convection
using the Arakawa (1969, 1972) parameterization as
modified by Somerville et al. (1974), longwave radia-
tion using the scheme of Krishnamurthy (1982), which
is updated every 5 h, and shortwave radiation (Davies
1982), which is updated every 30 min.

The surface boundary ficlds are obtained from
monthly mean climatology datasets. Orography is ob-
tained using the area-weighted averages computed from
Gates and Nelson (1975) 1° terrain heights. The
ground wetness is obtained from Mintz and Serafini
(1981). The surface albedo comes from Sud and Fen-
nessy ( 1981).

Discretization of the horizontal derivatives is ac-
complished using an efficient, energy-conserving,
fourth-order-accurate finite-difference approximation
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on an unstaggered 4° latitude X 5° longitude grid. In
order to prevent nonlinear aliasing, a global filtering
of the unresolved short waves is performed every 2 h
using a 16th-order Shapiro (1970) filter to reduce the
amplitude of the waves shorter than four times the grid
spacing. In order to avoid using prohibitively short time
steps due to the close spacing of the grid points pole-
ward of 60° latitude, additional filtering is performed
by multiplying the amplitude of the Fourier compo-
nents to be filtered by a zonal wavenumber-dependent
damping function, as described by Takacs and Bal-
govind (1983) and Kalnay et al. (1983). For time dif-
ferencing, the model provides the option of using either
the Matsuno (Euler-backward) or a smoothed leapfrog
scheme or a combination of both.

3. Properties of the two time-differencing schemes

a. The Matsuno scheme

For a system of partial differential equations of the

form

du

— = F(u),

3 (u)
where F(u) represents the nonlinear space differences,
the Matsuno (Euler-backward ) scheme consists of two
steps:

(1)

ufy —u, = F(u,)At

—u, = F(uj,) Az, (2)

where u},, is an intermediate value in the calculations.
A stability analysis method may now be applied to the
following simple pure oscillatory equations

Upy

St MWl
T e MWl
at mam:
where w,, is the frequency of the mth component of
the field. Substituting (3) into (2) and omitting the
subscript gives

m=1,2,N, (3

Uni) — Up = —iw(Uy — iU, ALYAL = —lwu, Al

2
— wlu,At? = (-‘?3) At + (a—g) At?. (4)

ot ar?

Comparing this expression with the Taylor expan-
sion of u near ¥ in time:

du 1 /0%
Upsy — Up = (67) At + 5 (?) A2 + O(Ar), (5)
we note that the Matsuno scheme has introduced a
term of 1/2(8%u/adt?)At?, which acts like a diffusion
term in time, to a first-order approximation. If we carry
out the standard stability analysis, we will find in the
following that the damping effect is wave selective (i.e.,
wavenumber dependent).
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Instead of using (2) we deal with the following simple
advective equation

du  du

ot ax’
Using a centered differencing scheme for the x deriv-
ative and the Matsuno scheme for the time derivative,
we obtain

(6)

um,n-H = )\um,n
A=1-—joc~— g2, (7)

where

'
= —— sinkAx.
o =~ SinkAx

(8)
It is evident that the scheme will be damping (also
stable) if

N =(1=-ea*>+cH)? <1,

which holds provided |o| < 1.
The first derivative of the amplification factor A with
respect to o is

(9)

3N 20(26% - 1)
do  2(1— o2+ a%)2 (19
This gives
r<0 if 0< <I
s g <=,
V2
A|A| ) 1
.—-—.{ = = —
py 0, if o 7
1
>0, if =<o<].
{ V2

Therefore, the strongest damping for the Matsuno
scheme occurs when ¢ = 1/V2 = 0.707.
To insure stability for all wavenumber & requires

(11)

This condition is used to determine the time step.
Therefore, o < 1 is always true for a numerical model;
that is, in the Matsuno scheme the solutions are
damped except when ¢ = 1. However, the damping is
wavenumber dependent, since ¢ depends on k. For a
fixed CAt/Ax, there is no damping for waves with
wavelength L = 2Ax (¢ = 0), and damping diminishes
when the wavelength L increases (o decreases). Max-
imum damping takes place with the combination (L,
CAt/Ax) = (4Ax, 0.707) or with other pairs of L and
CAt/Ax that will result in ¢ = 0.707. If C represents
the wave speed and C, is the speed of the fastest gravity
wave, Ar and Ax are usually chosen so that C,At/Ax
< 1. Then, for the slower meteorological waves, one

|CAt/Ax) < 1.
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obtains C,,At/Ax < 1, which means that slower me-
teorological waves experience little damping.

