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ABSTRACT

During the last few years new meteorological variational analysis methods have evolved, requiring large-scale
minimization of a nonlinear objective function described in terms of discrete variables. The conjugate-gradient
method was found to represent a good compromise in convergence rates and computer memory requirements
between simpler and more complex methods of nonlinear optimization. In this study different available conjugate-
gradient algorithms are presented with the aim of assessing their use in large-scale typical minimization problems
in meteorology. Computational efficiency and accuracy are our principal criteria.

Four different conjugate-gradient methods, representative of up-to-date available scientific software, were
compared by applying them to two different meteorological problems of interest using criteria of computational
economy and accuracy. Conclusions are presented as to the adequacy of the different conjugate-gradient algorithms
for large-scale minimization problems in different meteorological applications.

1. Introduction

The last few years saw the emergence of several new
variational analysis methods in meteorology necessi-
tating large-scale nonlinear minimization. Such were
the methods of augmented-Lagrangian (Navon, 1982;

Le-Dimet, 1982; Navon and de Villiers, 1983; Navon,”

1983; Le-Dimet and Segot, 1985; Navon, 1985; Navon
and- de Villiers, 1986; Navon, 1986; Le-Dimet and
Talagrand, 1986). Hoffman (1982, 1984) proposed a
variational analysis method for SeaSat-A satellite scat-
terometer winds. In his work a functional of 10* vari-
ables had to be minimized using a conjugate-gradient
method. Finally, a new method—the adjoint model
technique—based on optimal-control theory, pi-
oneered by Marchuk (1974) and described by Kontarev
(1980), has recently been used by Talagrand (1985),
Courtier (1985), Le-Dimet and Talagrand (1986), Der-
ber (1985), and Lewis and Derber (1985) for four-di-
mensional data assimilation. Again, in this method
large-scale minimization of a discrete functional with
respect to one of the analysis states is required. Derber
(1985) used a conjugate-gradient method when imple-
menting the adjoint model technique. The conjugate-
gradient method has also been used in a variational
analysis by Testud and Chong (1983).

Different nonlinear minimization algorithms are
available (see, for instance, Gill et al., 1981). On one
hand, we have simple methods such as the steepest
descent method, which converges more slowly than
the conjugate-gradient algorithms, while on the other
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hand we have Newton and quasi-Newton methods,
which have quadratic rates of convergence and super-
linear rates of convergence, respectively, but require
storage of Hessian matrices of second derivatives of
size (N X N).

Conjugate-gradient algorithms require storage of
only a few vectors of length N, where N is the number
of variables of the discretized meteorological model.
For large meteorological models N easily exceeds 10%,
and in such cases the conjugate-gradient method with
its better rate of convergence is almost the only choice
open.

The conjugate-gradient algorithm is an iterative
method for unconstrained minimization that produces
a better approximation to the minimum of a general
unconstrained nonlinear function of N variables, x;,
Xz, . .., Xy with each iteration.

Within a given iteration an estimate is made of the
best way to change each component of the vector x,
s0 as to produce the maximum reduction of the func-
tion, by finding the gradient of the function with respect
to the variables and combining this gradient with in-
formation from the previous iterations to produce a
search direction. The search direction is an estimate
of the relative change in each component of the vector
x to produce the maximum reduction in the function
F. To find the magnitude of the changes along the
search direction, an optimal step size must be esti-
mated. The new vector after an iteration of the con-
jugate gradient x;., is given by the previous vector x;
plus an optimal step size times the search direction.
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The conjugate-gradient method has been applied in
variational analysis to minimize an objective function,
measuring the lack of fit to data and constraints with
the aim to remove the ambiguity of the SeaSat-A sat-
ellite scatterometer (SASS) winds by Hoffman (1982,
1984). It was chosen because it is the fastest minimi-
zation method that can be implemented when the
number of variables, n, is large and because it requires
only between six and eight n-vectors of storage.

Based on a suggestion by Le Dimet and Talagrand
(1986), Derber (1985) used a method based on optimal
control theory to variationally perform four-dimen-
sional data assimilation by adjusting only the initial
fields. The variational adjustment technique uses the
conjugate-gradient algorithm to iteratively find a so-
lution to a forecast model that best fits the data. The
best fit is defined in terms of a functional that is a
weighted sum of squared differences between the model
solution and prespecified analyses. Each iteration of
the minimization algorithm (here, the conjugate-gra-
dient) requires the calculation of the gradient of the
functional with respect to the initial conditions.

