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ABSTRACT

Variational four-dimensional data assimilation, combined with a penalty method constraining time derivatives
of the surface pressure, the divergence, and the gravity-wave components is implemented on an adiabatic version
of the National Meteorological Center’s 18-level primitive equation spectral model with surface drag and horizontal
diffusion. Experiments combining the Machenhauer nonlinear normal-mode initialization procedure and its
adjoint with the variational data assimilation are also presented. The modified variational data-assimilation
schemes are tested to assess how well they control gravity-wave oscillations.

The gradient of a penalized cost function can be obtained by a single integration of the adjoint model. A
detailed derivation of the gradient calculation of different penalized cost functions is presented, which is not
restricted to a specific model.

Numerical results indicate that the inclusion of penalty terms into the cost function will change the model
solution as desired. The advantages of the use of simple penalty terms over penalty terms including the model
normal modes results in a simplification of the procedure, allowing a more direct control over the model
variables and the possibility of using weak constraints to eliminate the high-frequency gravity-wave oscillations.
This approach does not require direct information about the model normal modes. One of the encouraging
results obtained is that the introduction of the penalty terms does not slow the convergence rate of the minimization

process.

1. Introduction

There is currently an increasing interest in various
aspects, both applied and theoretical, of variational data
assimilation. Encouraging success in the application of
variational data assimilation involving simple 2D
models are due, for instance, to Courtier (1984), Lewis
and Derber (1985), LeDimet and Talagrand (1986),
and Courtier and Talagrand ( 1990). More realistic ex-
periments with 3D models are due to Thépaut and
Courtier (1991), Navon et al. (1992), and Chao and
Chang (1992). These research efforts employ optimal
control methods, using initial conditions as control
variables, and attempt to obtain optimal initial con-
ditions by reducing a quadratic measure of lack of fit
between a model’s forecast and distributed data in some
time window. The aforementioned results indicate that
adjoint variational data assimilation is one of the most
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versatile tools for assimilating data distributed in space
and time.

Variational data assimilation imposes no limitation
on the characteristics of the data to be assimilated, and
allows, in principle, the incorporation of all kind of
data: humidity, wind strength and direction, vorticity,
temperature measured by meteorological stations, sat-
ellite-measured radiance, etc. It is well known that in
a forecast with the primitive equations, high-frequency
gravity-wave “noise’’ will result if the initial fields are
not suitably adjusted. Due to the high frequency and
small amplitude of some gravity waves, they are diffi-
cult to predict and may distort the prediction of the
more important meteorological features through non-
linear interactions. Therefore, a natural problem arising
in the advance of variational data assimilation is how
we will be able to filter the gravitational oscillations
contained in the data being assimilated in the frame-
work of variational data assimilation.

The issue of controlling gravity oscillations has a
long history of importance in initialization. The need
for initialization was first observed in Richardson’s fa-
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mous experiment where he attempted to use the prim-
itive equations for producing a numerical forecast of
weather in Europe. He lacked sufficient data for his
model initial conditions. The errors in the initial con-
ditions resulted in huge dynamic tendencies. Essen-
tially, a portion of the errors in the initial conditions
are interpreted by the model as due to the presence of
unrealistic inertia-gravitational waves that subse-
quently propagate throughout the forecast and appear
as gravitational ‘“noise.” Some appropriate initializa-
tion schemes for using the primitive equations without
unrealistic noise have become desirable since that time.

Hinkelmann (1951 ) was the first to have shown that
the amplitude of these unwanted high-frequency waves
can be reduced by simply using geostrophic values for
the initial wind field. Later, Charney (1955) showed
that better results can be obtained when the initial wind
and geopotential fields are related by the balance equa-
tion. Phillips (1960) showed that gravitational noise
could be further reduced within forecasts that used the
primitive equations by constraining the initial condi-
tion to satisfy a balance quasigeostrophic omega equa-
tion. It was found, however, that quasigeostrophic ap-
proximations also altered the prediction of meteoro-
logically significant features. Subsequently, more
effective procedures were designed to limit gravity-wave
activity, and these procedures were based on nonlinear
normal-mode initialization (NNMI). Machenhauer
(1977) and Baer (1977) were the first to describe
NNMI. Machenhauer considered the prognostic equa-
tions for amplitudes of gravitational modes. He showed
that the adiabatic nonlinear forcing term has a strong,
slowly varying component. This yields a correspond-
ingly slow response, which approximately satisfies a
nonlinear balance equation. He showed also how a so-
lution to this new balance condition could be deter-
mined and applied to the initialization problem.
Machenhauer’s work was then extended by Baer and
Tribbia (1977). Machenhauer’s scheme was used pre-
dominately, while the scheme of Baer and Tribbia pro-
vided a more suitable theoretical framework for many
problems.

Many other initialization methods have been de-
veloped since the advent of NNMI. The use of NNMI,
however, provides a benchmark with which to compare
results and a theoretical framework with which to ex-
plain methodologies and reasons for success.

Our main concern in this paper is not to use ini-
tialization per se, but to find a simple and efficient way
to control residual high-frequency gravitational noise
in the solution of variational data assimilation, while
assimilating data that might be contaminated by some
observational errors. Some of the ideas, however, of
initialization schemes can be combined with the vari-
ational data assimilation. In some sense, our approach
is philosophically related to the one presented by Mi-
yakoda et al. (1978) that drew on the work of dynam-
ical initialization of Miyakoda and Moyer (1968). The
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NNMI technique can also be used as a benchmark
here for comparing the efficiency of filtering gravita-
tional oscillations by the present new method devel-
oped with variational data assimilation.

One of the first attempts to damp the amplitude of
high-frequency gravity oscillations in a variational data-
assimilation process was made by Courtier and Tala-
grand (1990) using a shallow-water model. They com-
bined a penalty term and an NNMI procedure with a
variational data-assimilation scheme. The penalty term
required the vanishing of the time tendency of the
gravity-mode component of the initial data. Courtier
and Talagrand concluded that gravity-wave noise can
be efficiently eliminated by adding such a penalty term
to the cost function, and by introducing into the vari-
ational process a nonlinear normal-mode initialization
algorithm and its adjoint. .

In this paper, we present a variational data-assimi-
lation scheme, using the National Meteorological Cen-
ter’s (NMC’s) spectral multilevel primitive equation
model with horizontal diffusion and surface drag (Sela
1980). Penalty terms, which do or do not depend on
the model’s normal modes, are added to the cost func-
tion. In such a variational data-assimilation scheme,
formulated with one or several penalty terms, the re-
trieved initial state will (a) fit the data as closely as
possible, and (b) satisfy approximately some imposed
dynamical constraints that will control the high-fre-
quency gravity-wave oscillations. In section 2, three
types of penalty terms are described. The first two pen-
alty terms represent constraints on the first time deriv-
atives of the surface pressure and divergence. The third
penalty term constrains the second time derivative of
the surface pressure. The NNMI scheme and its adjoint
operation applied to the NMC model are presented in
section 3. A penalty term constraining the time ten-
dency of gravity-wave components is also presented in
section 3. A detailed derivation of the calculation of
the gradient of different penalized cost functions using
the adjoint model is presented in appendixes A, B, and
C. The derivation does not depend on any specific nu-
merical model. Discussion of the results of numerical
experiments with each penalty term or in various com-
binations is presented in section 4. These experiments
are designed to study the amount of residual gravity-
wave oscillations contained in the retrieved meteoro-
logical fields, as well as the computational cost and
convergence rate of the proposed procedure. Summary
and conclusions are presented in section 5.