In order to better clarify this issue, we will now dis-
cuss damping of the Matsuno scheme in terms of the
model-assigned values for A and Ax and typical values
for C (the Rossby waves). Figure | presents the am-
plification factor of the Rossby waves in terms of their
nondimensional wavenumbers k for the selectively
damping Matsuno scheme. As is evident from this fig-
ure, only high wavenumbers of the Rossby waves are
slightly affected in their amplifications.

The damping characteristics of the Matsuno scheme
may be seen from another viewpoint by writing C
= w/k, where w is the frequency, from which follows
that

sinkAx
kAx

Since sinkAx/kAx < 1, very low-frequency waves, such
as meteorological waves, give a small ¢ and experience
less damping. However, high-frequency waves (e.g.,
external gravity waves) are generally strongly damped,
except for the frequency where ¢ = kAt = 1, which is
undamped. Internal gravity waves may have low fre-
quencies comparable to meteorological waves and
would not be damped much either. As shown by Ok-
land (1972), the Matsuno scheme is not effective for
the higher internal modes and also for waves of large
horizontal extent or gravity waves in the tropics. Thus,
the damping characteristics of the Matsuno time-dif-
ferencing scheme are rather complex.

As far as the phase-error characteristics are con-
cerned, one can express the amplification factor as

= |\ e”

o = wAt

(12)

A.
§ = arctan —,

r

(13)

where A, and A; represent the real and imaginary parts
of the complex variable A. For the Matsuno scheme

1 1
09999 | 0.9999
09999 | 09999

1Al
09998 | 0.9998
0.9997 1— = . A 0.9997

0 4 8 1 16 2

RG. 1. Amplification factor as a function of Rossby
nondimensional wavenumber using the Matsuno scheme.
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[see (7)1, the relative phase change (see Kurihara 1965)
is then given by
0

1
— = - arctan
6 o

=2 (14)
Since o must be less than unity to ensure stability and
rather small for frequencies for which we wish the time-
integration-scheme errors to be small, we need to con-

-sider ( 14) for small o. We then can take only two terms
in the Taylor expansion, yielding

0

1+2624 .-
c 3

(15)
The Matsuno scheme is therefore accelerating.

To provide further insight into the properties of the
Matsuno scheme, we present in Fig. 2 the amplification
factor and the phase error for the Matsuno scheme as
a function of @ = wAt against the true solution of the
advection equation. This confirms that maximum
damping occurs at = wAt = 0.707 in so far as the
amplitude is concerned. The phase acceleration of the
Matsuno scheme is evident from Fig. 2b. This phase
error increases both with frequency and with the time
step. In Fig. 3 the evolution of energy normalized by
its initial value is presented for a linearized barotropic
primitive equation model using the Matsuno scheme
(see Tatsumi 1984). We observe that medium-scale
gravity waves (600 km) are totally suppressed during
the 2-day integration, while very long gravity waves
(4200 km) are only slightly damped during the same
integration period.

b. The leapfrog scheme with time smoothing

To discuss the properties of the leapfrog scheme, we
use the same advection equation as (6). The leapfrog
scheme then assumes the form

Matsuno
1Al )

20} ;

True solution

1.0 T

S -
......

0 1} 1 ! 1
0.0 05 1.0 1.5

(a)
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Um,i — Ump +C Um+10 — Um-10 _ 0

At 2Ax
Umn+1 = Ump-1 Um+in = Um—1.n
: g : 2=0. (1
2At ¢ 2Ax 0. (16)
Assuming

Unmn = A exp(nAt) exp(ikmAx) (17

and substituting (17) into (16) gives the following
complete solution (see details in Haltiner and Williams
1980):

1 +cosa . nl
U 2 coser exp[ik(jAx — na/k)] + (—1)
1 — cosa
% 4 o }
Ky exp[ik(jAx + na/k)], (18)

where o« = arcsing, 6 = (CAt/AXx) sinkAx. If we take
the limit Ax - 0, ¢ = CkAt, and then for small Az,
a = CkAt. Now letting At — 0,

