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The energy-optimized structures of all mixed Ar-Xe clusters containing 7, 13, and 19 atoms
have been determined using a finite-temperature, lattice-based Monte Carlo procedure, which
incorporates a highly efficient, memoryless, quasi-Newton-like conjugate gradient algorithm.

This involves locating the global minima on the corresponding potential energy surfaces
constructed from pairwise-additive Lennard-Jones potentials. For these systems, this
optimization procedure has been found to be much more efficient than the more generally
applicable simulated annealing method. Based on these energy-optimized structures,
substitution sequences have been presented and discussed.

I. INTRODUCTION

Atomic and molecular clusters are involved in a number
of phenomena including astrophysical processes, atmo-
spheric reactions, nucleation, and catalysis. Although much
of the theoretical and experimental research into the phys-
ical and chemical properties of clusters' has been driven by
their potential catalytic properties, clusters are intrinsically
important in any fundamental theory of matter as they form
a natural bridge between atoms and molecules on the one
hand, and liquids and solids on the other hand. Of the many
interesting properties of clusters, some may be more appro-
priately described from a “molecular” viewpoint and others
from a “bulk” viewpoint.

It has been known for a long time that the structures of
small clusters in the gas phase generally differ from the pack-
ing structure of the substance in its crystalline state.” To
understand the structures of rare-gas clusters (RGCs), var-
ious growth schemes have been proposed. The earliest mod-
els for describing the conformations of RGCs were devel-
oped by Werfelmeir® and were based on the principle of
maximizing the coordination number of the atoms. These
models yielded, for example, the equilateral triangle for 3
atoms, the tetrahedron for 4 atoms, the bitetrahedron for 5
atoms, the decahedron for 7 atoms, and the icosahedron for
13 atoms.? In general, the models for larger clusters were
constructed by adding atoms to the faces and other symmet-
ric positions of smaller clusters. This type of “building-up”
procedure lead to the development of various growth
schemes. For example, Hoare and Pal* constructed models
of RGCs containing up to 60 atoms using growth schemes
involving tetrahedral, pentagonal, and icosahedral symme-
tries. Energies were calculated for the models obtained from
the different growth schemes using a pairwise-additive, Len-
nard-Jones potential. The model that gave the lowest energy
for a cluster of a given number of atoms was assumed to
represent the energy-optimized conformation. In all cases,
the models based on the growth schemes gave lower energies
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than the corresponding model based on face-centered-cubic
packing.

To aid in the interpretation of data from electron dif-
fraction studies of RGCs, Farges et al.>~” used a growth
scheme based on icosahedral structures. These investigators
also employed molecular dynamics simulation methods
with a pairwise-additive, Lennard-Jones potential, to deter-
mine the equilibrium structures of the clusters. Using this
procedure, the structures of the clusters were allowed to re-
lax from their purely polyicosahedral conformations. For
the cluster containing 23 atoms, Farges et al.® located a new
conformation that has a lower energy than that reported by
Hoare and Pal.*

From a molecular viewpoint, the potential energy of the
ground state of a cluster can be described by a hypersurface,
which will be referred to as a potential energy surface (PES),
of high dimensionality (3N — 6, where N is the number of
atoms in the cluster). The geometry of the cluster’s most
stable conformation is the geometry corresponding to the
global minimum of the PES. A complication in locating
these global minima arises from the fact that the PESs of
clusters contain many local minima. In fact, the number of
minima increases exponentially as the number of atoms in-
creases. Hoare and McInnes® have reported that the number
of minima discovered on PESs constructed from pairwise-
additive, Lennard-Jones potentials, representing RGCs with
6,7,8,9,10,11, 12,and 13 atoms are 2, 4, 8, 18, 57, 145, 366,
and 988, respectively. Thus, to determine the energy-opti-
mized conformations of these clusters, one must employ a
method that will locate the global minimum on a PES and
not become trapped in one of its many local minima.

One of the few optimization algorithms that is capable
oflocating the global minimum on a hypersurface is the sim-
ulated annealing (SA) method.® Recently, Wille'® applied
this method to determining the global minima of the PESs
for a number of RGCs containing up to 25 atoms. The PESs
were constructed from pairwise-additive, Lennard-Jones
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potentials. In addition, Wille used a gradient optimizer to
speed up the search for the minimum when the SA algorithm
was atalow energy.'® The advantage of using the SA method
in determining energy-optimized conformations of clusters
is that it is capable of locating a global minimum in the pres-
ence of multiple local minima. Using this method, Wille dis-
covered new, energy-optimized conformations for RGCs
with 23 and 25 atoms as compared with those reported by
Hoare and Pal.*

Northby'! has recently studied the structures of all Len-
nard-Jones, RGCs containing from 13 to 147 atoms. Usinga
lattice-based search followed by a local optimization proce-
dure, Northby has reported optimized structures for all of
these 135 clusters. The lattice structure that was used in the
initial search for the energy-optimized geometry, was con-
structed from multilayer icosahedral structures. For many
of these RGCs, the optimized structures determined by
Northby have a significantly lower energy than previously
reported structures.