The augmented-Lagrangian method is an algorithm
in which an original constrained minimization problem
is transformed into a sequence of unconstrained min-
imization problems. Le Dimet and Segot (1985) applied
the method for variational analysis of the wind field
and geopotential at 500 mb using as a constraint the
steady-state shallow-water equations. The minimiza-
tion of the augmented-Lagrangian functional asso-
ciated with the variational analysis was carried out us-
ing a conjugate-gradient method.

Navon and de Villiers (1983) used an augmented-
Lagrangian algorithm to maintain integral constraints
in the time integration of a meteorological numerical
model. Again, the minimization of the augmented-La-
grangian functional was carried out using a conjugate-
gradient method.

We see that a deeper understanding of conjugate-
gradient methods is a necessary prerequisite for re-
searchers interested in the application of variational
analysis methods in meteorology.

In the present paper we aim to bring to the attention
of the meteorological community recent experience
with different conjugate-gradient methods for large-
scale minimization, applied to meteorological problems
of interest, as well as to introduce first-time users to
the basics of the conjugate-gradient methods.

The plan of the paper is the following. In section 2,
an introduction to the basics of conjugate-gradient
methods is presented. In section 3, different conjugate-
gradient methods are detailed, representing, as a func-
tion of time and availability of corresponding software,
increasing sophistication in the methods. In section 4,
four different conjugate-gradient methods are com-
pared, applied to two different meteorological prob-
lems. One of these problems concerns enforcing of
conservation of integral invariants via the augmented-
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Lagrangian method, while the other arises from a
problem in objective analysis of wind-stress data [Legler
et al., 1987 (in preparation)]. The comparison empha-
sizes accuracy and computational efficiency as a func-
tion of the number of function and gradient evalua-
tions, storage and actual CPU used. In section 5, new
developments and alternative methods for large-scale
minimization are briefly discussed. Conclusions are
presented in section 6.

2. Conjugate-gradient methods

The conjugate-gradient method, or more generally,
the conjugate-direction method, was initiated by Hes-
tenes and Stieffel (1952). For a full account of the his-
torical development of the method see Hestenes (1980).
To introduce the topic here, the concept of conjugacy
will be defined first and a few useful theorems stated
without proof. The interested reader will be directed
to adequate literature (Fletcher, 1980; Walsh, 1975;
Himmelblau, 1972).

a. Conjugacy
Consider a quadratic function given by

F(x)=%xTGx+bTx+c (1)
where G is a positive definite symmetric matrix, b a
vector, and ¢ a scalar. Then the directions represented
by the two vectors u # 0 and v # 0 are conjugate with
respect to G if

u'Gv=0. (2)

Geometrically (for simplicity in two-dimensions), the
level curves
Fx)=+« (3)

for different values of vy are concentric ellipses. The
concept of conjugacy has its origin in the theory of
poles and polars of an ellipse (see Hestenes, 1980).
Some useful theorems without proof will be formulated
here, on the properties of conjugate directions.

Theorem 1. If the vectors d; are mutually conjugate
(i.e., ,'Gd; = 0 for i + j, for all i and j), then they are
linearly independent.

It follows that there exists at least one set of # in-
dependent vectors mutually conjugate with respect to
the matrix G; the set of eigenvectors of G forms such
a set. Let us now look at minimizing F(x) subject to x
ER"

Theorem 2. Let x; and Xy, be consecutive current
points in a minimization of F(x). If (i) Xy minimizes
F(x) in direction d,, (ii) x;., minimizes F(x) in the di-
rectiond,,, (iii) d; and 4,, are conjugate-directions, then
Xi+1 also minimizes F(x) in the direction d,.

If we denote by gi:

8= VF(x1) Q)

the gradient of F(x,), then condition (i) and condition
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(iii) imply gf,,d; = O foreach i = 0, - - -, [, (for proof
see appendix E) and

d'Gd,,=0. 5)
For the quadratic function F we have
8c+1— 8k = G(Xk+1 — Xg) (6)
and from (ii)
Xis1 = Xg + apdy (7)
where oy is determined by the line minimization
F(Xk + akdk) = minF(xk + Oldk). (8)

Theorem 3. Letd;, i = 1, « - -, m (m< n) be mutually
conjugate directions. Then the global minimum of F(x)
can be found from an arbitrary starting point (x°) by a
finite descent computation in which each of the d; is
used as a descent direction only once.