1 + cosa

3 cosax exp[ik(jAx ~ na/k)] —>

A explik(x — Ct)] (19)
which is the true solution of (6), and

(=1)™14 1 — cos

a .
-

2 coser exp[ik(iAx + na/k)] = 0. (20)
Therefore, the second mode in ( 18 ) is a spurious mode
that arises from using a second-order difference equa-
tion to approximate a first-order differential equation
and is a source of error. Note that the second mode,
which is referred to as the computational mode,
changes sign at every time step due to the factor (—1)"*’
and has, thus, essentially a 2A¢ period.

AQ
x| Matsuno
7 .
10 s True solution
- I o
7 1 1 1 1
0.0 0.5 1.0 1.5 20 ¢

(b)

FiG. 2. Amplification factor and the phase error for the Matsuno scheme (dashed line) as
a function of @ = wAt against the true solution (solid line) of the advection equation.
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FI1G. 3. Evolution of the energy E normalized by its initial value with time using the Matsuno scheme.

An Asselin (1972) filter can be used to remove this
computational mode. The filter has no influence on
the phase of u [it affects the stability analysis; however,
see Haltiner and Williams (1980)].

If one combines the leapfrog time-differencing
scheme with the Asselin (1972) filter in the following
way

- At
= Um,n-1 + K)_C (um-H,n - um—l,n)

um,n+ 1

ﬁm,n = Umn + % (um,n+1 - 2um,n + ﬁm,n-l)a (21)
one obtains the so-called smoothed leapfrog scheme in
which the computational mode associated with this
scheme would appear, in principle, to be removed. In
practice, the “odd-even” separation of solutions is still
present and must be removed in some way. Kalnay et
al. (1983) and Takacs (1986) used one Matsuno time
step after every eight leapfrog time steps. In the present
application, one Matsuno time step was employed to
start the integration, and one was employed after every
11 leapfrog steps. This kept the integration stable for
the entire period considered in the present paper, al-
though it eventually became unstable after three
months.

Considering the phase error introduced by the leap-
frog scheme and taking into account only its physical
mode, for which (Haltiner and Williams 1980)

A =(1 =062+ o, (22)

one obtains

8, = arctan (23)

ag

( 1 _ 02) 1/2
For accuracy, the physical mode phase 8, should be as
close as possible to the phase change of the solution ¢.
For small ¢ we obtain by Taylor expansion

bi=ctcai+ .- (24)
Therefore, the leapfrog scheme is also accelerating;
however, its acceleration is four times less than that of

the Matsuno scheme. Differentiating with respect to o,
we have

do, 1

de (1 —c*)V?" (23)
The phase error increases sharply as o tends to 1; that
is,as 8,/ = 7w/2.

In order to provide insight into the evolution of
phase-speed errors of the leapfrog scheme, insofar as
gravity-inertia waves are concerned, we display in Fig.
4 the phase error in degrees longitude per day as a
function of the wavenumber and the time steps. We
observe that the phase errors increase for higher wave-
numbers and larger time steps.

A general remark is that the additional phase errors
that enter the problem due to space differencing are
decelerating. Such errors are dominant unless higher-
order space-differencing schemes are used. In the pres-

AQ C-C deg. long/day

75

601

40

30

10

0
02 4 6 810121416 18 2022 24 26 28 30 k

FIG. 4. Phase-speed errors in degrees longitude per day as a function
of wavenumber for the gravity-inertia waves using the leapfrog scheme
with time steps 2.5, 5.0, and 7.5 min. The curve marked by circles
is the wavelength in degrees longitude as a function of wavenumber.
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ent case, with the use of a fourth-order spatial discre-
tization, there is no way to tell from a prior analysis
whether the deceleration due to the spatial discretiza-
tion or the acceleration due to the temporal discreti-
zation will win in the competition. The analysis does,
however, suggest that the synoptic waves in the nu-
merical integration with the Matsuno scheme should
travel faster than those in the integration with the leap-
frog scheme. This is one of the points we will examine
in the following section using an EOF analysis.