2. Application of penalty-function method

The ideas of gravity-wave control used in classical
variational initialization (Sasaki 1970) can be incor-
porated into variational data assimilation by the ad-
dition of a quadratic penalty term to the cost function.
For instance, in the framework of classical variational
initialization, one way of suppressing the external
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gravity waves is to adjust the wind field with the strong
dynamical constraint requiring the integrated mass di-
vergence V-Inp,v to vanish, where p, is the surface
pressure and v the horizontal wind (see Barker et al.
1977; Sasaki et al. 1979). The classical variational
method thus attempts to minimize a Lagrangian func-
tion

L =J4+ AV-(Inpyw), (2.1)

where J is the cost function measuring the lack of fit
between the model and the analyzed data and A is a
vector of Lagrange multipliers. Setting the coefficients
of the first variation of all the independent variables
and the Lagrange multiplier to zero leads to a set of
coupled Euler-Lagrange equations, usually of elliptic
type, which can be solved iteratively (see Thacker and
Long 1988).

Instead of solving the problem of the augmented
Lagrangian function L defined in (2.1), we add a qua-
dratic penalty term to the basic cost function J. The
basic cost function is the weighted sum of squares of
the differences between the model’s solution and an-
alyzed data in the assimilation window. The penalized
cost function is defined as

d Inp,;\"/ 9 Inp;
A1),

ot ot (22)
where ()T represents the transpose and r the penalty
parameter.

The penalty-function methods transform the basic
optimization problem into an alternative formulation
such that numerical solutions are sought by solving a
sequence of unconstrained minimization problems.

There are several reasons for the appeal of the pen-
alty-function formulation. First is that the sequential
nature of the method allows a gradual approach to crit-
icality of the constraints. This means that if evaluation
of the cost function and the gradient of the constrained
is computationally difficult, we can use coarse approx-
imations during the early stages of optimization and
when the unconstrained minima of the penalized
function are far away from the optimum. Finer and
more detailed analysis approximations will be used
during the final stages of the approximation. Second
is that the algorithms for unconstrained minimization
of rather arbitrary functions are well studied and gen-
erally quite reliable.

It is shown in optimization theory (Gill et al. 1981)
that the problem of solving a constrained minimization
problem via the quadratic penalty-function approach
is equivalent, in the limit of large penalty parameters,
to the Lagrangian problem if one chooses the multiplier

dlIn
N(r) = 2r SR %)),

ot
where x*(r) is the unconstrained minimum of (2.2).
This means that associated with every penalty param-

(2.3)
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eter r there is a Lagrange multiplier vector that is de-
termined after the unconstrained minimization is per-
formed.

a. First-order time-tendency constraints

High-frequency fluctuations in the surface pressure
tendency reflect the presence of external gravity waves.
A way to suppress these external gravity waves is to
impose as a constraint the vanishing of d Inp,/adt. A
quadratic penaity term of the form

R [6 Inp,(#; )Ha Inp,(2;)

T =n 2 at at

=0

thus augmented the cost function J, where p, is an M-
dimensional vector, M is the total number of Gaussian
grid points used in the definition of the cost function,
and R is the number of time steps in the time interval
spanning the window of assimilation. Variational data
assimilation with a penalty term J,; included in the
cost function means that while minimizing the distance
between the model solution and data, the high-fre-
quency oscillations presented in the surface pressure
field are also controlled.

We may also impose a divergence constraint to damp
high-frequency oscillations of internal gravity waves in
a manner similar to (2.4). We define a penalty term

R ToD() T [ oD(t;
Ja=n 2 [ a(zl)] [ a(zl)

i=0

] (2.4)

], (2.5)

where D is the M X K dimensional vector of divergence
and K is the total number of vertical levels.

The penalized cost function can assume any of the
following form

J+ Jp1, (2.6a)
J+ J, (2.6b)
J+ Jpy + Jpo. (2.6¢)

The penalty term J,,; (J,2) can also be viewed as an
example of the explicit inclusion of dynamical residuals
d Inp;/9t(3D/at) in variational assimilation (Bennett
and Miller 1991). It is known from their theoretical
conclusions that the model residual vanishes at
time lo.

Before assessing the performance of the quadratic
penalty method in damping the high-frequency gravity
waves present in the initial fields, we require the cal-
culation of the gradient of the penalized cost functions.
From (2.6), we have

V(J+ Jp]) =VJ+ VJpl, (27&)
V(U + ) =VI+ Vi, (2.7b)
VU +Jy + Jp2) = VI + VI + V. (2.7¢)

Therefore, the gradient of a penalized cost function is
equal to the gradient of the nonpenalized cost function
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plus the gradient of the penalty terms. The calculation
of VJ by integrating the adjoint model backward in
time is described in detail by Navon et al. (1992). We
need only to derive the evaluation of V.J,; and VJ,,.
For a detailed derivation, see appendix A.

From the detailed derivation in appendix A, we
found out that the gradient of the penalized cost func-
tion can be obtained by integrating the same adjoint
model as the one used in obtaining the gradient of the
nonpenalized cost function. The only difference is that
more forcing terms are added to the right-hand side of
the adjoint-equations model besides the weighted dif-
ferences between the model solution and data (see Fig.
1). These forcing terms consist of the time differences
of the penalized variables [see Egs. (A.7)-(A.10)].

CONTROL RUN: NNMI

UNINITIALIZED
STATE

v

INITIALIZED
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b. Second-order time-tendency constraint

In order to further damp out the high-frequency
gravity-wave oscillations, second-time-derivative con-
straints may be imposed. Interest in higher-order bal-
ance schemes was first discussed by Hinkelmann
(1951). Barker et al. (1977) proposed using higher-
order time-tendency derivatives to achieve a better
elimination of Lamb waves.

In the context of NNMI, it was proposed that instead
of considering dG/dt = 0, we use the condition

d'G
dar"

for some n > 1 or some estimate of d"G/dt" (n> 1)

=0

ACTUAL PREDICTION

STATE

YARIATIONAL DATA ASSIMILATION:

(NO PENALTY)
ASSIMILATING

>

Minimization with 6 hr integration of the
model forward and its adjoint backwards

Y

<—

(forcing related to data)

UNINITIALIZED
STATE

ACTUAL PREDICTION

YARIATIONAL DATA ASSIMILATION:
(WITH PENALTY)

ASSIMILATING

—>

Minimization with 6 hr integration of the
model forward and its adjoint backwards

(forcing due to penalty terms)

2222222222272

Y

-

(forcing related to data)

UNINITIALIZED
STATE

ACTUAL PREDICTION

—>

FI1G. 1. A schematic diagram of the assimilation-forecast cycle.
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based on slowly propagating components only, where
G is the gravity-wave component of the flow. Such
schemes were discussed by Baer and Tribbia (1977),
Machenhauer (1982), Tribbia (1984), and Errico
(1989b). See also Errico’s survey of NNMI schemes
(1989a).

