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SUMMARY 
A new optimal nudging dynamical relaxation technique is tested in the framework of 4-dimensional 

variational data assimilation, applied to an adiabatic T40 version of the National Meteorological Center (NMC) 
spectral model with 18 vertical layers. Several experiments are performed using the NMC operationally analysed 
data. The variational data assimilation algorithm is also employed in a parameter-estimation mode to determine 
the vector of optimal nudging coefficients. Results of data-assimilation experiments involving estimated nudging. 
optimal nudging and variational data assimilation are  compared. Issues are addressed related to the dependence 
of the assimilation on  the length of the assimilation period ;is well as to the ability of retrieving high-quality 
model initial conditions. 

The study outlines the ability to obtain optimal nudging coefficients, which can vary in space, in the 
framework of a parameter-estimation approach using variational data assimilation. Based on our preliminary 
results the optimal nudging seems to be a most promising data-assimilation scheme. 

1. INTRODUCTION 

In recent years rapid advances in remote-sensing technology have led to the de- 
velopment of new observing systems capable of nearly continuous monitoring of the 
atmosphere. At the same time mainframe supercomputers have become more powerful, 
with improvements in memory size, the introduction of multi-processor capabilities as 
well as enhanced processor speed. These advances have created new opportunities to 
improve numerical weather prediction (NWP) capabilities significantly for both oper- 
ational and research purposes. Increasing the accuracy of numerical forecasts critically 
depends upon initial conditions. Four-dimensional (4-D) data-assimilation schemes pro- 
vide practical means for advanced model initialization that can successfully incorporate 
both synoptic and asynoptic data originating from a wide variety of observing systems, 
while accounting for the dynamic evolution of the atmosphere’s state. 

Among the 4-D data-assimilation approaches, nudging data assimilation (NDA) and 
variational data assimilation (VDA) methods are often considered to be two of the 
most promising techniques capable of utilizing the ever growing number of asynoptic 
observations. Briefly, the VDA method seeks to find an optimal initial condition which 
minimizes the differences between the model solution and observations in a certain 
assimilation time interval (see, for instance, LeDimet and Talagrand 1986; Navon et al. 
1992). It uses an optimal control approach based on adjoint model integration to obtain 
the gradient of the cost function, with respect to the control variables for the minimization 
procedure, efficiently. This approach is cheaper than the explicit finite-difference approxi- 
mation for the gradient calculation for large-dimensional models. Nevertheless, the cost of 
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the VDA method for real distributed data is still prohibitive for operational applications. 
Additional research is required to improve the rate of convergence of the minimization 
part of the algorithm by proper scaling and weighting. Other issues related to VDA 
concern determining the optimal length of the assimilation window, the treatment of 
on-off physical processes such as large-scale precipitation and deep cumulus convection, 
and the control of high-frequency gravity-wave oscillations, to mention but a few. 
Moreover, the adjoint VDA method may also be used to perform parameter estimation 
and sensitivity analysis. 

The NDA method relaxes the model state towards the observations during the 
assimilation period by adding a non-physical diffusive-type term to the model equations. 
The nudging terms are defined as the difference between the observation and model 
solution multiplied by a nudging coefficient. The size of this coefficient is chosen by 
numerical experimentation so as to keep the nudging terms small in comparison with the 
dominant forcing terms in the governing equations, in order to avoid the rebounding 
effect that slows down the assimilation process, yet large enough to impact the simulation. 
NDA techniques have been used successfully on the global scale by Lyne et af. (1982), 
Krishnamurti et al. (1991) and Lorenc et al. (1991), and in a wide variety of research 
applications on mesoscale models (Hoke and Anthes 1976; Davis and Turner 1977; 
Ramamurthy and Carr 1987, 1988; Wang and Warner 1988; Stauffer and Seaman 1990, 
to cite but a few). The NDA can be thought of as an iterative approximation to the 
Kalman filter (KF) (Lorenc 1986; Lorenc et al. 1991). The NDA method is a flexible 
assimilation technique which is computationally much more economical than the VDA 
method. However, results from NDA experiments are quite sensitive to the ad hoc 
specification of the nudging relaxation coefficient, and it is not at all clear how to choose 
a nudging coefficient so as to obtain an optimal solution. 

In this study we aim to combine the aforementioned data-assimilation schemes in 
the most efficient way. A parameter-estimation approach is used in the framework of 
the VDA algorithm to determine optimally the coefficients for the NDA scheme. The 
goal is to find optimal nudging coefficients which best assimilate the given observations. 
It is well known that the best nudging coefficients are those related to a KF in a linear 
system of equations. Application of the KF technique to the assimilation of meteorological 
(or oceanographical) observations has been studied by several authors (e.g. Ghil and 
Malanotte-Rizzoli 1991), and present operational NDA procedures can be described as 
degraded forms of the KF. However the KF is very costly to implement in practice. 

We can obtain optimal nudging coefficients in a much more economical way by using 
the VDA method; this allows the adjusting of variables other than the initial conditions 
for either linear or nonlinear systems and employs an adjoint model for gradient 
calculation. Parameters in the NWP model can easily be incorporated in the adjoint 
VDA procedure and serve as additional control variables. The variational algorithm is 
formulated here using the nudging coefficient as the control parameter. The nudging 
coefficient is estimated so that the model solution is as close as possible to the obser- 
vations. Operationally analysed data from the National Meteorological Center (NMC) 
will be assimilated into the model. The plan of this paper is as follows. In section 2 the 
dynamical NDA scheme and the parameter estimation are briefly described for a general 
model; relations among NDA, optimal NDA and VDA are also discussed. In section 3 
computational details and numerical results aimed at assessing the data-assimilation 
performance of estimated NDA, optimal NDA and VDA procedures are presented, 
using an adiabatic T40 version of the NMC spectral model with 18 vertical layers. Section 
4 contains conclusions. In appendices A and B we cover the detailed derivation of the 
gradient calculation by using the adjoint model. 
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2. OPTIMAL NUDGING SPECIFICATION 