4, The numerical experiment and diagnostics

The initial data used for this study were the European
Centre for Medium-Range Weather Forecasts” First
GARP (Global Atmospheric Research Program)
Global Experiment (ECMWF FGGE) IIIb analyses for
0000 UTC 15 December 1978 obtained from the Na-
tional Center for Atmospheric Research (NCAR ). The
model was integrated for a 3-month period once with
the Matsuno time-differencing scheme and once with
the leapfrog scheme with a Matsuno difference every
12th time step. The time steps were each 7.5 min. The
data used for the diagnostic study come from the model
output for the months of January and February, stored
twice per day (at 0000 and 1200 UTC) and interpolated
to pressure surfaces. For the purpose of measuring the
sensitivity of the seasonal simulation to the method of
time differencing, seven different diagnostics are ex-
amined. These are (i) the E~P flux and its divergence,
(i) the eddy-induced mean meridional circulation, (ifi)

0 75 80 45 a0 15
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the three-dimensional wave activity flux, (iv) the lead-
ing empirical orthogonal functions, (v) the latitudinal
distribution of the zonal mean precipitation, (vi) the
global distribution of precipitation, and (vii) the kinetic
energy spectrum.

The E-P flux divergence,

1 3F,cos¢ + §§_p_

V-F = ——— ,
rcos¢ 0o ap (26)
where
F, = —W+§E 0o’ r cos¢
* dp 98/dp

dicosgp \ v ——
£ {(f rcos¢6¢) @ “¢ }rcosqﬁ,
measures the net torque exerted by the eddies on the
zonal-mean flow (Eliassen and Palm 1961; Charney
and Drazin 1961; Andrews and Mclntyre 1976). Here,
u and v are the eastward and northward components
of the wind velocity, w is the total rate of change of
pressure, § is potential temperature, p is pressure, fis
the Coriolis parameter, ¢ is latitude, r is the radius of
the carth, the overbar designates a zonal mean, and
the prime represents a departure from this mean. The
E-~P flux vector F measures the rate of transfer of wave
activity from one location to another in the meridional
plane and, for wavelike disturbances, is proportional
to the component of the local group velocity in the
meridional plane (Edmon et al. 1980). Figure 5 shows

-15 -30

—45

-~60-75

PRESSURE (mb)

.r‘

PRESSURE (mb)

{ I8

leol

T las V7 30 15

0 -15

- .,{ {'“ L
30 'J4d ' Lgo—75

LATITUDE

F1G. 5. E-P flux (arrows) and flux divergence {contours) for the period | January-~28 February 1979,
simulated using (a) the leapfrog scheme and (b) the Matsuno scheme. The flux divergences have been
divided by the radius of the earth and are contoured in units of 2 X 107> m s7%,
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the E-P flux (arrows) and flux divergence (contours)
for the period 1 January-28 February 1979 using the
history tapes from the simulation with (a) the leapfrog
scheme and (b) the Matsuno scheme.

The two time-differencing schemes give qualitatively
similar pictures of upward E-P flux in the midlatitude
troposphere turning equatorward in the upper tropo-
sphere and lower stratosphere. Both show flux conver-
gence over most of the troposphere with maxima at
midlatitudes, particularly in the winter hemisphere.
The primary difference between the two is that the flux
convergences are about 20% greater in magnitude with
the use of the leapfrog scheme than they are with the
use of the Matsuno scheme. In a separate analysis of
the contributions of long, medium, and short waves to
the E-P flux (not shown here), the same result was
found.

Although the primary purpose is to assess the sen-
sitivity of a GCM to time-differencing schemes when
the physics package and space discretization are not
changed, it is worth noting that the characteristic E-P
flux divergence in the lower troposphere at mid- and
high latitudes (see Edmon et al. 1980)is absent in both
numerical integrations. If, as noted by Edmon et al.
(1980), this flux divergence is associated with the pres-
ence of strong frictional and diabatic boundary-layer
processes, the absence of such a divergence in both
numerical integrations suggests that the boundary-layer
parameterizations in the model are deficient in some
respect. In this connection, the NASA Goddard Lab-

75 60 45
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oratory for Atmospheres (GLA) has recently revised
the parameterization of subgrid-scale processes in its
global model using a new second-order closure model
for the prediction of turbulent processes (Helfand and
Labraga 1988). In the future, it would be of value to
repeat the calculations leading to Figs. 5a,b with the
new parameterizations to see if the comparison with
the FGGE data is improved.