In practical numerical weather prediction, however,
in most cases higher-order balance schemes change
subsequent forecasts very little with respect to other
analysis or model errors because order " adjustments
are small for small ¢ (Rossby number) and large » (see
Errico 1989a).

It is not difficult to find a situation when the inte-
grated mass divergence is zero, and yet external gravity
waves may still form. This situation is most evident
when the initial data for the model are assimilated with
a steep terrain and a static atmosphere (Barker et al.
1977). To delay and reduce the formation of external
gravity waves, the initial ficlds may be chosen so that
the tendency of the integrated mass divergence is also
zero. In order to achieve this condition, we may add
an additional quadratic penalty term of the form

P 37 Inp,\T 82 Inp,
7 r3( ar® ) o

to the cost function in the framework of variational
data assimilation. Using a second-order finite-difference
approximation for the second time derivative, J,3 as-
sumes the form

(2.8)

__ N R T
Jp3 = % z [P(z)] P(2), (2.9)
where
P(t;) = Inp(; + At) + Inps(2; + Ar) — 2 Inps(2;).
(2.10)

The derivation of the evaluation of the gradient of
the penalty term J,3, which was presented in appendix
B, is similar to the calculation of V.J,;. Only the forcing
terms added to the right-hand side of adjoint-equations
model are different.

3. Inclusion of the NNMI and the penalty term
rqlldz/dt|?

a. NNMI and its adjoint

The explicit Machenhauer nonlinear NNMI (Sela
1982) is introduced at each step of the minimization
before the forward integration of the model, and the
fields before the initialization are taken to be the control
variables. At each iteration of the minimization pro-
cedure, we first apply the NNMI procedure to the initial
fields and integrate the direct model to obtain the value
of the cost function and the value of the forcing terms.
We then integrate the adjoint model backward in time,
and finally carry out the adjoint operation of the explicit
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NNMI procedure to obtain the gradient of the cost
function.

The Machenhauer NNMI is an iterative procedure
that was implemented in the form of

Xi(f0) = Xi—1(20) — Axp—1(Zo)
Axk——l(tO) = ka—l(t0)> k = 1’ 23 AR (31)

where N represents the result of applying all the op-
erator matrices in the NNMI code to obtain the cor-
rection term Axy_,(Zo) from x;_,(¢o). Here, x is the
vector of spectral coefficients of the state variable X.
This NNMI iterative algorithm is stopped after a finite
number of iterations. The condition that the initial time
tendency of the gravity component be zero cannot be
exactly enforced in practice. It was experimentally de-
termined at NMC that two Machenhauer iterations
using the first four vertical modes produce acceptable
changes in the initial conditions and result in very
smooth surface pressure integrations.

The adjoint of the initialization scheme can thus be
written as

fi-1(20) = (I = NT)Ri(20), (3.2)

where % represents the corresponding adjoint variable
of x. The code for the adjoint explicit NNMI was writ-
ten by following the logic used in building the adjoint-
model equations (Navon et al. 1992).

The evaluation of the gradient of the cost function
when the NNMI procedure is included in the varia-
tional data assimilation is done in two steps. Step one
the ordinary backward time integration of the adjoint
model. Step 2 applies the adjoint of the NNMI operator
to the output of the adjoint-model integration.

The NNMI operator has the property of a projection
operator onto the slow manifold along a direction par-
allel to the gravity modes’ subspace. This operator is
partially invertible due to its being iterative (Courtier
and Talagrand 1990; Thépaut and Courtier 1991).

The adjoint of the NNMI projects the gradient of
the cost J on the Rossby modes along a direction par-
allel to the orthogonal of a tangent to the slow manifold.
This should cause (in the absence of invertibility ) the
gradient of the cost function with respect to the gravity
components to vanish (Thépaut and Courtier 1991).
For a few iterations, the NNMI operator remains in-
vertible under the adjoint operation, and increasing
only slightly the number of Machenhauer iterations
has the effect of delaying the stage at which the varia-
tional minimization process starts reconstructing the
gravity-wave part of the state. One of the purposes of
the present research is to evaluate this invertibility using
the adiabatic version of the NMC operational model.

b. The penalty term r,||dz/dt|? and its gradient

A state vector x is here represented by its gravity
part z and its Rossby part y. A penalty term of the
form
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2

dZ(to) (33)

dt

similar to that impiemented by Courtier and Talagrand
(1990), has been added to the cost function J for com-
parison with these authors’ results obtained using other
penalty terms.

The norm of dz/dt in (3.3) is defined by an inner
product { -, -, which can either be

Jp4 =T,

IxI3 = (x, %) = 3 2 [x? + ¢ + (Inp,)? + 7,

(3.4)
or
Ixll%=(x, x)
_1 2 2 2, G| 9P
=3 > [u + v?+ RT,(Inp,)* + T T py
= % (WSHx)TWSHx, (3.5)
where
I op [ RTT
H= 1 s = a— C,/T1 .
F g I

Here, F is an operator that computes the spectral coef-
ficients of the wind-field components (#,v) from the
divergence and vorticity fields and S is a transform
operator from spectral to grid space. The first inner
product is an £, norm, and the latter is an energy
norm that is a quadratic invariant of the linearized
primitive equations in the vicinity of a state of rest
defined by a uniform surface pressure p, and a constant
temperature T,. As discussed by Thépaut and Courtier
(1991), the choice of an energy form defines a physical
measure of atmospheric fields as well as a natural
weighting for the different variables of the gravity com-
ponents.

This penalty process by (3.3) does not ensure the
vanishing of the gravity modes’ time tendencies in the
subsequent tendency computation due to the nonlinear
nature of the problem. The constraint on the time ten-
dency of the gravity component can also be applied to
all the time steps in the window of assimilation instead
of being applied at only the initial time. Instead of
(3.3), the following term can be added to the cost
function J:

R

1
Jp4m=§r4i§0

2

dZ([,‘) , (36)

dt

where t; = 1o + iAt, At = 1800 s.

Implementation of the minimization of J + J,4 or
J + J,4 requires the explicit computation of the gradient
of J,4 or J,am with respect to the initial model fields.
Thus, we presented in appendix C the derivation of
VJ,4 and VJ,,,,. It was concluded that the process of
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calculating the gradient of the penalty term J,4 consists
mainly of a projection of the time tendency of the initial
state on the gravity manifold and the adjoint operation
of this projection [see Eq. (C.10)]. The calculation of
VJ,am can be obtained by a single integration of the
adjoint model, where forcing terms (C.17) are added
to the right-hand side of the adjoint-equations model
at each time step.

4. Results

Three previously mentioned types of penalty terms
have been used, first independently and then in com-
bination, in order to reduce the amount of gravity-
wave activity present in the assimilated fields.

Initial conditions for the model and analyzed data
were obtained from the global data-assimilation scheme
at NMC. The variational data assimilation was carried
out adiabatically, as well as with a surface drag and
horizontal diffusion terms included in the model. Two
uninitialized state vectors, separated by a 6-h time in-
terval, were taken as analyzed data to be assimilated.
The cost function was defined as

JIX(10)] = 3 [X (o) = X**(16)]™W

X [X(t0) — X**(0)] + % [X (1) = X**(1)]"

X WIX(5) = X*(1)], (4.1)

where X is the state vector, and W is a diagonal weight-
ing matrix whose values are calculated as the inverse
of the maximum squared difference between the two
analyzed data fields at times ¢y and ¢, . Such a weighting
renders the different terms in the cost function to be
of the same order of magnitude, which will result in a
better convergence rate of the minimization process.
The time difference between the two analyzed times is
6 h. A limited-memory quasi-Newton method (Navon
and Legler 1987) due to Liu and Nocedal (1989) was
employed throughout the minimization experiments,
This method has proved to be very efficient and robust
for large-scale unconstrained minimization.