Whereas, most of the previous studies of RGCs have
focused on pure atomic clusters consisting of only one type
of atom, we have investigated mixed RGCs that contain both
argon and xenon atoms. For the pure RGCs, all of the two-
body interactions are identical and the resulting structures
often contain various symmetry elements. In the mixed clus-
ters, many of these symmetry elements are missing. In the
present study, we have investigated the most stable struc-
tures of mixed RGCs containing 7, 13, and 19 atoms. Pure
RGCs of these sizes are particularly stable and have well
defined geometric structures. Only a few studies of mixed
RGCs have been reported in the literature. Scharf et al.'?
have investigated the dynamics of electronically and vibra-
tionally excited states of XeAr,,, Xe,Ar,,, XeArs,, and
Xe,Ars; RGCs. Recently, Boehmer and Peyerimhoff'* have
investigated the singly charged, cationic RGCs
[XeAry _,]*, N=3-27 and compared their results to the
mass spectra obtained by Ding and co-workers.'*

The remainder of this paper is organized as follows: in
Sec. I1, we describe the computational methods that we used
in this study. The results are presented in Sec. III and dis-
cussed in Sec. IV. Finally, the conclusions from this study
are presented in Sec. V.

Il. COMPUTATIONAL METHODS

As discussed in Sec. I, the problem of determining the
energy-optimized structure of a cluster is equivalent to locat-
ing the global minimum of a PES. Most of the currently
existing algorithms for optimization cannot distinguish
between a global minimum and a local minimum. Thus, if
one uses these methods for optimizing cluster structures, one
has very little assurance that one has reached the global min-
imum because there are so many local minima.* In this sec-
tion we describe the simulated annealing method along with
a couple of variants that we have examined in developing a
strategy for determining the energy-optimized structures of
mixed RGCs. Finally, we present the finite-temperature, lat-
tice-based Monte Carlo method and we describe the con-
struction of the PESs that have been used to represent these
mixed RGCs.

Robertson, Brown, and Navon: Structure of argon~xenon clusters

A. The simulated annealing method

One of the few optimization algorithms that can deter-
mine global minima is the simulated annealing method. This
method was first applied to several discrete combinatorial
optimization problems.’> Subsequently, Vanderbilt and
Louie’® modified the SA method so that it can be applied to
optimization problems that involve continuous variables.

The SA method is analogous to the thermal annealing of
a crystal. During the annealing process, the crystal is heated
to a relatively high temperature and then allowed to cool
very slowly. At high temperatures, the particles in the crys-
tal have enough thermal energy (kinetic energy) to over-
come local conformational barriers and evolve into more
stable structures. As the temperature is slowly lowered, the
particles have less thermal energy and become more and
more constrained, in their movement, by the local barriers.
If the temperature is lowered slowly enough, the particles in
the crystal become aligned and “organized” so as to mini-
mize the energy. The configuration of this state corresponds
to the global minimum on the PES representing this system.
If however, the temperature is lowered too rapidly, the sys-
tem may be quenched and become trapped in a metastable
state, which corresponds to a local minimum on the PES.

Our implementation of the SA method for determining
the energy-optimized structures of RGCs is very similar to
Wille’s'? implementation. We employed the Metropolis al-
gorithm.”” Starting from a randomly chosen point on the
PES of a cluster, which corresponds to a random cluster
conformation, a step is taken along a random direction and
the change in the potential energy AE is calculated. If AE is
negative, the step is accepted. If AE is positive, the step is
accepted with a probability determined by the Boltzmann
factor Py:

PB"’—‘E_AE/kT, (1)

where k is Boltzmann’s constant and T'is the temperature. In
our implementation, we compare P, with a random number
and accept the step if P, is greater than the random number.
At highvalues of T, there is a greater probability of accepting
steps for which AE is positive, i.e., accepting steps in an “up-
hill” direction. This allows the system to move across bar-
riers into different regions of the PES at high temperatures.
As the temperature is slowly lowered, there is a decreased
probability of surmounting high barriers and the system
slowly becomes localized until, at very low temperatures, it
oscillates in the immediate vicinity of the global minimum.