An algorithm that uses mutually conjugate directions
of search possesses the property of quadratic termi-
nation.

b. Construction of a set of mutually conjugate directions

Given a set of linearly independent vectors v, . . .,
V,-1, ONe can construct a set of mutually G-conjugate

directions dy, . . . , d,_; by the following procedure. Set
do=vo )]
andthenfori=1, -+, n—1 successively define
i—1
di=v,+ 2> a;d; (10)
i=0

where a;; are coefficients chosen so that d, is G-conjugate
to the previous directions d;_;, d; -2, ..., do. This is
possible if, for /=0, + -+, i — 1,
i—-1
diTGd/ = V,'TGdl‘f' 2 a,»jdjTGd, =0.

j=0

(1)

If previous coefficients a; were chosen so that at d,
., d;_; are G-conjugate, then we have

4'Gd,;=0 if j#I (12)
and from (11) we get
V,'TGd’ .
aij=—djTGd; forall i=1,---,n—1
Jj=0,--+,i—1. (13)

Thus the set of directions dy, . . . , d,,—; defined by (9)-
(13) is G-conjugate and the subspaces spanned by d,,
...,d;and by vg, . . ., v; are the same.

¢. The conjugate-gradient method

If in the constructive procedure described above we
take

vo=—80 (14)
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(i.e., the initial step is in the direction of the steepest

descent) and the rest of the vectors are v, = —gy, * * *,
Vi—1 = —8n-1, We then find
X = Xo + apdo (15)

by a line search. [Here o is the value of « that mini-
mizes F(xo + ady).] The second direction is then 4|,
found by using (10), (11) and (9) with vy = —gp and v,
= —g,. This gives

£i'Gdo
—-g, + d 16

d; g1 4,7Gd, 0 (16)

and using equation (6)
g1 — 8o = G(X; — Xp) = a9Gdy. (17)

We can write (16) as
g1 (g — g)
d =—g +—=""—=d,. (18)
: Bl do" (g1 — g0) ?

Repeating the procedure with vo = —gp, v; = —g;, and
v, = —g, we obtain at step (k + 1):
k=1 _ T

gr Gd;
de=—g+ 2 !

j=0

d; 19
4'Gd; ’ 1

or
k-1

di=—g+ 2

ng(ng —g)) d
j=0 djT(ng —g)

. (20)

Using the fact that the subspace spanned by g, . . .,

g is also the subspace spanned by d, . . ., dx—; and
the fact that

ngdj=0a j=03°°'9k_l (21)
we obtain :

nggj=07 j=0"°"k_l (22)

so that (20) reduces to the much simpler formula

de=—gr+ Brdi—, (23)
with :
g (8 —8-1)
== 24)
B dg_x(gk — 8k-1)
Using the equalities .
g'g=g.d=0 j=0,---,k—1 (25)
Ay = —8r—1 + Br-10k—2 (26)
the coefficient 8 can be written as
T, — T,
Bkzgk (8 —8k-1) _ 8k 8 @7

gZ—lgk—l gZ—ngk—l )

The important conclusion is that, in order to generate
the direction d,, in the minimization process, we need
only know current and next previous gradients g, and
gr_, and the previous direction dy_; (i.e., storage of
three vectors). Another observation is that for the con-
jugate-gradient method described we use only vector
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formulae. This issue is of vital significance when # is
large and problems of computer storage preclude other
methods. This method, applied to a positive definite
quadratic function of » variables, will find the mini-
mum in, at most, » iterations. (For proof see appen-
dix D.)

3. Different conjugate-gradient methods

a. The Fletcher-Reeves algorithm (1964)

Fletcher and Reeves (1964), based on previous work
of Hestenes and Steiffel (1952), proposed a conjugate-
gradient method applied to general nonlinear func-
tions. When used on nonquadratic functions the
method loses the property of finding the minimum in,
at most, » iterations and becomes an iterative method.

Fletcher and Reeves (1964) suggest that the direction
of search should revert periodically (after a cycle of n
linear searches) to the direction of steepest descent, all
previous information on directions being discarded.

For the line searches the cubic interpolation method
of Davidon (1959) was used. (See also appendix A.)
Fletcher and Reeves (1964) initially used a rather strin-
gent convergence criterion of stopping the minimiza-
tion process only when a complete cycle of (n + 1)
iterations, starting with a steepest descent search, pro-
duces no further reduction in the value of the objective
function.

Their general algorithm is for the following problem:

minF(x)
XER" .
xz(xlax29 ¢ 9xn)
Xo arbitrary (28)
and proceeds in the following steps:
1) Compute
g0 = g(xo) = VF(xo). (29
Set :
do=—gy (steepest descent). (30)
2) Fork=1,2, -++,n+ 1, set
Xi+1 = X+ oyl (31

[position of minimum of F(x) on the line through x;
in the direction d;], where «; is obtained by a line
search

F(x; + aidy) = minF(x; + ady) (32)
using Davidon’s (1959) cubic interpolation method for
linear search of the stepsize.