The testing of the accuracy of the adjoint model was
carried out using the following identity check that ap-
plies at the level of each subroutine:

(AQ)T(AQ) = Q'[AT(AQ)],

where A represents the tangent linear model, AT the
corresponding adjoint model, and Q and AQ represent
the input and output of the linear mode, respectively.
Since the penalization of the cost function does not
alter the adjoint model, we did not include a further
discussion on the accuracy of adjoint model. Due to
the presence of the additional forcing terms resulting
from the penalty terms, only the calculation of the gra-
dient of the cost function needs to be rechecked.

The following expression is derived from a Taylor
expansion of the form:
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J[X(to) + aVJy]
= J[X(10)] + «(VI)"VI+ O(a?), (4.2)

where J represents any of the penalized cost function.
From (4.2) we obtain

JAX (1) + aVJ] — J[X(t0)]
(V)Y I,

=1+ O(a).

P(a) =

(4.3)

Therefore, the ® is defined in terms of «, the cost func-
tion and the gradient of the cost function.

If the values of the cost function and the gradient
are correctly calculated, the value of ®(«) will linearly
approach 1 with « decreasing in a certain range value
of a covering several orders of magnitude. In this check,
if we find that the value of & is linearly approaching a
constant C # 1, it means that the gradient calculation
is erroneous. The error occurs mainly in the data man-
agement in the direct model (write out) and the adjoint
model (read in), which results in the added forcing
being wrong. If there is no linearity in the variation of
the value of ® with decreasing values of «, then the
errors are liable to have occurred in the calculation of
the penalty terms.

Figure 2 shows the variation of the value of the func-
tion ®(a) with decreasing values of «. We note that
for values of « between 107 and 10~!°, which are not
too close to the machine zero, the relation

P(a) =~ 1
was verified for all the three cases. The correctness of
the gradient calculation was therefore verified.
a. Penalty method with first-order constraints

The first-time-derivative constraints of (2.4) and
(2.5) were tested, first independently, then jointly, and
the rates of convergence of the penalization schemes

1.6 T T T T T T T T T 16

1.4 } 4 14

12 | J/j 1.2
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02 | 4 02
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o

FIG. 2. Verification of the gradient of the cost function penalized
by J, (solid line), J,, (dotted line), and J,; (circled line), respectively.
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FIG. 3. The normalized value of J,,/r; with the number of iter-
ations. Dash-dot line: r;, = 10'°. Dash~dot line: r;, = 10''. Dotted
line: r; = 10'2. Solid line: r, = 1013,

were examined. Since the penalization scheme is trying
to reduce the value of the sum of the squares of the
time tendencies of the surface pressure (J,,/r;) or di-
vergence (J,,/r,), the behavior of these variables as a
function of the iteration number constitutes a useful
measure of the convergence rate. Figure 3 shows the
behavior of J,;/r, for different values of the penalty
parameter 7, in the experiment minimizing J + J,;.
We note that when smaller values of the penalty pa-
rameter were used, a smaller decrease in J,,/r; was
observed. When the penalty parameter r; = 103, all
the plot lines for J,;/r; as a function of the iteration
number coincide and a decrease of almost two orders
of magnitude in its value was attained. Figure 4 shows
the variation of J,,/r,, the constraint on the time ten-
dency of divergence, with the number of iterations in
the experiment minimizing the penalized cost J + J,,,
with r, = 10'°. A decrease of one and one-half orders

10" T TrrreT T T Trrr 10"

102 4 10

102 4 10
ad s alaa st s s o da saa )l aa aad o a4 s
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FIG. 4. The value of J,,/r, as a function of the number of iterations.
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of magnitude was obtained during the variational data-
assimilation process.

In order to illustrate the performance of the penalty
method, we present in Table 1 the amount of residual
gravity-wave component in the retrieved initial state.
The results obtained after application of NNMI provide
a physical reference as to how much residual gravity-
wave component should be present in the initial state.
We see that the amount of residual gravity-wave com-
ponent in the retrieved initial state after the minimi-
zation without inclusion of a penalty term is larger
than that in the analyzed data. The solution of the
minimization with both penalty terms J,; and J,,
added to the cost function contains a lesser amount of
residual gravity component than the one contained in
the NNMI initialized data.

Figure 5 shows the time variation of the surface
pressure at a point in the Indian Ocean (point 1) during
24-h integrations using the adiabatic version of the
NMC model. The oscillating curve shows the result of
an integration with the retrieved initial conditions
without penalty term added to the cost function. The
smooth curves show the results with penalized initial
data. The nonpenalized forecast displays the presence
of considerable amounts of high-frequency oscillations,
with a peak-to-trough amplitude of as much as 7 hPa.
When J is penalized by J,,, the oscillations are reduced,
and as the value of the penalty parameter increases,
the amplitudes of the high-frequency oscillations de-
crease. The impact of increasing the penalty parameter
ry beyond r; = 10'% is almost imperceptible. Figure 6
shows the evolution of the surface pressure from re-
trieved initial conditions with J,;, or J,;, or both,
added to the cost function J at point 1, and point 2,
near the Rocky Mountains. The solid line in Fig. 6
represents the forecast without penalty terms, the
dashed line with the first penalty J,,,, the dash-dot line
with the second penalty term J,,,, and the dotted line
with both the first and second penalty terms included
in the cost function. At both points, the high-frequency
oscillations contained in the analyzed data are mostly

TABLE 1. Energy norm of dz(l)/dt contained in different
retrieved initial states after the minimization.

Iterations/ Energy norm of

Initial state Penalty term CPU (min) dx(to)/dt
RETNOP 60/48 3.1541
(3.3 60/55 5.3506

(3.3) 60/55 0.2156

(energy norm) 60/109 0.0956

RETDGDT 20/51 0.2751
(3.14) 30/76 0.1928

60/146 0.0636

(3.14) (energy norm) 60/141 0.4637

RETDIQ (2.4) + (2.6) 60/61 0.0763
datal observation at £, 2.5618
datal.i NNMI data | 0.1533
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FIG. 5. Time traces of surface pressure at grid point 1. Solid line:
no penalty. Dash—dot line: r; = 10''. Dashed line: r, = 10'3. Dotted
line: r, = 10%5.

damped out after the penalized variational data assim-
ilations are carried out. The minimization of the cost
function J + J,, + Jy, with r, = 10" and r, = 10"
yielded the strongest damping of the gravity-wave os-
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FiG. 6. Time traces of surface pressure at (a) point 1, and (b)
point 2. Solid line: no penalty term. Dashed line: with the penalty
term J,,. Dash—dot line: with the penalty term J,,. Dotted line: with
both the penalty terms J,; + Jp2.
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cillations. Thus, the combination of both the con-
straints on surface pressure and divergence fields gives
the best result for suppressing high-frequency gravity-
wave oscillations.