As the system becomes localized in the vicinity of the
global minimum, the SA method becomes inefficient in lo-
cating the exact position of the minimum. At this point, the
SA method is allowing the system to take random walks in
only one catchment region. In this situation, many other
optimization algorithms will very quickly converge to the
minimum. Wille'® reported that he used a gradient optimiz-
er when the SA algorithm reached low energies. In the pres-
ent work, we have employed the memoryless, quasi-New-
ton-like conjugate-gradient method of Shanno'®!® as
implemented in the CONMIN program.?® (See the Appen-
dix.) We have used this local optimization algorithm for
clusters containing as many as 55 atoms which involved op-
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timizing 159 variables. In our cluster optimizations that em-
ployed the SA method in conjunction with the conjugate
gradient method, less than 1% of the total computer time
was spent in the CONMIN program.

This implementation of the SA method in conjunction
with the conjugate gradient method is ideal when there is
very little a priori information concerning the location of a
global minima. This method treats all regions of the PES in a
balanced manner. However, the SA method is relatively
costly in terms of the number of evaluations of the potential
energy that must be performed. In particular, one must per-
form long enough walks at each temperature so that repre-
sentative regions of configuration space are sampled and one
must employ a cooling schedule that does not allow for
quenching. Finally, one must repeat the calculation several
times, using different random numbers, to help insure that
one has reached the global minimum. Thus, while the simu-
lated annealing method is quite powerful, it is also quite cost-

ly.

B. Related optimization methods

Recently, Saunders?! employed a Monte Carlo method
which samples the minima of a PES by randomly stepping
from minimum to minimum on the PES. This was accom-
plished by using a local optimizer to locate the nearest mini-
mum, followed by applying a random displacement to all of
the coordinates and then locating the nearest minimum to
the new point. By monitoring the energies of all of the mini-
ma sampled, Saunders determined an upper bound on the
global minimum. Assuming that one can reach the global
minimum in a finite number of steps from any other mini-
mum on the PES, this method will eventually yield the glo-
bal minimum. Saunders used this method to determine opti-
mized structures for various medium-sized cycloalkanes.?'

Li and Scheraga®? have used a similar method to deter-
mine the optimized folded structure for various proteins.
Their method differs from Saunders’ method in that Li and
Scheraga only accept steps to new minima with a Boltzmann
probability. Basically, these two methods are the same ex-
cept that Saunders performs his walks using an infinite tem-
perature so that P, = 1 and all steps are accepted, while Li
and Scheraga use a finite temperature for which Py <1 and
some steps are rejected. These authors adjust the size of the
random step and the temperature to achieve a step accep-
tance of about 50%.

C. The finite-temperature, lattice-based, Monte Carlo
method

In the present study of mixed RGCs, we have developed
a finite-temperature, lattice-based, Monte Carlo method.
(This method will be denoted as FTLBMC. ) This method is
designed for studying these clusters that have an underlying
structure (that of the pure RGC) which is relaxed or per-
turbed in the mixed RGC because of the presence of the two
different types of atoms. For a cluster containing NV atoms,
we begin with the structure of the Ar, cluster. Then we
randomly substitute the appropriate number of Ar atoms
with Xe atoms for the particular mixed cluster we are study-

ing to form our initial structure S; of the mixed RGC. Using
a local optimizer, we locate 2 minimum near .S, and record
its energy. Then returning to the structure .S;, we randomly
interchange the position of one Ar atom with that of one Xe
atom forming a new structure .S,. Again, using a local opti-
mizer, we locate a minimum near S, record its energy, and
calculate AE which is equal to the difference in energy
between the minimum near S; and the minimum near S,. If
AE is negative, we accept S, and proceed to a new structure
S,, by randomly interchanging another Ar-Xe pair of
atoms. If AE is positive, then we accept S, with a Boltzmann
probability. If S| is not accepted, we return to .S, and gener-
ate another structure S, by randomly interchanging another
Ar-Xe pair. After the completion of a certain number of
steps, an upper bound for the global minimum is given by the
lowest-energy optimized structure.

We present performance characteristics of the
FTLBMC method in Table I for two mixed RGCs. In partic-
ular, we show the performance of the method as a function of
both the temperature that is used in calculating Pp and the
number of steps taken in the random walks. The following
general observations can be made. First of all, as the value of
the temperature is increased, the percentage of steps that are
accepted is increased and this is essentially independent of
the number of steps in the walks. Obviously, in the limit as
T— o, the percentage of accepted steps approaches 100.
Second, as the temperature is increased and as the number of
steps per walk is increased, the number of different minima
with different energies sampled by the FTLBMC method is
increased. Third, the number of times the method samples
the lowest-energy minimum increases with both an increase
in the number of steps per walk and a decrease in the value of
the temperature. This latter effect simply reflects the fact
that with a lower temperature, there is a lower probability
that higher-energy minima are sampled. Finally, it should be
noted that for the Ar,;Xe, cluster, the global minimum is
not reached for three runs at the higher temperatures. Of
course, one cannot reduce the temperature too much, since
the number of accepted steps will become too small, thereby
limiting the regions of configuration space that are sampled.
In the limit at 70 K, the method will only step to minima
with lower energies which may prohibit the method from
locating the global minimum. Based on our experience using
this method with these systems, we have found that using a
reduced temperature value of 0.5 (60 K for these studies) is
reasonable as approximately 50% of the steps are accepted.