( a )  Dynamical nudging 
We assume that the model equations have been discretized in space by a finite 

difference, finite element, or spectral discretization method. The time continuous model 
satisfies dynamical equations of the form 

ax 
d t  
- = F ( X )  

X(t , ,)  = l!J (2.2) 

where X represents the discretized state variable of the model atmosphere, t is time and 
U represents the initial condition for the model. Say, for instance, P ( t )  is a given 
observation, the objective of VDA is to find model initial conditions that minimize a 
cost function defined by 

2 ( U )  =( ’“ (W(X-Xo) ,X-Xo)d t  (2.3) 
10 

where ( ) is an inner product of two vectors and W is a diagonal weighting matrix. Note 
that 9 is only a function of the initial state U because X is uniquely defined by the model 
equations (2.1)-(2.2). 

An implicit assumption made in VDA is that the model exactly represents the state 
of the atmosphere. However, this assumption is not true. 

The NDA technique introduced by Anthes (1974) consists in achieving a compromise 
between the model and the observations by considering the state of the atmosphere to 
be defined by 

ax 
- = F ( X )  + G ( X O  - X )  
at 

where G is a diagonal matrix with G,”,,, , GT, GI), G, and G, as its diagonal submatrices 
representing adjustable nudging coefficients for the surface pressure, temperature, diver- 
gence, vorticity and moisture fields respectively. 

Together with the initial conditions 

X(t,,> = (2.5) 
the system (2.4) has a unique solution X ( U ,  G). 

The main difficulty in the NDA scheme resides in  the estimation of the nudging 
coefficient G (Stauffer and Seaman 1990). If G is too large, the fictitious diffusion term 
will completely dominate the time tendency and will have an effect similar to replacing 
the model data by the observations at each time step. Should a particular observation 
have a large error that prevents obtaining a dynamic balance, an exact fit to the 
observation is not required since it may lead to a false amplification of observational 
errors. On the other hand, if G is too small, the observation will have little effect on the 
solution. In general, G decreases with increasing observation error, increasing horizontal 
and vertical distance separation, and increasing time separation. In the experiment of 
Anthes (1974) a nudging coefficient of was used for all the fields for a hurricane 
model and was applied on all the domain of integration. In the experiment of Krishnamurti 
et af. (1991) the relaxation coefficients for the estimated NDA experiment were kept 
invariant both in space and time, and their values were simply determined by numerical 
experience. The following values were used: 
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G,, elnp, = 1 x 1 0 - 4 - 1  

eD = 0.5 x 1 0 - 4 - 1  

i.e. the vorticity, divergence and the pressure tendency fields are subjected to the 
Newtonian relaxation. The implicit dynamic constraints of the model then spread the 
updated information to the other variables (temperature and moisture) resulting even- 
tually in a set of balanced conditions at the end of the nudging period. 

We will now present a new parameter-estimation approach designed to obtain 
optimal nudging coefficients G*. They are optimal in the sense that the difference 
between the model solution and the observations will be small. The value in (2.6) will 
be used both as the nudging coefficient for estimated NDA experiment (usual NDA 
using ad hoc nudging parameters) and as the initial guess in a variational parameter- 
estimation approach aimed at obtaining optimal nudging coefficients. 

(b)  Parameter estimation 
By fitting the model solutions to the observational data, the unknown parameters 

of the model can be deduced simultaneously by minimizing a cost function that measures 
the misfit between the model results and observations, in which the model parameters 
are the control variables. For example, the barotropic gravity-wave speed in a two- 
dimension reduced-gravity, linear-transport model for the equatorial Pacific Ocean was 
used as a parameter control variable (Smedstad and O'Brien 1991). In the work of 
Panchang and O'Brien (1988) the friction coefficient for a one-dimension tidal-flow 
model was the parameter to be estimated from the observations. 

The application of the variational approach to determine model parameters is 
conceptually similar to that of determining the initial conditions. In the following we will 
present a brief illustration of the method. 

For the parameter estimation of the nudging coefficients, the cost function 8, can be 
defined as 

8,(C) = 1'" (W(X - X") ,  X - X o )  dt + 1'" (K(C  - 6), G - 6) dt (2.7) 
10 10 

where denotes the estimated nudging coefficients and the Ks are specified weighting 
matrices. Here observations are assumed everywhere on model grid points for simplicity. 
For a more realistic case, a transform operator H from X to X" should be included in 
(2.7) and hence G will no longer be a diagonal matrix with constant terms in each block. 
The second term plays a double role. On one hand it ensures that the new value of the 
nudging parameters is not too far away from the estimated quantity. On the other hand 
it enhances the convexity of the cost function since this term contributes a positive term, 
K ,  to the Hessian matrix of 8, (see also Smedstad and O'Brien 1991). 

An optimal NDA procedure can be defined by the optimal nudging coefficients G* 
such that 

8,(G*) 8,(G), VG. (2.8) 
The problem of extracting the dynamical state from observations is now identified as the 
mathematical problem of finding initial conditions or external forcing parameters that 
minimize the cost function. 

Owing to the dynamical coupling of the state variables to the forcing parameters, 
the dynamics can be enforced through the use of a Lagrange function constructed by 
appending the model equations to the cost function as constraints, so avoiding the 
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repeated application of the chain rule when differentiating the cost function. The 
Lagrange function is defined by 

dX 
L ( X ,  C ,  P )  = 3 + ( P ,  - F ( X )  - G(X" - 

where P is a vector of Lagrange multipliers. The Lagrange multipliers are not specified 
but computed in determining the best fit. 