Another useful zonal mean diagnostic is the con-
ventional Eulerian mean meridional circulation in-
duced by the large-scale poleward eddy fluxes of heat
and momentum (Eliassen 1952; Kuo 1956). The value
of this diagnostic for the study of tropospheric dynam-
ics has been discussed by Pfeffer (1981, 1987) and by
Pfeffer and Lu (1989). The equation governing the
eddy-induced zonal-mean meridional circulation is

9? 90 0r> 3 (.0
8172( 5;¢)+acosz¢§7(ff6p)
L O (83Y) 80 (adhdy
dn\dndp) adp\0dnadn
o0H 6 0M
=—4-——, (27
o aop’ (27)
where

386’v’ cos¢ 0w’
+r
o op

-45 -80-75
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FIG. 6. Eddy-induced streamfunction y for the period 1 January-28 February 1979, obtained by solving
(39) using the history tapes from the simulation with (a) the leapfrog scheme and (b) the Matsuno scheme.

Contour interval 20 m mb s™!.
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and

= + e
cos?¢ o rcos¢ dp

_ 1 (du'v’ cos’¢ au’w’)
Here, n = sing, / is the absolute vorticity of the zonal-
mean current, f = f+ 2 tang/r, « is the specific
volume, and ¢ is the streamfunction for the zonal-mean
meridional circulation in conventional Eulerian di-
agnostics, defined by

1 &y

b=——-2

cos¢ dp

1y

rong’ (28)

© =
Figure 6 shows the time-mean solutions of (27), subject
to the boundary conditions ¢ = 0 at the poles and at
the bottom and top of the atmosphere, obtained using
the history tapes from (a) the simulation with the leap-
frog scheme and (b) the simulation with the Matsuno
scheme. The qualitative features of the two solutions
are similar. They show more intense eddy-induced
Hadley and Ferrel cells in the Northern (winter)
Hemisphere than in the Southern (summer) Hemi-
sphere and weak circulations near the poles. In this
respect they resemble the eddy-induced meridional
circulations reported by Pfeffer (1981, 1987). As in
the case of the E-P fluxes, however, the meridional
circulations associated with the Matsuno scheme are
somewhat less intense than those associated with the
leapfrog scheme.

The three-dimensional counterpart to the E~P flux
is the wave activity flux F, defined as follows by Plumb
(1985):

[ o2 — 1 o'’ i
2Qrsin2¢ O\
Ly L oW
YU T S qrsing o )
F, = p cos¢ . s
29 sing
(9T/dz) + («T/H)

wlygr L T®
20rsin?2¢ oA

(29)
where 7'is the area-averaged temperature on a pressure
surface, ® is the geopotential, Q is the rate of rotation
of the earth, H is a constant scale height, r is the radius
of the earth, k = R/c¢,, the prime represents a departure
from the time and zonal mean, and i, j, and k are unit
vectors pointing eastward, northward, and upward, re-
spectively. For diagnostic purposes we will compare
the Northern Hemispheric stationary-wave activity
flux, defined here by letting the prime represent a de-
parture from the zonal mean of the time-averaged field
over the 2-month period. Figures 7a and 7b show the
stationary-wave activity flux at 500 mb from the sim-
ulations with the leapfrog and Matsuno schemes, re-
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spectively. The arrows here represent the horizontal
flux and the contours the vertical flux. Both fields
show major wave trains propagating upward, eastward,
and equatorward from eastern Asia into the North Pa-
cific Ocean and eastward across the North Atlantic
Ocean. These features resemble, in part, those found
by Plumb (1985), although their eastward extent is
not as great. There are also secondary centers of upward
and downward flux not present in the ten-winter cli-
matological average shown by Plumb. Of interest here,
however, are the differences between Figs. 7a and 7b.
In particular, the Matsuno scheme gives larger three-
dimensional stationary-wave activity fluxes and flux
divergences than does the leapfrog scheme. Apparently,
the damping associated with the Matsuno scheme has
less effect on stationary-wave activity than it does on
transient-wave activity. It is noted, too, that the sec-
ondary maximum of upward and eastward stationary-