Furthermore, we have compared the performance of the
FTLBMC method for mixed RGCs containing N atoms, in
which the initial underlying structure is taken to be either
the energy-optimized Ar, or Xe, structures. There is essen-
tially no difference in performance between using either of
these two structures as the underlying reference structure
and so we have used the Ar, energy-optimized structure in
the present calculations.

As in the SA method, one should run the FTLBMC
method several times using different sets of random numbers
to increase the probability that the lowest-energy minimum
sampled is, in fact, the desired global minimum. Nonethe-
less, the FTLBMC method is significantly faster than the SA
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TABLE 1. Performance characteristics of the finite-temperature, lattice-based Monte Carlo optimization method as a function of the number of steps and the
temperature. The reduced energies of the optimized structures of Ar,Xe, and Ar,,Xe, are — 63.7979 and ~ 98.0988, respectively.

Cluster 7° NSTEPS® NDES* NTLES® PSA® Enef
Ar,Xe, 0.1 1000 13 477 17 — 63.7979
2000 15 1046 13 —~ 63.7979
0.5 1000 23 101 64 — 637979
2000 18 202 64 —~ 63.7979
1.0 1000 27 47 78 —63.7979
2000 26 100 77 ~63.7979
10 1000 31 15 96 —~ 63.7979
2000 31 41 9% — 63.7979
ArXe, 0.1 1000 15 835 5 — 98.0988
2000 17 1721 3 — 98.0988
0.5 1000 180 3 42 — 98.0988
2000 282 14 45 — 98.0988
1.0 1000 376 7 63 ~97.6118
2000 509 4 64 ~ 98.0988
10 1000 673 2 96 ~97.7750
2000 1036 1 94 —97.3937

*Reduced temperature: T=[T(K)/120 K).
® NSTEPS =number of steps during optimization walk.
NDES =number of minima with different energics that were sampled.

¢ NTLES =number of times the minimum with the lowest energy was sampled.

 PSA =percentage of steps accepted.

TE ¢ =lowest energy, in reduced units, of any minimum sampled. E=E/[(120K) (k) ] where & is Boltzmann’s constant.

.

method. While the SA method is a viable alternative for de-
termining optimized structures for pure RGCs, it requires
significantly longer runs for optimizing mixed RGCs. This is
primarily because it takes many concerted moves of specific
atoms to produce an interchange in position of an Ar-Xe
pair of atoms. This type of interchange is not required for
optimizing pure RGCs. As examples of the difference in tim-
ings between the SA method and the FTLBMC method,
consider the optimization of the Ar,Xe, and Ar,;;Xe, clus-
ters. They required 55 and 398 min of VAX 8700 CPU time,
respectively, using the SA method and only 15 and 51 min,
respectively, using the FTLBMC method. Thus, for deter-
mining the energy-optimized structures of mixed RGCs that
are strongly related to a particularly stable pure RGC, the
FTLBMC method appears to be quite efficient.

D. The potential energy surfaces

The PESs that we used to model these systems consisted
of pairwise-additive, Lennard-Jones potentials. The form of
the Lennard-Jones potential that we used for a two-body
interaction was

o 12 o [
o = (2)"-(2)]

TABLE II. Parameters that have been used in the two-body, Lennard-Jones
potentials describing the interaction between two rare-gas atoms. These pa-
rameters were taken from Ref. 12.

(2)

Interaction o (&) ek (K) g*
Ar-Ar 3.40 120.0 1.0000
Ar-Xe 3.65 177.6 1.4800
Xe~Xe 4.10 222.3 1.8525

where the r;; is the distance between atoms / and j. The values
for the parameters € and o for the three different types of
rare-gas atom interactions are given in Table IL

1il. RESULTS

In this investigation we have determined the energy-
optimized structures for all of the mixed Ar-Xe clusters con-
taining 7, 13, and 19 atoms. We chose to examine these par-
ticular clusters because the corresponding pure RGCs are
quite stable and have high symmetries. In particular, 7 has
pentagonal symmetry, 13 has icosahedral symmetry, and 19
has biicosahedral symmetry. Thus, these clusters are ideal
systems to investigate using the FTLBMC method.