The gradient of the Lagrange function must be zero at the minimum point. This 
results in the following first-order conditions: 

dL 
dX 
_ -  - 0 - adjoint model forced by 2W(X - X " )  

_ -  - 0 - direct model (2.4) 

(2.10) 

(2.11) 
d L  
aP 

The solution of Eqs. (2.10)-(2.12) is called the stationary point of L.  Even if the 
dynamical evolution operator is nonlinear, the equations (a L/dX = 0)  will be the same 
as those derived by constructing the adjoint of the linear-tangent operator; the lin- 
earization is automatic owing to the Lagrange function L being linear in terms of the 
Lagrange multipliers P. 

An important relation between the gradient of the cost function (2.7) with respect 
to parameters G and the partial derivative of the Lagrange function with respect to the 
parameters is 

dL 
V G % ( G )  = -1 (2.13) 

i.e. the gradient of the cost function with respect to the parameters is equal to the left- 
hand side of (2.12) which can be obtained in a procedure where the model state P is 
calculated by integrating the direct model forward and then integrating the adjoint model 
backwards in time with the Lagrange multipliers as adjoint variables. 

Using this procedure we can derive the following expressions of the adjoint-model 
equation and gradient formulation (see appendix A) 

G at stationary point 

\ dP -+ - P - G T P = W ( X - X O )  
a t  KIT (2.14) 

J P ( t R )  = 0 
and 

IR 
V,g = -1 ((P - X), P) dt + 2K(G - c). (2.15) 

10 

We see that the adjoint equation of a model with a nudging term added is the same as 
that without a nudging term except that an additional term -GTP was added to the left- 
hand side of the adjoint equation. 

Having obtained the value of cost function 9 by integrating the model (2.4) forward, 
and the value of the gradient V& by integrating the adjoint equation (2.14) backwards 
in time, any large-scale unconstrained minimization method may be employed to mini- 
mize the cost function and finally obtain an optimal parameter estimation. If both the 
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initial condition U and the parameter G are controlled, the gradient of the cost function 
for performing the minimization would be 

0s = ( V u s ,  W I T  (2.16) 
where 

vus  = -fYto) (2.17) 

see Navon et al. (1992). 

(c) Kalman filter and optimal nudging 
In this section we give a brief description of the KF (see also Ghil and Malanotte- 

Rizzoli 1991) and the connection between the KF, nudging, optimal nudging and VDA. 
Starting from the forecast model (2.1) which is advanced in discrete time steps At, 

X,, = X(r,), t ,  = nht ,  i.e. 

X i  = Yn-1Xi-1 (2.18a) 

where the superscript f stands for the forecast and the superscript a for the analysis, Y 
is the discretized form of the system matrix, describing the model dynamics. 

A linear unbiased data assimilation scheme for the analysed model state can be 
written as 

X i  = x', + G,(XZ - H,x',). (2.18b) 

where H represents the fact that only certain variables or combinations thereof are 
observed at a set of points smaller than the total number of model grid points. The 
weight matrix G, is often called the gain matrix. The KF uses an optimal G, to carry out 
such a linear unbiased data assimilation. The optimality is defined in the context of the 
following assumptions. 

First assume the true evolution of the atmosphere, X i ,  is governed by 

X h  = Yn-iXi-l + bL-1 (2.19a) 

where bL is a Gaussian white-noise sequence, i.e. 

Ebh = 0 ,  Eb h (b  j )T = Q n 8 nl (2.19b) 

with E being the expectation operator and being the Kronecker delta function. The 
second assumption used in optimizing the weight matrix G, concerns the error model for 
the observations 

Xt: = H,Xh + b: (2.20a) 

where b;,  the observational noise, satisfies 

Eb; = 0 Eb:(bi')T = Rn8,/. (2.20b) 

The third assumption is that system noise and observational noise are uncorrelated with 
each other: 

Eb:(b:)T = 0. (2.21) 

(2.22) 

Using (2.18)-(2.21), one can derive the time evolution of the error covariance matrix 

W i  E ( X i  - Fj)' ( X i  - X i )  = ( I  - GnHn)W:(I - G,Hn)T + G,RnG;f 
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where 

Wf,. .E(Xf,-X:)T(X',-X:)=yk-,W;-l\V;r-,  + Q k - 1 .  (2.23) 

Hence, by advancing Wf, ,  W ;  along with xf, , X i ,  one can know how well the true state 
X, is estimated by X ;  for any weight matrix G,. This in turn permits one to determine 
the optimal G, by minimizing 

$ K F ( G n )  = t rw;  (2.24) 

where tr denotes the trace of the matrix. 
The optimal weight matrix G, at the nth time step is obtained by using (2.22) for 

the matrix Wi and setting the derivative of $ with respect to each element of G, equal 
to zero, The minimum is attained for 

G,* = W ~ H ; r ( H , W ~ H ~  + R J T .  (2.25) 

The above linear unbiased data assimilation scheme (2.18a, b) with the optimal gain 
matrix G*, (2.25) is called the KF (Kalman 1960). 

There are two problems which arise in the KF. The first is the computational 
complexity of advancing in time the error covariance matrices. While Eqs. (2.18a, b) 
represent O ( M )  computations per time step, Eqs. (2.22)-(2.23) represent, at face value, 
O(M2)  computations. Second, the noise covariance matrices Q, and R, are assumed to 
be known in the subsequent derivation of the optimal G,. This is not so in practice, and 
finding the actual magnitude of system and observational errors is an important function 
of the data-assimilation process. 