0.5x 1_(I”ms"

FiG. 7. Northern Hemispheric stationary-wave activity fiux at 500
mb with (a) the leapfrog scheme and (b) the Matsuno scheme. The
magnitude of the arrows representing the horizontal flux is shown
in the inset. The contours representing the vertical flux are plotted
at values of (n + 12) A, where A = 0.1 m? s 2 is the contour interval.
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wave activity flux in the eastern Pacific Ocean is found
farther to the east in the simulation with the leapfrog
scheme than in the one with the Matsuno scheme.
Clearly, the climatic differences between the two sim-
ulations are not ones that could have been anticipated
a priori.

The question of phase errors raised in section 3 is
addressed by comparing the two numerical solutions
as represented by the sum of the leading complex EOFs
and their principal components (PCs). In particular,
the variation of the northward component of velocity
v at 46°N is analyzed with respect to longitude and
time using an empirical orthogonal function expansion
of the complex Fourier transform of v, namely,

N
V(i) = E Ap(t)cp(n):
p=1
in which the condition 2,C,(n)C¥(n) = 6, , is im-
posed for orthonormality of the basis functions. The
EQFs C,(n) are determined by a solution of an appro-
priate eigenvalue problem that maximizes the variance

a
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of each successive component (as explained by Pratt
and Wallace 1976; Pfeffer et al. 1990) such that more
of the variance is compressed into fewer orthogonal
functions than in any other representation. The prin-
cipal components A,(¢) are determined by projecting
Vu(t) onto C,(n). The northward component of ve-
locity is then given by

N
2 [4,(DBF(N) + 45 (1) B,(M)],

p=1

=

)=

where A is longitude and

N
B,(\) = X CX(n)e™.

n=1

For the purpose of comparing the phase propagation
characteristics of the waves in the two time-integration
schemes, the v field was constructed from a truncated
series in which N is the number of EOFs and PCs nec-
essary to account for at least 70% of the variance of
this field. In the case of the leapfrog scheme, the first

b

75

Time (Days)

75

Longitude

FiG. 8. Contours of v in the A~ plane constructed by summation of the leading EOFs and
PCs. (a) The sum of five EOFs and PCs corresponding to the integration with the leapfrog scheme,
accounting for 73.3% of the variance. (b) The sum of four EOFs and PCs corresponding to the
integration with the Matsuno scheme, accounting for 71.4% of the variance.
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five EOFs accounted for 73.3% of the variance. In the
case of the Matsuno scheme, the first four EOFs ac-
counted for 71.4%. Figures 8a and 8b are plots of v
constructed from only these leading EOFs as a function
of longitude and time for the leapfrog and Matsuno
schemes, respectively. The shorter wave scales and
higher frequencies appear to be damped in the case of
the integration with the Matsuno scheme, as suggested
by the linear analysis. It would be difficult, however,
to make the case that they travel faster than those ob-
tained with the leapfrog scheme.

We come next to the meridional distributions of
zonal-mean precipitation in the simulations with the
two time-marching schemes. These are shown in Fig.
9a. The difference between the two curves in this figure
(i.e., leapfrog minus Matsuno) is shown in Fig. 9b. In
both hemispheres, the extratropical precipitation max-
imum, which is associated mostly with transient dis-
turbances, is located at a lower latitude in the simu-
lation with the Matsuno scheme than it is in the one
with the leapfrog scheme. As a result, the precipitation
rate with the leapfrog scheme is about 13% greater at
45°N and about 25% less at 35°N than that with the
Matsuno scheme. Significant differences also exist be-
tween the two simulations in the latitude belt from 6°S
to 6°N. Both precipitation distributions display max-
ima around 6°N, the greater peak being associated with
the use of the Matsuno scheme. As we go south, how-
ever, the precipitation rate drops off monotonically in
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FIG. 9. (a) Zonal-mean precipitation rate for the period | January-
28 February 1979, simulated with the leapfrog (solid) and Matsuno
{dashed) schemes. (b) The difference between the two (leapfrog minus
Matsuno).
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FIG. 10. Mean precipitation rates for the period 1 January-28
February 1979, simulated with (a) the leapfrog scheme and (b) the
Matsuno scheme; (c) the difference between the two (leapfrog minus
Matsuno). Contour interval is 2 mm day ™. Shading represents neg-
ative values. The data have been smoothed over nine grid points on
a 4° latitude X 5° longitude grid.

the simulation with the Matsuno scheme but displays
a second peak around 6°S in the one with the leapfrog
scheme. As a result, the precipitation rate is almost
10% greater around 6°N and about 10% less arcund
6°S with the Matsuno scheme than it is with the leap-
frog scheme.