We present the lowest energies obtained for all of these
mixed clusters in Tables III, IV, and V. These energies repre-
sent an upper bound on the energy of the global minima for
these systems and although there is no guarantee that we
have found the global minimum for each of these systems,
there is a high probability that we have indeed located it.

TABLE I11. Energies of the optimized structures of the Ar, _ , Xe, clusters
where 0<n<7.

No. of Ar atoms No. of Xe atoms E®
7 0 — 16.5054
6 i — 19.2622
5 2 —22.0179
4 3 — 23.7468
3 4 - 25.5027
2 5 ~— 27.2248
1 6 ~— 28.8997
0 7 —30.5762

2g=¢/[ (120 K) (k)] where k is Boltzmann’s constant.

2 is the energy in reduced units.
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TABLEIV. Energies of the optimized structures of the Ar,, _ , Xe, clusters
where 0<n<13.

No. of Ar. atoms No. of Xe atoms E®
13 0 — 44,3268
12 1 — 47.6968
11 2 —51.1213
10 3 — 54,5957
9 4 — 57.8542
8 5 — 60.7363
7 6 — 63.7979
6 7 — 66.5918
5 8 — 69.0209
4 9 — 71.6010
3 10 — 74.0184
2 11 — 76.2746
1 12 — 78.7008
0 13 — 82.1154

= E is the energy in reduced units.

This confidence comes from performing the FTLBMC cal-
culations several times and never sampling a point on the
corresonding PES with a lower energy.

In Figs. 1, 2, and 3 we schematically present the order of
substitution of Ar atoms with Xe atoms for each cluster size.
In most cases, the actual mixed RGCs have a lower symme-
try than is depicted in these figures, because we have treated
the Ar and Xe atoms alike in these schematic diagrams so
that the substitution sequences are most clearly displayed.
Of course, in our calculations, these effects entered via the
different sets of parameters that were used in the Lennard-
Jones potentials. In Fig. 4, we illustrate the asymmetric
structures of the Ar,Xe, and Ar,Xe, clusters.

Finally, in Fig. 5, we present a plot of the lowering of the
energy that occurs with each successive substitution of an Ar
atom with a Xe atom. For a given cluster size, the sum of

TABLE V. Energies of the optimized structures of the Ar,,_, Xe, clusters
where 0<n<19.

No. of Ar atoms No. of Xe atoms E-
19 0 — 72.6598
18 1 — 77.2961
17 2 — 81.9063
16 3 — 86.3261
15 4 —90.4299
14 5 — 94,3788
13 6 — 98.0988
12 7 — 101.8070
11 8 — 104.5712
10 9 — 107.5304
9 10 — 110.2436
8 11 — 113.0753
7 12 — 115.6808
6 13 — 118.2847
5 14 — 120.7866
4 15 — 123.7816
3 16 — 126.5652
2 17 —129.1322
1 18 — 131.8380
0 19 — 134.6023

2 is the energy in reduced units.
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2

7-1

7-1

FIG. 1. Schematic representation of the substitution sequence for Ar-Xe
clusters containing seven atoms. The shaded and open circles represent Xe
and Ar atoms, respectively.

each of these energies gives the difference between the ener-
gies of the pure Ar, and Xe, clusters.

IV. DISCUSSION

From an analysis of the geometries of the energy-opti-
mized structures of these various mixed RGCs, it is apparent
that they all retain the gross structure of the underlying pure
RGC. This was confirmed by using the SA method to deter-
mine the global minima for several of these clusters. In all
cases that we checked, the “unbiased” nonlattice-based SA
method gave the same optimized structure. Thus the energy-
optimized structures of these mixed RGCs are perturbed or
“relaxed” forms of the corresponding pure RGC structures.

The next interesting aspect of this investigation involves
developing an understanding of the substitution sequence
that occurs in these clusters. Of course, in an actual experi-
mental situation, it may not be the case that a mixed RGC
would be formed by a sequential substitution of Ar atoms
with Xe atoms. Nonetheless, the concept of sequential sub-
stitution provides a method for organizing the various mixed
RGCs for a given cluster size in much the same way that
various growth schemes for the pure RGCs have been used.

In trying to understand the substitution sequences for
these RGCs, it is important to keep in mind the relative well

FIG. 2. Schematic representation of the substitution sequence for Ar-Xe
clusters containing 13 atoms. The shaded and open circles represent Xe and
Ar atoms, respectively.
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FIG. 3. Schematic representation of the substitution sequence for Ar-Xe
clusters containing 19 atoms. The shaded and open circles represent Xe and
Ar atoms, respectively.