Figure 7 is similar to Fig. 6 and displays the behavior
of the divergence field. We note that large oscillations
appeared in the integrations without penalty terms or
with only the first penalty term included in the cost
function. The forecast, with the second penalty term
included in the cost function, yielded improved damp-
ing of the short-period oscillations. When the second
penalty was combined with the first, high-frequency
gravity-wave activity was satisfactorily controlled.

The rms of the divergence of the retrieved initial
conditions with and without the inclusion of the pen-
alty term is displayed in Fig. 8. The rms of the retrieved
initial divergence field without any penalty term (solid
line) is significantly reduced when penalty terms are
included in the cost function. Again, the minimization
with the penalty term J,, for the divergence field in-
cluded in the cost function, seems to yield the best
result. The minimization with penalty on the surface
pressure only, results in an improvement in the rms
of the divergence only at the lower levels.

We examined the effect of the penalty method by
studying maps of the divergence field without any pen-
alty term, with only the first penalty term, with only
the second penalty term, and with both the first and
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FIG. 7. As Fig. 5 for the divergence at the fifth model level.
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F1G. 8. Root-mean-square of the divergence at all vertical levels.
Solid line: no penalty term. Dashed line: with the penalty term J,,;.
Dash-dot line: with the penalty term J,,,. Dotted line: with both the
penalty terms J,, + Jp2.

second penalty terms included. The local changes of
surface pressure are generally less than 3 hPa, an ac-
ceptable degree of adjustment. The divergence field
obtained without a penalty term appears to be very
disorganized and is generally too intense. The appli-
cation of the penalty method results in a divergence
field that has much more coherence and is synoptically
reasonable, despite the neglect of diabatic effects.

To confirm that the Rossby modes are not degraded
after the high-frequency gravity wave oscillations have
been completely eliminated by the penalty procedure,
and furthermore, that once these oscillations have been
eliminated, they do not seem to develop, a closer in-
spection of the integration results was carried out. A
3-day forecast was made from the NNMI data and the
retrieved initial states without a penalty term and with
the two penalty terms (2.4) and (2.6), using the adi-
abatic version of the NMC spectral model with surface
drag and horizontal diffusion. Figure 9 shows the time
variation of the surface pressure at point 1 and point
2 during this period. It is seen that-the value from the
retrieved initial state without a penalty term oscillates
around a slowly varying value from the retrieved initial
state with penalty terms at both points (solid and dotted
lines in Fig. 9). This fact indicates that the gravity os-
cillations present in the integration with the nonpen-
alized retrieval neither grow nor influence significantly
the slowly varying part of the fields. This fact is con-
firmed by a comparison between the penalization result
and NNMI result (dashed line in Fig. 9). The time
variation of the surface pressure is nearly the same at
point 2 for the results obtained from the retrieved initial
state with penalty terms and from that obtained from
the nonlinear normal-mode initialized state, with the
former being even smoother than the latter. At point
1, the time variation of the penalty result is smooth
and exhibits a 12-h oscillation. After NNMI, however,
both the large-amplitude 12-h oscillations and the low-
amplitude high-frequency oscillations are reduced. Af-
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FIG. 9. Time variation of 3-day forecasts at point 1 and point 2.
Solid line: no penaity term. Dotted line: with penalty terms J,,
+ J,,. Dashed line: NNMI.

ter two and one-half days, the time variation is nearly
the same.

The dotted line in Fig. 10 shows the rms for the
divergence field. It is seen that the value approaches a
constant mean value that is smaller than the value of
rms without penalty terms. Contours in Fig. 11 show
the streamfunction at model level 9, which is near 500
hPa, We found that large-scale features remain the
same with or without the inclusion of the penalty terms.
This turns out to be also the case for the distributions
of surface pressure, velocity potential, temperature, and
divergence fields.

In view of the experimental results, we are led to the
conclusion that the adequate penalization of a cost
function is able to suppress undesirable high-frequency
gravity-wave oscillations. The constraints of requiring
the vanishing of the surface pressure and divergence at
each time step were implemented weakly by the penalty
method. The Rossby waves are not affected by the pen-
alty procedure, It is also worth noting that no additional
computational cost 1s required to calculate the values
of the penalized cost function and its gradient, and the
number of iterations and function evaluations is about
the same as that required by the minimization without
a penalty term.
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It should be emphasized that in all the above ex-
periments, the penalty terms were added to the cost
function at each time step in the 6-h time assimilation
window. To estimate the difference between this con-
straint and a constraint applied at the initial time only,
we conducted an experiment minimizing the cost
function

ot

The minimization was performed successfully, and a
decrease in the penalty term of better than two orders
of magnitude was achieved (after same number of it-
erations). A subsequent 24-h forecast from the re-
trieved initial state, however, reveals that gravity os-
cillations still persist. Apparently, to obtain a satisfac-
tory damping of the high-frequency gravity-wave
oscillations by applying the constraints only at the ini-
tial time would require more iterations. It also appears
that the implementation of a penalty term requiring
the vanishing of the time tendency of a field (either
Inp, or D) at every time step in the assimilation window
allows us to overcome the slow convergence to a
smooth solution of the penalty term requiring the van-
ishing of the time tendency at the initial time only.
Moreover, no significant computational effort is re-
quired for the former case since the adjoint model is
the same. The additional computational cost results
from additional forcing terms during the adjoint in-
tegration.

2
T4 r,l[alnl’s(lo)] _

b. Results using NNMI and the penalty r,|\dz/dt|?

We now discuss the resuits obtained using NNMI
and its adjoint in order to control gravity-wave oscil-
lations in the forecast. In the experiments using this
method, no penalty term was added to the cost func-
tion. An NNMI procedure was introduced at each it-
eration of minimization before the integration of the
model. Using this method, the initial value of the time
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FI1G. 10. Time variation of the total rms of the divergence field.
Solid line: no penalty term. Dotted line: with penalty terms J,,
+ Jp2. Dashed line: NNML
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FIG. 11. Distribution of streamfunction at model level 9. (a) no penalty term; (b) with penalty terms J,, + J,2.

Contour interval is 1.0 X 107 m?

tendency of the surface pressure is smaller than the
uninitialized corresponding norm, since a considerable
number of gravity waves were eliminated by the NNMI
scheme. During the minimization, the amount of
gravity-wave activity, as measured by J,,, /ry, increases
due to the application of the adjoint of the NNMI ini-
tialization algorithm (see Fig. 12). After 20 iterations,
the process of minimization failed due to the presence
of a large amount of high-frequency gravity noise. The
explicit Machenhauer NNMI employed in the mini-
mization does not seem to be able to damp out the
gravity noise reintroduced in the gradient calculation
due to the inclusion of the adjoint of NNMI scheme.

We present in Fig. 13 the variation of the cost func-

tion when no NNMI is applied before the forward in-
tegration of the model (solid line) and when the in-
tegration of the model is preceded by 1 (dash~dot line),
2 (dotted line), 3 and 4 (dashed line) iterations of the
Machenhauer process. We note that when the NNMI
process is not performed, the convergence rate is better.
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FIG. 12. The value of J,;/r; as a function of the iteration number.
Solid line: no penalty term. Dashed line: with only the penalty term
Jp1 (ry = 10%%). Dotted line: with only the adjoint of NNMI. Dash-
dot line: l:vith both the adjoint of NNMI and the penalty term J,,
(r,=10").

s~! and values on the isolines are scaled by 1073,

The solution matches the analysis at initial time ex-
tremely well, but contains a large number of gravity
waves since the analyzed data being assimilated are
uninitialized analysis. If we carry out the NNMI before
the integration of the model, only the Rossby part of
the 1nitial field is reconstructed, and the minimum of
the cost function becomes larger.