We turn now to the geographical distribution of pre-
cipitation in the simulations with the two time-march-
ing schemes. Figures 10a and 10b show the distribu-
tions simulated with the leapfrog and Matsuno
schemes, respectively. Figure 10c shows the difference
between the two (namely, leapfrog minus Matsuno).
In the Northern Hemispheric midlatitudes the signif-
icant difference is the greater precipitation rate asso-
ciated with the leapfrog scheme in the northeast Pacific
Ocean off Canada and the lesser rate in the western
North Atlantic off the United States. In the tropics there
is an even more striking difference in the precipitation
rate in the vicinity of New Guinea, where the leapfrog
scheme gives a maximum rate that is about 32% greater
than that given by the Matsuno scheme.

Although it is clear that the differences in the tropics
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must be due to the greater damping of the shortest
eddy scales by the Matsuno scheme, the differences in
the midlatitudes cannot easily be explained on the same

basis. Current precipitation estimates (for example, .

from OLR data) are not considered good enough to
determine which scheme gives a better simulation, al-
though by most measures the model overestimates the
precipitation rate with the use of either scheme.
Figure 11a shows the 2-month mean kinetic energy
spectrum for wavenumbers 0-36 in the simulations
with the leapfrog (solid) and Matsuno (dashed)
schemes. Although waves with wavenumbers less than
9 contain most of the energy, we are interested in the
differences at the high-wavenumber end of the spec-
trum. Accordingly, Fig. 11b presents the portion of the
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spectrum in the range from wavenumber 9 to 36. In
this range the kinetic energy in the simulation with the
leapfrog scheme is systematically greater than that in
the one with the Matsuno scheme. The weekly mean
kinetic energy spectra (not shown here) display the
same feature. A breakdown by latitude bands in the
tropics and extratropics (not shown here) also displays
the same feature. These results are consistent with the
damping characteristics of the Matsuno scheme.

5. Conclusions and discussions

We have examined the differences resulting from
the use of two time-differencing schemes in simulating
the winter mean climate with a GCM—the NASA-
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FIG. 11. Kinetic energy spectrum for (a) wavenumber 0-36 and (b) wavenumber 9-36 for the
period 1 January-28 February 1979, simulated using the leapfrog scheme (solid) and the Matsuno

scheme (dashed).
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GLAS fourth-order model—in terms of the E-P flux
and its divergence, the eddy-induced mean meridional
circulation, the three-dimensional wave activity flux,
the leading EOFs, the latitudinal distribution of the
zonal mean precipitation, the global distribution of
precipitation, and the kinetic energy spectrum. The
differences obtained are mostly quantitative. The di-
vergence of the two-dimensional E~P flux and the re-
sidual meridional circulation are stronger, and there is
more evidence of short-wave activity in the EOF anal-
ysis, with the use of the leapfrog scheme than with the
use of the Matsuno scheme. The three-dimensional
stationary-wave activity flux is greater with the use of
the Matsuno scheme. With the leapfrog scheme we ob-
tained a significantly different zonal-mean precipitation
distribution than the Matsuno scheme and a much
greater local precipitation maximum in the vicinity of
New Guinea. The influence of the two time-differenc-
ing schemes on the kinetic energy spectrum is such
that the Matsuno scheme gives less kinetic energy for
wavenumbers greater than 9 due to its selective damp-
ing effect.

The main point to be emphasized in this paper is
that different methods of discretization, as well as dif-
ferent physical parameterizations, result in significant
quantitative differences in climate simulations. We an-
ticipate that this is true not only in the case of time
discretizations but also in the case of spatial discreti-
zations. It would be useful, for climate studies, to obtain
similar measures of the discrepancies that exist between
different spatial discretizations in GCMs with no
changes in the physics parameterizations.
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