FIG. 4. The energy-optimized structures of the Ar;Xe, and Ar,Xe; mixed
RGCs. As before, the shaded and open circles represent Xe and Ar atoms,
respectively. The perspective is directly along the axis containing the apex
atoms—there is an additional Xe atom hidden directly below the central Xe
atom.

depths of the three Lennard-Jones interaction potentials.
The strongest attractive interaction is the Xe-Xe interaction
while the weakest is the Ar-Ar interaction. In the crudest
model, when there are more Ar atoms than Xe atoms, one
wants to maximize the number of Ar—Xe nearest-neighbor
interactions and minimize the number of Ar-Ar nearest-
neighbor interactions. However, when there are more Xe
atoms than Ar atoms, one wants to maximize the number of
Xe—Xe nearest-neighbor interactions. Of course, all of this is
mediated by the fact that these strong attractive interactions
occur at different interatomic distances for the three differ-

5
TN o—oN=19
o o—oN=13
> 4 o a—aN=7
]
c ®,
! o \. .
é 3 \./.\ /0\ /O\ J
=] a—a ®, N o
-:é . /o\.\ P O/O/O
L0 ¢
A 2} 4
AA—Ae A
1 1 I 1
0 5 10 15 20

Xenon Substitution Sequence Number

FIG. 5. Plots of the energy lowering for the substitution of each Xe atom
into the mixed RGCs containing 7, 13, and 19 atoms. The energy lowering is
given in reduced units. (See Table I).
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ent two-body potentials. Thus, for the larger mixed RGCs,
the most intuitive structure is not always the energy-opti-
mized structure. (For these ‘“‘counterintuitive” structures,
we have always investigated the minima in the region of the
“intuitive” structures and found that the latter had higher
energies.) We now discuss the substitution sequence for each
cluster size separately. (In describing the substitution se-
quence for a particular mixed RGC, it should be noted that
sometimes the structure will have symmetry-equivalent
structures. In these cases we have simply chosen the struc-
ture that most clearly depicts the substitution sequence.)

A. RGCs containing seven atoms

As mentioned before, the Ar, and Xe, clusters have pen-
tagonal structures with five atoms in a plane forming a regu-
lar pentagon structure and two apex atoms, one above and
one below the plane. (This structure is schematically pre-
sented in Fig. 1.) Starting from the Ar, structure, the first
two Xe substitutions occur at the two apex positions (7-1).
The third Xe atom substitutes into any of the planar posi-
tions. The fourth and fifth Xe atoms substitute into the pen-
tagonal ring to positions that maximize the number of near-
est-neighbor Ar-Xe interactions while minimizing the
number of Xe-Xe nearest-neighbor interactions (7-1I).

In examining Fig. 5, one can see that the greatest energy
was gained from first two substitutions into the two apex
positions. The energy gained from substitution into the axial
positions was almost constant. Thus, the ArcXe and Ar;Xe,
are particularly stable as they maximize the number of Ar—
Xe interactions and minimize the number of Ar—Ar interac-
tions.

In Fig. 4, we present the structures of the Ar,Xe, and
Ar,Xes. In this figure, the distortion from the corresponding
pure (symmetric) Ar, structure is apparent with the Ar—-Ar
interatomic distances being shorter than the Ar-Xe dis-
tances which are shorter than the Xe-Xe distances.

B. RGCs containing 13 atoms

The Ar,; and Xe,; clusters have icosahedral symmetry.
Their structure can be considered to be composed of two
clusters containing seven atoms that are positioned directly
above each other and share an apex atom. Furthermore, the
peniagonal rings are rotated by 7/5 rad relative to each oth-
er. This icosahedron has 12 atoms around a central atom.

The substitution sequence is schematically depicted in
Fig. 2. Structure 13-I shows the first six substitutions. The
first substitution occurs at an apex position, followed by two
substitutions on the lower pentagonal ring. The fourth sub-
stitution occurs on the top pentagonal ring, followed by a
substitution of the bottom apex atom, and another atom in
the lower pentagonal ring. At this point there is a restructur-
ing of the substitution sequence to complete the bottom pen-
tagonal ring (13-I1). The atom substituted in the top penta-
gonal ring moves to the bottom pentagonal ring and the
seventh substitution completes this lower pentagonal ring.
The remainder of the substitution sequence occurs by filling
up the upper pentagonal ring followed by substitution of the

central atom (13-III). Presumably, the central atom is the
last to be substituted because of the high energy associated
with stretching the Ar-Ar interactions to allow the much
larger Xe atom to occupy this central site.

In examining the relative energetics of the substitution
sequence as depicted in the appropriate plot in Fig. 5, one
observes that the substitution energies are relatively smooth
with the only sharp feature occuring with the substitution of
the central (last remaining) atom. This last substitution sig-
nificantly lowers the energy because at this point, the system
is no longer perturbed from an optimal Xe,; structure. The
most stable structures of these mixed RGCs, with respect to
substitution, are Ar, Xe;, Ar;Xe,, and Ar,Xe,.