- 3) Compute
) 8k+1 = VF(Xp41) (33)
4) Generate a new search direction dy,; by
A1 = — 81 + Bidi (34)
where
ﬁk=gg+!rgk+l :gz__k_+21. (35)
8i 8k 8k
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5) A convergence criterion for stopping the itera-
tions is tested (|lg*| < ¢), and, if satisfied, the iterations

must stop.
6) Otherwise, continue for » iterations and then reset
the direction to d”*D = —g®* in the steepest descent

direction and start another cycle of # iterations.

b. A nonlinear example

Minimize
F(x,y)=x—Inx+y? (36)
or using a different notation find
minF(x,, %) = x; — Inx; + x,2. 3N
The exact solution is
x*=(1,0) (38)
ie.,
xi=x=1, x,=y=0. (39)
Case a: A nearby starting point
xX°=(1+¢¢) (40)

do = —go = —~VF(x’)

1+e

A step-size scalar @, which minimizes F(x° + ady), is
approximated by

¢ T
=— (——, 26) ~(—e,—20)T+0O(). (41)

_ VF"dy
do"V*Fod,

FF \
= V2F for the
0x;0x;

(42)

(20

where we use the notation G = (

Hessian matrix of F (see also appendix D), resulting
in ’

oty =3+0(0). 43)
Then
! =x°+aod0=(1 +e—e--;—,e—2€-§)
=(1+‘-‘e,—1e)+0(62). (44)
9 9
Then the new conj_ugate—gradient_ direction is
d; = —g(x") + Bodo (45)
12 :
Bo= :"%(T;'z' (46)
i.e.,
d, = (—96,9 )T+O(e2) 7)
81 81
We can then calculate
X2 =X, + ayd, (48)
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and «; is obtained from
min(x; + ad,) (49)
resulting in
=3
=15 + O(e).
Then

40

x2—x1+a1d1—-[—e+1+10< 81

e)’_; + 190(213(1)6)]
=(1,0)+O(é). (50)
Case b: Suppose we start further away, i.e., suppose
" x0=(1.12,0.05) 620
do=—go=(—0.107,-0.10). (52)

Then a is the point where dF/da ~ 0 and where (d%f/
do?) (x° + adg) > 0 and using (42) we get o = 0.7202:

X1 = Xo+ oo = (1.043, —0.02202) (53)
= ~200) +Bod = ~g(x) + 00 (',;Zd
=(—0.0605,0.02596). (54)

Following this line and calculating o, , we finally find
x; +ad; =x, =(0.9977, —0.00264). (55)

c. The conjugate-gradient method as a linear equations
solver

The conjugate-gradient method can also be used as
amethod of solving a set of positive definite symmetric
linear equations. Hestenes and Steiffel (1952) used it
first for this purpose.

Take the quadratic function

F) = xTAx +bTx + ¢ (56)
where A(n X n) is symmetric, positive definite matrix

and b(n X 1) a vector. Then the condition for a min-
imum is

VF=g=0 (57)

or as
g=V, . Fx)=Ax+b (58)
g=0=Ax=-b. (59)

When used to solve system (59) the conjugate-gradient
method is known as the linear conjugate-gradient
method.

The linear conjugate-gradient method only uses
products of a matrix with a vector and does not require
the elements of the matrix explicitly. One can also solve
for a positive definite matrix R without requiring it to
be symmetric by using
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A=R'R. (60)

This property is very useful for solving systems of linear
equations arising from the discretization of elliptic
partial differential equations. For the linear conjugate-
gradient method let us denote by r; the residual

r;=Ax;+b 61)
and, if we adopt the convention,
B-1=d_;=0.
The linear conjugate-gradient algorithm takes the form,
fork=0,1, -, given Xy and
ro=b-+Ax,, 62)
then fork =0, 1,
d; = —ri+ Br- 1 (63)
2
o= % (64)
Xp+1 = Xt apdy (65)
Ti41 = I+ apAdy (66)
with
2
e ©n

It can be shown (Hestenes, 1980), that the linear
conjugate-gradient algorithm will obtain the solution
of

Ax=b (68)

in m (m < n), where m is the number of distinct ei-
genvalues of A.