The nudging scheme is carried out by the following procedure (see (3.2)): 

XE = Y , - l X : -  j + G,(X i  - H,X;) .  (2.26) 

The optimal nudging coefficients G,, n = 0 , .  . ., R,  are obtained by minimizing a cost 
function measuring the distance between the analysis and the observations 

R 

$NDA(G)  = c (x; - m T w ( x ;  - z",. (2.27) 

From (2.18) and (2.24) we see that the core of the KF is the optimal merging of 
observation and forecast information in the sense that the expected mean-square 
estimation error is minimized at every time step. The optimal NDA, on the other hand, 
is the optimal merging of observations and analysis in the sense that the total differences 
between them in a certain window of assimilation is minimized (see (2.26) and (2.27)). 
The main differences between the KF and the optimal NDA described in this paper are: 

(i) observation errors at different times are assumed to be uncorrelated; 
(ii) the weight matrix G, at  each time step is determined sequentially in the KF, while 

the nudging coefficients at every time step in the window of assimilation are obtained 
simultaneously. However, the two problems of the KF described above disappear in 
the optimal NDA. The computational cost is reduced by using an adjoint-model 
integration in the parameter-estimation mode of VDA. Moreover, the optimal NDA 
does not require any knowledge of the noise covariance matrices. 

Therefore, the estimated NDA, the optimal NDA and the KF differ from each other 
mainly in the choice of the weight matrix G,. The VDA, on the other hand, takes both 
the model forecasts and the observations as perfect, i.e. bf, = 0 and b; = 0 when n # 0. 
It attempts to obtain an optimal initial condition (V") which minimizes the cost function 

n = O  
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R 

$VDA(U) = c (Xi - W ( X  - x3. (2.28) 

The theoretical framework of estimation and control theory provides the foundation 
of data-assimilation techniques. The estimated NDA and the KF are closer to the 
estimation theory, the VDA to the optimal control aspect, while optimal NDA is a 
combination of both (see also Lorenc 1986). 

n=O 

3. NUMERICAL EXPERIMENTS 

(a)  Algorithmic implementation 
Our procedure for obtaining the optimal nudging coefficient by parameter estimation 

is as follows: 
(1) Start with an initial guess for the control variables: the initial state U(O) and the 

nudging parameter G(O), where U(O) is taken to be the NMC operationally analysed data 
at time to and G(O) the estimated quantity defined in (2.6). Set the iteration number 
k = 0. 

(2) Integrate the model (2.4) forward in time and calculate the value of the cost 
function defined by 

$(u, G) = W(Uck’ - L % ? ( ~ O ) ) ~  + W(X(”((tR) - p ( t R ) ) 2  (3.1) 
where L%?(to) is the result of the normal mode initialization (NMI) of U ’ O ) ,  p ( t R )  is the 
6 h  or 12h  model integration by the forward nonlinear model (2.1) from the initial 
condition p(to), S k ) ( t R )  the model solution of equation (2.4) (i.e. the foreward nonlinear 
model augmented by the nudging terms) from the initial condition u“), and the weight 
matrix W is defined as the inverse of the maximum square of the difference between two 
time-level observations. Store in memory the misfit between the model solution and the 
observations W ( S k )  - P) at two times to and tR when observations are available. 

(3) Integrate the adjoint equation (2.14) backwards in time and calculate the gradient 
of the cost function with respect to the control variables using (2.15)-(2.17). 

(4) With both the cost function and its gradient being available, apply a limited- 
memory quasi-Newton (L-BFGS) unconstrained minimization method (Nocedal 1980; 
Liu and Nocedal 1988) to obtain a new value for U and G: Uk+’) and G(k+*) .  

(5) Check if the convergence criterion 

Hv~ll/llvsoll =s E (3.2) 
is satisfied, where E is a predetermined adequately small number. Set k + 1 = k and 
return to step (2) if the convergence criteria in (3.2) is not satisfied. 

In each case, no prior information was presumed ( K  = 0). 
For the nudging terms added to the model, an implicit time-differencing scheme was 

used in order to ensure the computational stability for any value assumed by the nudging 
coefficients. The time integrations are carried out in two steps, the tendency without the 
nudging term, X*(t  + At) being calculated first. The Newtonian term is then expressed 
in finite difference form using the relation 

X(t  + At)  - X*(t  + At) 
= G(X”(t  + At) - X(t + At)). 

2 At (3 .3 )  

The aims of this study are: to determine the ‘best’ or ‘optimal’ nudging coefficients, 
and to gain insight into the differences in performance of the variational and NDA 
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techniques applied to an adiabatic version of the NMC spectral model (Navon et al. 
1992). To accomplish these dual objectives, a sequence of experiments were performed, 
all of them using NMC operationally analysed data or model-generated data. 

(b)  Optimal estimation of the nudging coeficient 
It is important to obtain the correct gradient of the cost function with respect to the 

nudging coefficients in the parameter-estimation procedure before we carry out the 
minimization of the cost function. One way to check that a correct gradient has been 
obtained is to calculate the value of the function 

(3.4) 

In Table 1 values of the function *(a) are given as a function of a. It is noted that for 
a between lo-'(' to Eq. (3.4) is verified. A correct gradient has therefore been 
found. 

TABLE 1. VERIFICATION OF THE 
GRADIENT OF THE COST FUNCTION WITH 
RESPECTTO THE NUDGING COEFFICIENT, 

USING THE ADJOINT MODEL 

10-9 

10-11 
lo-'* 
10-13 
10-14 
10-15 

10-17 

10-19 
10-18 

10-2" 

*(a) 

1.520186555 
1.037451 906 
1.003640547 
1.000363038 
1.000036316 
1.000003667 
1.000000842 
0.999973 1466 
1.00006 1370 
1.000831928 
0.992791 3232 
0.8040604642 

Having obtained the correct gradient we minimize the cost function using the limited- 
memory quasi-Newton unconstrained minimization method (Liu and Nocedal 1989) in 
order to find the optimal nudging coefficient in the parameter-estimation procedure. In 
the NDA experiment one chooses the predicted variable fields to be assimilated. In the 
first NDA experiment, divergence, vorticity and surface pressure fields are adjusted (see 
Krishnamurti et al. 1991). In the second NDA experiment, divergence, vorticity and 
temperature fields are adjusted (Kuo and Guo 1989). 