Another measure of the performance of the NNMI
is the variation of the term || dz(20)/dt| % as a function
of the iteration number (see Fig. 14). This term rep-
resents the energy of the gravity-wave tendency at time
1o for the first four vertical modes of the model’s initial
state. Henceforth, this energy will be denoted by BAL.
Starting the minimization from the analysis at time Z,,
BAL contains the same amount of gravity-wave energy
at the beginning of the assimilation.

For two iterations of the NNMI (dash-dot line),
BAL decreases during the first 4 minimization steps,
then increases and reaches its initial value after 12 it-
erations. Slightly increasing the number of Machen-
hauer iterations seems to delay the step at which the
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FI1G. 13. Variations of the cost function J with the number of
iterations when the Machenhauer NNMI is included in the mini-
mization process. The numbers under the line represent the numbers
of iterations of NNMIL.
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FIG. 14. Variation of || dz(#,)/d!||3 during the minimization pro-
cess. The numbers above the line represent the numbers of NNMI
iterations.

minimization process builds excessive gravity-wave
oscillations. In these cases, the NNMI is practically in-
vertible. Only when 8 iterations of NNMI are applied
is the invertibility property lost.

If we combined the penalty term J,; with the NNMI
scheme in the variational process, the growth of the
gravity noise in the case of NNMI application was
eliminated by the penalty control (figures omitted).

Next, we carried out an experiment where the pen-
alty term J,4 with the .£; norm definition (3.11) (con-
straint on time tendency of the gravity components
only at the initial time) was added to the cost function
J. A measure of the efficiency of the constraint imposed
by Jps is given by the corresponding variation of
| dz(to)/dt||3, which was found to decrease from 1.45
X 10° to 8.77 X 107 m* s® during the course of the
minimization. The retrieved initial state, however, still
contains a large number of gravity-wave oscillations.
Therefore, we carried out another experiment in which
the penalty term J,,,, with the .£, norm definition
(3.11) (constraint on time tendency of the gravity
components at every time step) was added to the cost
function J. The value of =&, || dz(¢;)/dt|| 3 was found
to decrease from 2.63 X 10'°to 1.35 X 107 m* s® after
60 iterations. As for the elimination of gravity-wave
oscillations of the minimizing solution, we also carried
out a 24-h forecast of the surface pressure. We see that
the minimization process converged to a solution that
produced a very smooth variation of the surface pres-
sure (Fig. 15) even after 20-30 iterations.

To better exhibit the difference resulting from dif-
ferent definitions of the norm for J,4 and J,4,, (i.e.,
different weighting for the different variables of the
gravity component ), two additional experiments were
carried out using the energy-norm definition. The value
of || dz()/dt| % was found to decrease from 2.56 to
2.18 X 107! m* s® after 60 iterations and to 9.58
X 1072 m* s after 120 iterations during the minimi-
zation of J + J,4. The value of TR, || dz(s;)/dil %
decreased from 3.40 X 10' to 5.98 m* s° after 60 it-

sure for both experiments. We conclude that only the
penalty term with a constraint on the gravity compo-
nent applied at all time steps in the window of assim-
ilation with the £, norm vyields a satisfactory elimi-
nation of the gravity-wave oscillations and does not
slow the convergence rate of the minimization process.

In order to obtain a qualitative estimate about the
elimination of high-frequency gravity-wave compo-
nents after the minimization, we present in Table 1
and Fig. 16 the values of the norm of dz(fy)/dt, that
is, || dz(0)/ dt|| %, contained in different retrieved initial
states and the same norm for different vertical modes,
respectively. As a reference, we also calculated
lldz(to)/dt]|% for the data at the initial time before
and after the application of NNMI in Table 1. We see
that after 30 iterations of the minimization with the
penalty term (3.14) of the .£, norm, the solution con-
tains an acceptable amount of gravity-wave compo-
nents. The minimization of J + J,4 with the energy
norm for J,,4 yields an acceptable amount of the gravity-

1017 —r T 1017

1016 1016

1015 1015

£ 1014 1014
£
o
B 101 1013
2
g 012 1012
1011 1011
1010 W s a2 s b2 aoaa ) o ana 2l 1010
0 5 10 15 20 25
TIME (hours)
1028 1028
1026 1026
= 1024 1024
g
)
2 1022 1022
o
.
1020 1020
1018 1 . . A 1018
0 5 10 15 20 25

TIME (hours)

F1G. 15. Time traces of surface pressure at (a) point 1, and (b)
point 2. Solid line: no penalty term. Other lines: with the penalty
term Joum (13 = 1073) after 20 (dash~dot line), 30 (dashed line),
and 60 (dotted line) iterations.
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wave component. The minimization of the cost func-
tion penalized by either (3.3) with the £, norm or
(3.14) with the energy norm does not result in a suf-
ficient decrease in the value of || dz(#,)/dt|%. That is
why the subsequent forecasts from these retrievals still
exhibit the presence of gravity-wave oscillations, as
mentioned previously. These results confirm that the
application of penalty method where the constraint on
the gravity modes’ tendency is applied only at the initial
time does not ensure the vanishing of the gravity
modes’ tendencies in the subsequent tendency com-
putation due to the nonlinear nature of the model.
Also, different weightings for the different variables of
the gravity component play a very important role in
ensuring the success of the minimization process.

From Table 1 we also observe that the constraints
on the time tendency of the surface pressure and the
divergence fields reduced the amount of the initial
gravity-wave tendency to a value very near the smallest
value in Table 1, which was obtained by the minimi-
zation of J + J,4,, with the £, norm for J,,4,,. If, how-
ever, we take into account the large difference in the
total CPU time spent in the minimization, we conclude
that the penalization of the terms (2.4) and (2.6) results
in a much cheaper computational procedure.

Figure 16 shows that the penalization with the terms
given by (2.4) and (2.6) results in a reduction of
| dz(t5)/dt|| % for all the vertical modes. The minimi-
zation of J + J,4,, reduces the value of || dz(t,)/dtl| %
only for the first four vertical modes as was to be ex-
pected (since only the first four vertical modes were
included in the calculation of J,4,,). Minimization of
J with the penalty terms given by (2.4) and (2.6),
however, yields less damping of the gravity component
contained in the second vertical mode. This might ac-

“count for the fact that the subsequent forecast started

from the solution of the minimization of the cost func-
tion J + J,; + Jp still exhibits the presence of some
half-day oscillations (see Fig. 6).
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¢. Second-order time-tendency constraint

In this experiment, the penalty term requiring the
vanishing of the second-order time tendency of the
surface pressure was included in the cost function (r;
= 10?2). The value of Jp3/ r3 decreased two orders of
magnitude during the minimization process (Fig. 17).
Moreover, it removes the high-frequency oscillations
with damping the low frequencies (see Fig. 18). If we
combine both the first- and second-order time-ten-
dency penalty to the surface pressure, J,; and J,3, using
penalty parameters r; = 10'* and 73 = 10%?, we ob-
tained a lower amplitude of gravity-wave oscillations
than when only the third penalty term is applied. The
increase of one order of magnitude in the penalty pa-
rameter r, resulted in a retrieval that was just as good
as the one resulting from the application of the first
penalty control. If, however, we implement the two
penalty terms sequentially at the same cost, that is, the
assimilated initial fields after 30 iterations of the min-
imization with the first penalty term included in the
cost function were used as the starting point for a sec-
ond minimization in which the second-order penalty
term was added to the cost function, some small im-
provement may be observed (Fig. 19). Combining the
second-order time-tendency penalty term with the first
time-tendency penalty term might be important in sit-
uations where the first penalty term is not adequate to
damp a sufficient amount of gravity-wave oscillations.
The results obtained here point to the fact that there
are situations where it may be beneficial to implement
more than one constraint simultaneously in 4D vari-
ational data assimilation.