C. RGCs containing 19 atoms

The pure RGC containing 19 atoms is made up of two
vertically interpenetrating icosahedra that share the two in-
terior atoms and the central pentagonal ring of atoms. The
substitution sequence for this cluster is schematically shown
in Fig. 3. The central pentagonal ring of Ar atoms are substi-
tuted first, followed by substitutions of the top and bottom
apex atoms (19-1). Three atoms in either the top pentagonal
ring or the bottom pentagonal ring are substituted next (19-
II). This is followed by a restructuring in which one Xe atom
from the partly filled pentagonal set moves to the opposite
pentagonal ring followed by a substitution at a site on the
latter pentagonal ring (19-1II). At this point, both the bot-
tom and top pentagonal rings contain two Xe atoms. The
next substitution involves moving an apex Xe atom to the
nearest pentagonal ring and substituting a Xe on the oppo-
site pentagonal ring (19-IV). At this point, the upper and
lower pentagonal rings each contain three Xe atoms.. The
13th Xe atom substitutes at the unsubstituted apex position
(19-V). The next substitution occurs at one of the penta-
gonal rings simultaneously with an Xe atom from the oppo-

site apex substituting into this ring to complete its substitu-
tion (19-VI). Then the central (interior) atom on the almost
completed icosahedron is substituted along with the replace-
ment of a Xe on the opposite apex position (19-VII). Finally
the partially unsubstituted pentagonal ring is completely
substituted (19-VIII). The last atom to be substituted is the
second interior atom.

Although this sequence is more complicated than those
described previously for the 7- and 13-atom RGCs, they
have several features that are common. For example, the
interior atom inside an icosahedral structure is only added
after the outside framework has been substituted. These
clusters tend to maximize their symmetry which in some
cases is manifested by favoring the completion of pentagonal
rings. Of course, there are exceptions to these general rules
and in cases where counterintuitive structures were found,
we examined the more intuitive structure and found in all
cases that the latter structure had a higher energy than the
former structure—although, in most cases the energy differ-
ence, while significant, was not large.

Figure 5 shows that there is a significant decrease in the
substitution energy in going from Ar,,Xe, to Ar,,;Xe;. The
former structure has maximized the number of Ar-Xe inter-
actions and strain begins to enter the system with the substi-

J. Chem. Phys., Vol. 80, No. 8, 15 March 1989

Downloaded 24 Jul 2004 to 155.198.93.186. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3228

tution of the eighth Xe atom. Also, note that the substitution
of the interior Xe atom greatly lowers the energy as the outer
framework allows for this substitution which increases the
number of Xe-Xe interactions.

Alternatively, one can view this substitution sequence,
not as a single scheme with atomic rearrangements between
the clusters, but as a composite of several different schemes
in which the scheme associated with the energy-optimized
structure differs from one cluster to the next. When the ratio
of Ar atoms to Xe atoms is close to unity, the energies of
these difference schemes are very similar and therefore, no
one substitution scheme predominates. For example, from
Fig. 3, it can be seen that ArgXe,, (19-I1I) is an Ar,(Xe,
(19-II) with two Xe atoms substituted into the lower penta-
gonal ring. Similarly, Ar,Xe,; (19-V) can be thought of as
either an Ary;Xe,q (19-II) with three Xe atoms substituted
into the lower pentagonal ring or an ArgXe,, (19-III) with
two Xe atoms substituted, one in the upper ring and one in
the lower ring. Likewise, ArsXe,, (19-VI) is an Ar,Xe,,
(19-IV) with two Xe atoms substituted to complete the low-
er pentagonal ring. In examining Fig. 5, one can see that the
substitution energies between # = 8 and n = 14 for the clus-
ters containing 19 atoms are relatively constant—this being
the region where the several substitution schemes overlap.
Thus, one may view the overall substitution scheme, not as
one, single-atom substitution sequence with atomic rearran-
gements between structures, but as a composite of several,
near-degenerate, single-atom substitution sequences with-
out atomic rearrangements.

V. CONCLUSIONS

In this paper, we have presented an investigation de-
signed to determine the energy-optimized structures of
RGCs containing both Ar and Xe atoms. To efficiently per-
form these optimization calculations, we have developed the
finite-temperature, lattice-based Monte Carlo procedure
that is related to the descretized simulated annealing meth-
od. As part of the FTLBMC algorithm, we have employed a
highly efficient, local conjugate-gradient optimizer. We
have examined the three families of clusters containing 7, 13,
and 19 atoms.