The first experiment involved nudging the surface pressure, divergence and vorticity 
in a 6-hour assimilation window. In Fig. 1, values of the cost function and the initial and 
final values (after 30 iterations) of the gradient norm are shown. The norm of the gradient 
decreases four orders of magnitude during the 30 iterations. We note a rapid decrease 
in the cost function during the first few iterations. After six iterations the value of the 
cost function has already decreased by about two orders of magnitude and the algorithm 
has practically converged. 

Figure 2 shows the corresponding evolution of the nudging coefficients in the optimal- 
parameter-estimation procedure. During the first four to five iterations, all the nudging 
coefficients, Glnp,, GD and G,, are observed to undergo a rapid increase. Then both 
Glnp, and G, keep increasing slowly while G ,  starts to decrease slowly. After 15 iterations 
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400 - - 
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BOO 
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0 

- I . . . . I . . . . ~ . . . . , . . . . ~ . . . . ~ . . . .  

.. - - - . - . __ . - -_ -_ . . .  - -  
5 / - -  

- - I  * \  - - - _ _ _ _ - - -  

- 
I 

I . . . . I . . . . I . . . . I . . . . I .  . . .  I . . . .  

10-2 10'2 

m4 

10.5 

Figure 2. 
iterations. Both the initial conditions and the nudging coefficients 

Variation of the nudging coefficients, G,,,, (-), GI, (---) and G; (. . .), with the number of 
Gn and G, serve as control variables. 

The length of the assimilation window IS 6 hours. 

an optimal value of the respective nudging coefficient was attained. The values for the 
optimal nudging coefficients are presented in Table 2. We found that the values of 
the optimal nudging coefficients are larger than the corresponding estimated nudging 
coefficients, as suggested by Krishnamurti et al. (1991). Noticing that the spectral 
truncation of our experiment (T40) is smaller than theirs (T106), the values obtained for 
the optimal nudging coefficients appear to be very reasonable since it is a general 
experience that the nudging coefficients increase with decreasing horizontal resolution. 

A similar minimization for the parameter estimation was carried out where this time 
the length of the assimilation window was increased from 6 hours to 12 hours. In Figs. 
3-4 we present the corresponding results from the above minimization. Similar results 
are obtained when we compare Figs. 3-4 with Figs. 1-2. 
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I . . . . , . . . . I . . . . I . . . . , . . . . I . . . .  

initial gradient norm: 4.348E12 - 
final gradient norm: 7.629E-3 

- 

- - 
- - 

- - 
\ 
I . . . . I . . . . I . . . . I . . . . I . . . . I . . . .  

TABLE 2. O P r I M A L  NUDGING PARAMETERS 

1200 

1000 

800 

600 

400 

200 

~~ ~ ~ _ _ _  ~ ~ 

Nudge Inp,, D ,  t Nudge T ,  D, t 
Nudging 

coefficients 6 hours 12 hours 6 hours 12 hours 

103 
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Instead of nudging the surface pressure which is important for data assimilation in 
the tropics (Krishnamurti et al. 1991; Brill et al. 1991), we decided to nudge the 
temperature field. The optimal nudging coefficients obtained by parameter estimation 
are shown in the last two columns of Table 2. 

We note here that the optimal nudging coefficient does not tend to infinity as the 
minimization proceeds. With an infinite nudging coefficient G, X will be set to XO at time 
tR, but X(t,) will tend to p(to), i.e. the second term in (3.1) will be zero but the first 
term will remain non-zero. This explains why the infinite nudging coefficient G cannot 
minimize the cost function 9. Actually, when the minimization proceeds, both the initial 
state U and the nudging coefficient G are updated and the optimal solution of the 
minimization problem (3.1) is obtained because of the combined effect of the model 
dynamics and the nudging term. 

(c )  Comparisons between estimated nudging, optimal nudging and VDA 
The NDA and VDA techniques are compared using observations at two time levels 

to and tR as described in section 3(a). Because observations were available at every model 
grid point and at the two time levels, t = to and t = tR,  the predetermined estimation of 
the model variables at each time step for the NDA scheme was obtained by linear 
interpolation in time (Ramamurthy and Carr 1987). In this way information at both end 
points of the assimilation time interval is allowed to influence the assimilated value. 

The experiment that follows consists of four types of assimilation: 

(1) a control assimilation without nudging, 
(2) an assimilation with estimated nudging coefficient , 
(3) an assimilation with the optimal nudging coefficients determined by parameter 

estimation using VDA procedure, and 
(4) VDA minimizing a cost function measuring the distance between the model 

solution and observations. An overview of the experiment is depicted in Fig. 5.  

In this work, a value of G similar to that suggested by Krishnamurti et al. (1991) 
was used for the NDA experiment (called estimated NDA). Optimal nudging coefficients, 
determined in section 3(b) by a parameter-estimation procedure using the adjoint 
technique, were used for the optimal NDA experiment. 

After obtaining both the estimated and optimal nudging coefficients for the four 
cases: (a) nudging the lnp,, D, fields in a 6 h window, (b) nudging Inp,, D, [ fields in 
a 12 h window, (c) nudging T ,  D ,  ( fields in a 6 h window, and (d) nudging T ,  D ,  5 in a 
12 h window, we can perform eight parallel NDAs with both the estimated and optimal 
nudging coefficients. For the sake of comparison, and with a view to obtaining a better 
insight into the ability of the optimal NDA procedure, we also carried out four similar 
VDA experiments. The retrieved initial conditions after 30 iterations were taken as the 
final results of the VDA. The ensuing 6 h or 12 h integrations (depending on the length 
of the assimilation window) from the retrievals are used for carrying out a comparison 
with the corresponding results of the NDA schemes. 