5. Summary and conclusions

The results presented here are obtained by aug-
menting the cost function with various penalty terms
in order to control gravity oscillations in variational
data assimilation using an adiabatic version of the
NMC spectral model. While use of a weak constraint
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Fi1G. 17. The value of J,3/r; as a function of the iteration number.
Solid line: r; = 10'8. Dotted line: r; = 102,
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FIG. 18. Time traces of surface pressure at point 1. Solid line: no
penalty term. Dash—dot line: with the penalty term J,3 (r; = 10%2).
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on the time tendency of the surface pressure controls
the external gravity waves, a combination of both this
constraint with the weak constraint on the time ten-
dency of the divergence yielded satisfactory control of
high-frequency gravity-wave noise present in the data.

Another penalty method with constraint applied
only on the time tendency of the gravity components,
similar to the one used by Thépaut and Courtier
(1991), is also implemented.

We showed in this paper that the penalty constraints
should be imposed at all the time steps in the window
of assimilation to efficiently damp the high-frequency
gravity-wave oscillations. The additional computa-
tional effort involved in adding the penalty terms to
the cost function is very modest. The gradient of the
penalized cost function can still be obtained by one
single integration of the adjoint model. The additional
computation involves adding more forcing terms to
the right-hand side of the adjoint equations model.
Therefore, the coding work is rather simple.

The positive numerical results on damping the grav-
ity oscillations are reconfirmed by inspecting 24- and
72-h forecasts of the surface pressure, the retrieved ini-
tial surface pressure and divergence fields, and the value
of rms of the divergence field.

In principle, the approach presented here can per-
form the function of initialization in the framework of
variational data assimilation. The convergence rate of
the penalized cost function does not appear to be af-
fected by ill conditioning. The penalty method with
constraints on the surface pressure and the divergence
fields does not require any knowledge of the model’s
normal modes. Use of NNMI combined with the vari-
ational data assimilation does not yield good results
due to the excess gravity-wave oscillations introduced
in the gradient calculation. The variational data-as-
similation procedure itself (without the inclusion of
any penalty term), however, remains computationally
expensive since the dimension is large (~10°) and the
cost function and gradient evaluation is very costly.
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One issue of major importance in the computational
efficiency of variational 4D data assimilation is the ef-
ficiency of the optimization process. Two aspects
should be mentioned. First, in order to achieve a re-
duction in the cost function, we need to carry out many
iterations of the minimization procedure. Each itera-
tion requires at least 2 model integrations over the span
of the window for data assimilation. Second, in order
to study the quality of the solution retrieved by the
variational data-assimilation technique, it is necessary
to compute some of the eigenvalues and eigenvectors
of the Hessian matrix of the cost function with respect
to the control variables. The Hessian matrix is a huge
symmetric positive-definite matrix. If the Hessian has
a large condition number, it means that there are model
parameters not well determined by data. A spectral
analysis of the Hessian matrix will reveal which direc-
tions in parameter space are well determined and which
are poorly determined. One also needs to obtain crude
estimates of the inverse Hessian matrix at the solution,
since it can provide information about the uncertainty
of the model parameters and even about the correlation
that may exist between them (Thacker 1989).

Therefore, the need to develop parallel minimization
algorithms becomes apparent. Variational data assim-
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FI1G. 19. Time traces of surface pressure at (a) point 1; (b) point
2. Solid line: no penalty term. Dotted line: with the penalty term Jp;
(r; = 10'%). Dashed line: with both the penalty terms J,, and Jp3
carried out sequentially.



286

ilation will obtain speedups from the use of massively
parallel processors, as well as from the efficient use of
each processor’s resources. After modifying both the
direct and adjoint models as well as the unconstrained
minimization algorithm, so as to take advantage of
available parallel-processing architectures, variational
data assimilation will become a more promising tool
within reach of operational applications.
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APPENDIX A

Derivation of the Evaluation of VJ,,; or J,,
by Integrating the Adjoint Model

The derivation of the gradient calculation when the
cost function J is penalized by either (2.4) or (2.5) is,
of course, identical. Here, we only present the deri-
vation of V.J,;.

Taking the finite-difference approximation for the
time derivative, Eq. (2.4) can be written as
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where
Y(2) = Inp;s(Zo + At) — Inp,(2o)
Y(#;) = Inps(¢; + At) — lnps(¢; — At),
i=1-++-,R—1, (A2)

where Inpy(t; + At),i=1, +, R — 1 represents the
value of the variable field after the application of a
Robert time filter that is included in the model.

We define J},; to be the change in the cost function
resulting from a small perturbation X’(¢y) about the
initial condition of the control variable X (z,).

For the definition of the gradient, we have

Jo1 = (V)X (20). (A3)

Here, X(¢,) is the state vector of dimension M(4K
+ 1) and contains the values of divergence, vorticity,
temperature, surface pressure, and moisture over all
the Gaussian grid points at the initial time. Using (A.1),
we may write

, 2r| ,
Jpl = (At)z YT(’O)Y (%)
! Ri YT(0)Y'(1). (A4)
(2At)2 ! ! ’
We now express Inpi(¢;),i1=0,1,2, - - -, R, where
ti =ty + iAt, in terms of X'(¢o) as
Inp5(z;) = Q, X'(t0). (A.5)

Here, Q,, represents the product of all the operator ma-
trices in the tangent linear model that produce
Inp(¢;) from X'(20), and Q,, = (1 0)isan M X (3MxK
+ M) matrix, and | is a unit matrix of dimension M

Substituting (A.5) into (A.4) and using the definition
(A.2), we obtain

Qi)Y (4)]'X " (20)

Jpr = (At)2 Y T(20)Y (2)
n oL X M.
(ZA[)Z E Y (tl)Y(tl) (Al)
= T
pre (At)z [(QIO+AI )Y(t())] X (IO) t+ =7 (ZAZ)Z Z [(Q[+Al
2
= Carye (LOM=4Y (@) = Y ()]} X (10) + {QF [4Y (1) — Y (12)]} X" (1)

R-2

+2r 2 {QEIY (ti-) = Y(1:41)1} X (20) + 21y Z [Q] Y (4-1)1"X"(20) ), (A.6)
i=2 i=R-1
where the matrix Q,T represents the adjoint of Q.. at times ¢;, i = R, R — 1; the terms
By comparing Egs. (A.3) and (A.6), we note that Y() Y
VJ,1 can be obtained by integrating the adjoint model 2 rl[ ( i—12 _ (ti+l2)J (A.8)
from the final time #x to the initial time ¢, while in- (241) (2Ar)
serting as forcing terms the penalized differences attimes;,i=R ~ 2, - + +, 2, the terms
Y (#i-1) Y(0) Y(&)
' 2An? (A7) [ (a0~ zary? (A9)
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at time {,, and, finally, the term

_2r[Y(to)+ Y(tl)]

N(an? ' (2Ar)? (A.10)
at time ¢o.