We have described the structures of the mixed RGCs by
considering substitution sequences and the corresponding
substitution energies. By analyzing the substitution energy
sequence, one can determine which substituted structures
are more stable, relative to further substitution, than others.
Most of these structures maximize the symmetry of the clus-
ter which often is manifested by forming completely substi-
tuted pentagonal rings, and either maximizing the number of
nearest-neighbor Ar-Xe interactions when there is a major-
ity of Ar atoms in the cluster or nearest-neighbor Xe-Xe
interactions when there is a majority of Xe atoms in the
structure.

Further work on this project will involve using more
accurate two-body potentials to construct the PESs of the
RGCs. Additionally, we will investigate the performance of
the FTLBMC method for mixed RGCs whose structures
may not be as strongly linked to the corresponding, pure
RGC as the ones in this study.
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APPENDIX

The CONMIN program proposed by Shanno and Phua®®
finds the local minimizer of a nonlinear function of » vari-
ables, f(x), where

X = (X1,.00%,) 7, n>l (Al)

can be any real numbers. This program incorporates two
nonlinear optimization methods, i.e., a conjugate-gradient
algorithm and a quasi-Newton algorithm, with the choice of
the method being left to the user.

The conjugate-gradient algorithm in CONMIN is the
Beale restarted memoryless variable metric algorithm docu-
mented in Shanno.'®'° This method requires approximately
Tn single/double precision words of working space to be pro-
vided by the user.

The quasi-Newton method is the Broyden-Fletcher—
Goldfarb-Shanno (BFGS) algorithm with initial scaling
documented in Shanno and Phua.”® This method requires
approximately n%/2 + 11n/2 double precision words of
working storage.

For solving large-scale nonlinear optimization prob-
lems, memory considerations generally mandate using the
conjugate-gradient algorithm, i.e., we used only the conju-
gate gradient option of CONMIN

The performance of this conjugate-gradient code can be
significantly improved by careful implementation on super-
computers when solving large-scale optimization problems.

Algorithmic description of the Shanno-Phua?® conju-
gate-gradient method.

(i) Initialization:

Choose x,, €, H, =1 and set k =0,
compute f, =f(x;),

8 =8(xy), ie.,thegradientof f; (A2)
S = — Bis
and Sk8k-

(ii) Linear search procedure:

In this step, we perform the inexact linear search proce-
dure proposed by Shanno and Phua?® with some modifica-
tions. The basic linear search uses Davidon’s cubic interpo-
lation to find a step length «, which satisfies the following
two conditions:

(A3)
(A4)

Ax, + a5, ) < flxg) +0.0001a,57g,,
|skg(xi + s, )sigx| <0.9.
(iii) Test for convergence:
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Set x,,, =X; + a5,
i1 =fXesy)s
i1 =8(Xe 1),
Pi =X 1 — Xp

Yk =8k+1 — 8k-
If ||ge . 1 ||<€ max(l, ||x,, ,||) then stop. Else proceed to
step (iv).
(iv) Perform the Beale restart according to Powell’s crite-
rion:

If the following criterion suggested by Powell** holds,
then perform the Beale? restart procedure described in this
step. Otherwise proceed to step (v). Powell’s* restart crite-
ria are the following:

(a) The iteration k is a multiple of n.

(b) lg[+lgkl>”gk+1”2' (A6)

If either one of the above two conditions holds, then
perform the following: Compute the new search direction

Sk+1 DY

(AS5)

T T,
YV \Pr8
Ske1 = — V841 —[(1+y "T")-"—T"—“—
DPiVe/ PiVi
T
BB ]pk (A7)
Diyi
YPi8k 41
+ -—;*—yk,
DPiJk
where
T
=5, (A8)
Vi
Set
D, =5Si, ¥.=JY;, andgo tostep (ii).

(v) Compute the new search direction by the two-step me-
moryless BFGS formula:

This is a nonrestart step in which we compute. the new
search direction by using the two-step memoryless BFGS
scheme as suggested by Shanno.'® That is, we compute s, , ,
by
P8k

Sk = —Hygwfn +=——H,p,
Dk
.V{Hk.VkPng+1 ykTHkgk+1
-1+ T T - T P
PiYi Pidx PiJk

(A9)

A
Here H is an approximation to the inverse Hessian and the
vectors H,g, , , and H,y, are defined by

T T,
fa y 4 P:&
Hgp,1 = ’;r k+1"‘_t7k‘1 t
trt ytyt
T,
+ (ptg:-f-l _ ytgl;-f—l )pt (AIO)
P:Y: Py,
and
~ Py, Pk PV Yk
Hkyk_T k — 7V 2— =7 P
YiDe YiV: Py W

(A1)

As suggested by Fletcher,? the search vector s, . ; is scaled
by

Sk = [2(f1<+1 —ﬂ)/gZ+1Sk+1]sk+1-
Go to step (ii).

(A12)
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