We do not intend to compare the NDA with the VDA approaches directly since the 
two methods have their own arbitrariness in the definition of the cost function, the choice 
of the minimization algorithm, the determination of stopping criteria, the length of 
assimilation window and the choice of nudging coefficient. However, the ability to 
reconstruct as accurately and economically as possible the state of the flow is of paramount 
importance. 

Root-mean-square (r.m.s.) errors are computed for the aforementioned 12 assimi- 
lation experiments. Table 3 shows the total r.m.s. differences for all the model variables. 
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Figure 5. A schematic view of the assimilation-forecast cycle. 

If we compare the results of the estimated NDA (nudging using estimated ad hoc nudging 
coefficients), the optimal NDA (nudging with optimal nudging coefficients) and the 
VDA procedures, we find that the estimated NDA approach yields the poorest results. 
Optimal NDA yields the best results, except in the case of temperature, 
divergence and vorticity field assimilation in a 6 h window where the VDA results in a 
slightly smaller r.m.s. value than the corresponding optimal NDA approach. Both the 
optimal NDA and the VDA perform much better than the estimated NDA procedure. 

Figure 6 shows the vertical variation of the r.m.s. differences of the divergence field 
for the various aforementioned assimilation experiments. The r.m.s. difference of the 
control assimilation (dash-dotted line) is significantly reduced when an optimal NDA is 
applied for both the 6 h (Fig. 6(a)) and 12 h (Fig. 6(b)) assimilation windows. The 12 h 
optimal NDA yields a smaller r.m.s. difference than the corresponding 6 h optimal NDA. 
The opposite is true for the VDA. The estimated NDA in the 12 h window results in an 
even larger r.m.s. difference than the one obtained in the control assimilation experiment. 

Since the available observations at time to and the model-generated observations 
at time tR are both free of gravity-wave oscillations while the initial guess for the 
assimilation contains gravity-wave oscillations, one way to estimate the quality of 
the assimilated fields is to find out the amount of the residual gravity oscillations for 
24 h forecasts integrated from assimilated fields at time tR .  The results are shown in Figs. 
7-10. 
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TABLE 3. DIFFERENCES B E M E N  THE ASSIMILATED AND THE TRUE MODEL INITIAL CONDITIONS 
BY ESTIMATED NUDGING, OPTIMAL NUDGING AND VARIATIONAL ASSIMILATIONS 

~ ~~ 

Estimated Optimal Variational 
nudging nudging assimilation 

Length of Assimilated 
window variables Fields Root-mean-square 

6 hours 

3.92E-4 
1.74E-1 
1.24E-6 
1.02E-6 
4.04E-5 

7.11E-4 
1.06E-1 
1.28E-6 
1.04E-6 
4.32E-5 

1.37E-4 
2.18E-1 
2.95E-7 
2.06E-7 
4.4OE-5 

5.93E-4 
9.61E-3 
3.22E-7 
4.568-7 
4.67E-4 

7.31 E-5 
8.61E-2 
5.74E-7 
4.05E-7 
1 S6E-5 

2.71E-4 
1.82E-2 
2.72E-7 
1.41E-7 
3.33E-6 

In P. 1.90E-3 
T 9.00E-1 

Inp,, D ,  5 D 3.848-6 
9.00E-6 
2.62E-4 

6 
4 

In Ps 5.07E-4 
T 1 S4E-1 

T,  D, 6 D 1.55E-6 
6 1.94E-6 
4 8.00E-5 

12 hours 

1.68E-4 
3.96E- 1 
5.278-8 
4.26E-7 
1.12E-4 

5.138-4 
1.80E-2 
1.20E-7 
5.15E-7 
1.12E-4 

3.25E-4 
1.64E-1 
7.74E-7 
1.01E-6 
1.58E-5 

5.36E-4 
9.67E-2 
6.978-7 
9.20E-7 
2.82E-5 

The evolution of the surface pressure at a point in the Indian Ocean (hereafter called 
Point 1) after 6 h assimilation is shown in Fig. 7. In Fig. 7(a) we present the results from 
a control run without nudging (dash-dotted line), an assimilation with estimated NDA 
of lnp,, D, and fields (dotted line) and an assimilation experiment with optimal NDA 
of the same fields (solid line). The control assimilation exhibits the presence of a large 
amount of gravity oscillations while the oscillations in the forecast initialized by estimated 
NDA become relatively smaller. However, full damping of the gravity-wave oscillations 
occurs only when an optimal NDA scheme is applied. The results obtained using optimal 
NDA assimilation were then compared with the ones obtained from the VDA and the 
reference forecast (forecast from the observation at time 6 h), respectively. These results 
are displayed in Fig. 7(b). Only small differences may be perceived amongst them, the 
result from the VDA (dotted line) being somewhat closer to the reference forecast 
(dashed line) while the result from the optimal NDA experiment (solid line) being 
smoother. 

Figure 8 presents a 24 h forecast ensuing from the 12 h assimilation. The forecast 
from the estimated NDA (dotted line) still contains some gravity-wave oscillations with 
opposite phase to the control assimilation (dash-dotted line). The optimal NDA yields 
a satisfactory damping of the gravity oscillations, and seems to perform better than the 
VDA (Fig. 8(b)), provided that the minimization of the cost function in the VDA was 
stopped after 30 iterations as before. 