Therefore, the gradient of the cost function aug-
mented by the penalty term J,; defined in (2.4) can
be obtained by integrating the adjoint model from time
tr 10 to and inserting into the adjoint model at each
time step the penalized terms defined in Egs. (2.9)-
(2.12), plus the weighted differences

2W ()X () — X°(1,)] (A.11)

whenever an analysis time ¢, (¢, € [¢¢, tz]) is encoun-
tered. Thus, a single integration of the adjoint model
can still yield the value of the gradient of the penalized
cost function with respect to the initial conditions.

If both penalty terms J,; and J,,; are added to the

2 R—1
a = (—A—f)— 2 {107 + 80 + Q7(1 — A1) = 207()1P)) X (1) =

R-2
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cost function J, one integration of the adjoint model
is still sufficient for the calculation of the gradient of
the penalized cost function; under this condition, forc-
ing terms resulting from both penalty terms have to be
added to the backward integration of the adjoint model.

APPENDIX B

Derivation of the Evaluation of AJ);
by Integrating the Adjoint Model

By defining J),; as the change in the cost function
resulting from a small perturbation X'(z¢) about the
initial condition X (¢y), we have

2 3 R-1

p3 = (At)4 Z [P(tl)]TP,(ll)

Using the definition of (2.12), (2.21) can be written
as

(B.1)

2
(Tf)q (1T (£0) P(:)1™X "(to)

+ {QT()[P(5) + 2P(1)]1} X (20) + 2 {QT(e)[P(ti1) + P(t;-1) — 2P(1;)1} X (10)

i=2

+ {QT(tg-)[P(tr-2) — 2P(tx-1)]} X" (1) + [QT(tR)P(tR—l)]TXI(t0)>-

On the other hand, the perturbation J,; can be ex-
pressed as

= (V1) X (t0). (B.3)

Comparing (B.2) with (B.3), we immediately obtain
that VJ,; can be calculated by integrating the adjoint
model backward in time while adding at each time step
the following penalty terms:

2!'3
(o P (B4)
at time [z, the term
2"3
(an)° [P(tr-2) — 2P(tr-1)] (B.5)
at time £z, the term
2r,
(At)“ [P(tiv1) + P(ti-y) —2P(1;)]  (B.6)
attimest;,i =R — 2, « + -, 2, the terms
27'3
P 2P i
(Az)“[ (22) — 2P(1))] (B.7)
at time ¢,, and finally the term
2r3
P(t B.8
(At)4 ( l) ( )

at initial time ¢,.

(B.2)

Due to the linearity of the adjoint model, the gradient
of the penalized cost function, J + J,3, can be obtained
by a single integration of the adjoint model with both
the forcing terms (B.4)—(B.8) and (A.11) added to the
right-hand side of the adjoint equations model.

APPENDIX C

Derivation of the Evaluation of VJ,4 or Jp4,,
by Integrating the Adjoint Model

After the normal-mode projection, one has

ay _

o —iAy + Ry(y, z) (C.1a)
dz
Z ~iA,z + Ry, z), (C.1b)

where R, and R; are nonlinear terms for slow and fast
mode equations, and A, and A, are the true slow and
fast frequencies, respectively.

Assuming R, is independent of time, we obtain

2(t) = RZ[Y(t:'K’ z(%)]
fro B

Equation (C.2) consists of a constant term and a term
oscillating at the gravity-wave frequency A,. To elim-
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inate high-frequency oscillations, one simply requires
the second oscillating term to vanish initially, that is,

R.Ly(%), 2(%)]
iA, ’
resulting in the Machenhauer balance condition.

Here, however, R, is time dependent. Machenhauer
(1977) used a Picard-type iteration

R[y(t0), Zx—1(t0)] k

or Z|li=,=0, (C3)

z(t) =

Zk(to) = iA, s =1,2, «¢:
(C.4)
Combining (C.4) with (3.1), we have
1(t0) = Ny (1) = ZAVUek e ()] 5
that is,
Nx(t0) = 2(t0) - ZH:200] )

where the subscript X — 1 for variables x and z has
been omitted.
Substituting (C.6) into (C.1b), we finally obtain
dZ(t())
dt

= Mx(¢), (C.7)

where M = —jAN.

Using (C7), (3.5)and x = $7'X, where S represents
the transformation from the spectral space to the grid-
point space, J,4 may be written as

Jps = % n,[WSHMS_'X(lo)_]T[SHMS_IXUO)]- (C.8)

For the £, norm (2.11), J,4 assumes the same form
as (C.8) with both operators H and W being replaced
by the identity operator.

A perturbation of J,4 resulting from a small pertur-
bation of the initial state may be expressed as

Jypa = r[STTMTHTSTWHMS "X (£0)]™X"(20). (C.9)
Therefore, the gradient assumes the form

VJ,s = sSTTMTHTSTWHMS X (£,). (C.10)
Thus, the process of calculating the gradient of J,4
consists mainly of a projection of the time tendency
of the initial state on the gravity manifold, represented
by M, and the adjoint operation of M.

Now, we will derive the calculation of V J,,4,, defined
in (3.6).

Substituting (C.7) and (3.5) 1nto (3.6) and using x
= §7'X, we obtain

R
Z [AX (1)17AX(1;), (C.11)

' 1
Jpam = '2'

where A = SHMS T,
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In order to derive the expression of the gradient of
Jpam, We again employ the perturbation method and
obtain

R
=ry 2 [WAX(4)]1TAX'(1;).

i=0

(C.12)

t
Jp4m

We now express X'(¢;), i = +, R, in terms

of X'(¢p) as

l’ 2’ ¢

X'(t;) = PiX'(t0), (C.13)

where P; represents the result of applying all the op-
erator matrices in the linear tangent model to obtain
X’(t,-) from X/(to).
Substituting (C.13) into (C.12), we obtain
R
Jpam = 1s 2 [WAX (4;)1TAP;X'(10).
i=0
On the other hand, in the limit as [|X'[| = .0, J,4m
is the directional derivative in the X'(¢,) direction and
is given by

Tpam = {Vlpam[ X (26)1}TX"(t0).  (C.15)
Comparison between (C.14) with (C.15) yields the

gradient of the cost function J,4m, VJpam, as
R

Vdpam = 3 PTAT[WAX (1))].

i=0

(C.14)

(C.16)

Since the operators P; are linear, V J,,4,, may be ob-
tained by integrating the adjoint model from ¢z to to
while the weighted differences

AT[r,WAX (1;)] (C.17)

are inserted at every time step. Thus, a single integra-
tion of the adjoint model can yield the value of the
gradient of the cost function J,4,, with respect to the
initial conditions.
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