Finally, Figs. 9-10 display the forecast from assimilations when observations of the 
temperature, divergence and vorticity fields are available, i.e. when the surface pressure 
field is not nudged in the NDA scheme and the weighting coefficient for the surface 
pressure in the cost function is set to zero in the VDA. Figure 9 shows the variation of 
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Figure 6. Distributions of the root-mean-square differences for the divergence field between the true solution 
and the assimilated fields at the end of the (a) 6-hour and (b) 12-hour assimilation intervals. Results are 
shown for different assimilation experiments: control run (-.-), estimated nudging (. . .), variational data 
assimilation (---) and optimal nudging (-). The surface pressure, divergence and vorticity fields are nudged. 

the surface pressure at Point 1, and Fig. 10 at Point 2, which is located near the Rocky 
Mountains. Again the optimal NDA procedure yields the strongest damping of the 
gravity oscillations while the VDA matches well the reference forecast. Here we found 
that even without directly nudging the surface pressure, gravity-wave oscillations present 
in the ensuing 24 h forecast in the surface pressure field have practically vanished owing 
to the mutual dynamical adjustment between the variables in the model. 

In view of these initial experimental results, we are led to the conclusion that the 
optimal NDA procedure performs much better than the estimated NDA procedure and 
compares favourably with the VDA approach for the data set used here. It is worth 
noting that the computational cost (or the total CPU time) of NDA is much cheaper 
than the corresponding computational cost required by the VDA. Optimal nudging 
coefficients can be obtained in at most seven unconstrained minimization iterations of 
the cost function when both the initial conditions and the nudging coefficients serve as 
control variables for the minimization of the cost function. For real data assimilation, 
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Figure 7 .  Temporal variation, over a 24-hour period, of the surface pressure field at Point 1 in the Indian 
Ocean from the assimilated fields with a 6-hour assimilation window. (a) Without nudging (---), with 
estimated nudging coefficients (. . .) and optimal nudging coefficients (-). (b) Variational data assimilation 
(. . .), optimal nudging coefficients (-) and the true solution (---). The surface pressure, divergence and 

vorticity are nudged. 

one has to carry out only a parameter estimation to obtain the optimal nudging coefficients 
which will result in a sizably smaller dimension of the control variable vector. Once the 
optimal nudging coefficient is obtained, a single run of the model is required to accomplish 
the optimal NDA. The idea put forward here is to combine the NDA procedure with 
the VDA approach in an optimal way in order to obtain a practical, satisfactory and 
implementable data-assimilation scheme for operational applications. 

( d )  Space variable optimal nudging 
One factor governing the efficiency of the NDA process for damping of model errors 

is the ratio of the time-scale G-' to that given by the Coriolis parameter, f-' (Lorenc et 
al. 1991). Since the time-scales of the variables over different portions on the sphere and 
on different vertical levels may vary strongly, use of optimal nudging coefficients C, 
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Figure 9. Same as Fig. 7 except that the temperature field is nudged instead of the surface pressure field. 

In most of the conventional NDA experiments, estimated or experimental values of 
nudging coefficients were used, in which the nudging coefficient for a particular nudged 
variable is invariable in space. In a recent experiment by Ramamurthy and Xu (personal 
communication), nudging coefficients multiplied by a so-called confidence factor designed 
to take into account the three-dimensional distribution of new observations were used. 
The normalized confidence factors, which range from 0 at those points where no new 
data is available for the analysis to 1 where-perfect observations are available, are based 
on the ratio of first-guess error estimate to analysis error estimate. However, their 
preliminary result shows that the use of the confidence factor, based on the analysis and 
background error estimates, did not have an appreciable impact when compared with 
nudging everywhere with a constant confidence factor of 1. 

Here the optimal variable nudging coefficients are obtained by the same parameter- 
estimation procedure as used to obtain the previous optimal constant nudging coefficient. 
The only difference from the previous experiments is the increase in the dimension of 
the control variables vector. Since our observations are perfect, we know in advance that 
the spatial variations of the optimal variable nudging coefficients will be very small (i.e. 
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Figure 10. Same as Fig. 9 except at Point 2 near the Rocky Mountains. 
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the confidence factor is 1 everywhere). Figure 11 shows, for example, the horizontal 
distribution of the optimal nudging coefficient of surface pressure, G,,+. The spatial 
variability is less than 0.06%. Therefore, using a constant optimal nudging coefficient 
for each variable is satisfactory for perfect observations’ assimilation. 

From this experiment we are not able to draw the conclusion whether the optimal 
variable nudging will be more beneficial than constant optimal nudging because of the 
perfect observations we are using. However, the ability of determining variable optimal 
nudging coefficients by parameter estimation in the framework of VDA constitutes a 
major advantage of the optimal NDA over the estimated NDA approach, since it is 
extremely difficult to determine space-varying nudging coefficients by numerical experi- 
mentation. Moreover, the variable optimal NDA method does not require statistical 
information. 

4. CONCLUSIONS 

In this study we used the adjoint model of an adiabatic version of the NMC 
spectral multilayer model with diffusion and surface drag, developed in the VDA system 
framework, to determine optimal nudging coefficients (which can vary in 3-D space) 
effectively using a parameter-estimation approach to be applied in a NDA procedure. 
This procedure is much more economical than the VDA owing to the tremendous 
computational cost of the latter scheme. 

Our experiments show that optimal NDA is practically implementable and performs 
very well in as far as the convergence and quality of the resulting assimilated state are 
concerned. 

This study of VDA, NDA, and optimal NDA using the optimal parameter-estimation 
approach, indicates the potential future of optimal NDA application in operational data 
assimilation where observations in a certain time window can be effectively incorporated 
into the model so as to provide the best model initial conditions. However, it should be 
emphasized that a final assessment of the usefulness of the optimal NDA procedure has 
to await further experiments using more realistic conditions. 

The idea here is to exploit the advantage of VDA’s capability of performing a 
parameter estimation to obtain optimal nudging coefficients and then to revert to the 
computationally efficient NDA. The whole procedure of determining optimal nudging 
coefficients and carrying out nudging with these optimal coefficients is conceptually nearly 
equivalent to the implementation of the KF data assimilation. The main advantage of 
optimal nudging over the KF is that the cost of computation of the forecast-error 
covariance, which is the central ingredient of the KF, was avoided owing to the use of 
an adjoint model integration. 

In a follow-up paper we will apply this optimal NDA procedure to more realistic 
situations, such as using observations which are not perfect, using the entire physical 
package of the NMC model. 
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APPENDIX A 

Derivation of the continuous expression of V& 
The dynamical model equations (2.1) viewed as strong constraints can be enforced by 

introducing a set of undetermined Lagrange multipliers. This leads to the formulation of 
the Lagrange function, given as 

where ( ) is the inner product of two vectors and P is the Lagrange multiplier vector, 3 
is defined in (2.7), G is the nudging coefficient and tR - to is the time length of the 
assimilation window. 

The constrained optimization problem is then replaced by a series of unconstrained 
minimization problems with respect to the variables U and G. By doing so, the problem 
of minimizing the cost function, subject to the model equations, becomes a problem of 
finding the stationary points of the Lagrange function. This in turn is equivalent to the 
determination of U and G subject to the condition that the gradient of the Lagrange 
function vanishes. This results in the following set of equations: 

dL(X ,  G, P)  
= O  

dP 

Equation (A.2) recovers the original model equation (2.4), while (A.3) becomes 

a ax agi + - 1" ( P , x  - F ( X )  - G ( P  - X) )  dt = 0. ax ax 
f0 

Substituting (2.6) into (AS) and using integration by parts we obtain 

- j" ([g] - G, P )  dt = 0. 
10 

Using initial conditions (2.2) and assuming 

P ( t R )  = 0 

(A.6) becomes 

1'" 2W(X - x o j  dt - 1'" {$ + [%IT P - GTP 1 dt = 0 
f 0  10 

(A.7) 

for any length of the assimilation window t R  - to, where ( )T represents the transpose. 
Thus the integrated function should be zero, which results in the adjoint equation, given 
by 
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P - G T P =  W(X-x") 
at  

J P(tR) = 0 
which is the same as (2.14). 

It is worth noting that the adjoint equation has a form similar to the original model 
equation, except for two important features. The first feature is that the nudging term 
in the adjoint equation has opposite sign to that in the model equation. The second 
feature relates to stability of the well-posed problem, thus requiring the integration of 
the adjoint equation to be backwards in time. In addition, the driving factor for the 
adjoint equation is the weighted difference between the model and the observations. 
The Lagrange multipliers carry the information about the data back to the initial time 
to influence the reconstruction of the model state. 

Substituting (A.l) into (A.4), we have 
1R 

fo 
2K(G - 6) - I (PI x" - X )  dt = 0. (A.lO) 

Starting with a first guess for the unknown nudging forcing coefficient, the model 
equations (2.4)-(2.5) are integrated forward to obtain the state trajectory corresponding 
to this guess, and the adjoint equation (A.9) is then integrated backwards to compute 
the corresponding Lagrange multipliers, which provide information about the gradient 
of the cost function at the point of the first guess. The gradient of the cost function with 
respect to the nudging parameter is then given by the left-hand side of (A.10), i.e. 

V,$ = 2K(G - 6) - 1 ( P , P  - X)dt. 
t R  

t o  

(A.l l )  

APPENDIX B 

Derivation of the discrete expression of VG$ 

X(to + At) = X(to) + AtF(X(t,)) + AtG(Xo(t, + At) - X ( t ,  + At)) 

The time difference equations of (2.1)-(2.2) can be written as 

(B.l) 
X(ti + At) = X(ti - At) + 2AtF(X(ti)) + AtG(P( t i  + At) - X(ti + At)) 

i = l , 2 , .  . . , R - 1 .  (B.2) 
The cost function defined in (2.7) now assumes the form 

R 

$(G) = (W(X(t i )  - P ( t i ) ) ,  X(t i )  - Xo(ti)) + (K(G - e), G - 6) (B.3) 
i = O  

For the leapfrog time difference scheme, the Lagrange function can be written as 
R 

L = 2 (W(X(ti) - P ( t i ) ) ,  X(t,) - Xo(ti)) + ( K ( G  - Z.), G - 6) + 
i = O  

+ (Po,  X(to + At) - X( to )  - AtF(X(t0)) - AtG(X"(t0 + At) - X(t0 + At))) + 
R - 1  

+ (Pi, X(t i  + At) - X(ti  - At) - 2AtF(X(ti)) - 2AtC(Xo(to + At) - 
i =  1 

- X ( t ,  +- At))). (B.4) 
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The equations for the Lagrange multipliers, or the adjoint equations, are found by 
letting the first-order variation of (B.4) with respect to X( t l ) ,  X(tz ) ,  , . . , X(tR) vanish. 
The equation resulting from differentiation with respect to X(tR) will be considered first, 
then the equation with respect to X(tR- l ) ,  . . ., and finally the equation with respect to 
W l ) .  

P R -  I + 2 A t G p ~ -  1 + 2W(X(f , )  - p ( f R ) )  = 0 (B 3) 

Pi - P;+1 + 2W(X(r;) - P(t,)) = 0 

Lastly, from the differentiation of L with respect to G one finds 

2K(G - 6) - AtP , (P( t ,  + At) - X(to + At))  - c 2AtPi(X"(tj + At) - 
R - l  

1 = 1  

- X(t l  + At)) = 0 (B.8) 
The gradient of the cost function with respect to the nudging parameter is then given by 
the left-hand side of (B.8), i.e. 

V,$ = 2K(G - e) - AtP,(XO(t, + At) - X( t ,  + At))  - 
R - 1  

- 2 2AtPi(Xo(t; + At) - X(t i  + A t ) ) .  
i = l  
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