The method will converge even qulcker if the eigen-
values of A are clustered into groups of approximately
equal number (see, for instance, Gill et al., 1981; Bert-
sekas, 1982; Hestenes, 1980). For more details see Go-
lub and Van Loan (1983) and Concus et al. (1976),
Manteuffel (1979) and Neethling (1977).

d. The Polak-Ribiere algorithm

The Polak-Ribiere (1969) conjugate-gradient algd-
rithm differs from the Fletcher-Reeves algorithm only
in the formula for 8; proposing

gk+1(gk+1 — g0

8 8

The Polak-Ribiere algorithm coincides with the
Fletcher-Reeves algorithm whenever it is applied to a
quadratic function, but differs from it when applied to
nonlinear functlons (In the quadratic case it is easily
verified that gf, g, = 0.) Due to nonquadratic terms
in the ObjeCtIVC function and possible inaccurate line
searches, conjugacy of the directions generated by the
conjugate-gradient method will be progressively lost

Bipr = (69)
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and a situation can occur where the conjugate-gradient
method will “jam” (see also Powell, 1976). This means
that a generated search direction dy is almost orthogonal
to the gradient VF(x;). When this occurs,

8(Xi+1) = VF(Xer1) =~ VF(Xi) = 8- (70

In this case B, following Polak and Ribiere will be
nearly zero, and the next direction, d;, generated by

dicr1 = = VFXpr1) + Berrdr, (71)

will be close to ~VF{(x,.;) and, therefore, will break
the jam. This is not true for the 8, proposed by Fletcher
and Reeves. The Polak-Ribiere algorithm is given as
(see Polak, 1971)

Step 0: Select xo € R™. If VF(x,) = 0 Stop. Else go
to Step 1.

Step 1: Set i = 0 and d = —VF(x,). (72)

Step 2: Compute «; > 0 such that .
Fx;+o;d;) = m>i(1)1{F(x,-+ ad;)}. (73)
Step 3: Set x;,; = x; + a;d;. (74)
Step 4: Compute VF(X;,,). (75)

Step 5: If VF(x,,,) = 0 Stop. Else set
gir1 = —VF(Xi41) (76)
div1 = 8ir1 +6:d; (77)
B8;= g;'r-H(gi;l — &) (78)
g 8

and return to Step 2.

e _Beale’s restart method

As was remarked previously, regardless of the dif-
ferent ways of calculating the scalar 5, when we are
minimizing a nonquadratic function and when the
number of variables 7 is large (as is the case in mete-
orological problems), the conjugate-gradient method
can generate inefficient directions of search after few
iterations. The first applications operated the method
in cycles of conjugate directions steps, using as the first
step in each cycle a steepest descent step. However, as
was pointed out by Powell (1977), there is a disadvan-
tage in using the steepest descent direction as a restart-
ing direction in the conjugate-gradient method—
namely, that the short-term effect of restarting is poorer
than if no restarting took place.

A more satisfactory restart procedure was proposed
by Beale (1972). He asked the following question: If d,
is an arbitrary downhill restarting direction, if F(x) is
a quadratic function, and if the search direction d; (k
> f) is to be a linear combination of d, and the calcu-
lated gradients g,,;, g+2, ..., 8, what is the linear
combination that makes the sequence of search direc-
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tions, d;, d;4, d,42, . .., mutually conjugate? Beale
(1972) has shown it to be

di = —gr+ Bide—y + vid, 79)

which can be viewed as the classical conjugate-gradient
with the addition of a multiple of the restarting direc-
tion d,.

In Beale’s (1972) method, 8, and v, take the values:

_A8Br+1 — 8k) 8k+1
_ (g1 —g)"

80
e (8k+1— 8k)"dy (80)
. (g+1— gz)Tng
= 81
- , (841 - gI)Tdt @D

The direction d, is known as the restart direction and

" is the last direction of the previous conjugate-gradient

cycle along which a linear search was made. For a der-
ivation of Beale’s restart method, see appendix B.

f. Powell’s (1977) restart method

Powell (1977) has suggested a condition for restarting
in the conjugate-gradient algorithm based upon the
property that the gradient vectors are mutually or-
thogonal in the minimization of a quadratic function
F. He proposes that a restart shall take place if the
inequality

ek gkt = 0.2l ge+ I (82)

holds or if there have been n linear searches in the
given particular conjugate-gradient cycle. The search
direction is defined by Beale’s Eqs. (80) and (81), except
that v, = O when k = ¢ + 1. A restart will also take
place if the search direction d;,, is not sufficiently
downhill, an adequate downhill direction being one
that satisfies the two inequalities:

(83)

gl = —1.20gest % (84)

The storage required by Powell’s (1977) restart al-
gorithm exceeds that of the Polak-Ribiere (1969) and
Fletcher-Reeves (1964) methods because after a restart
we need also the vectors d, and (g,,; — g;). As such, at
least six vectors of storage are required by Powell’s
method, as compared with only four such vectors for
Polak and Ribiere’s (1969) method and only three vec-
tors in Fletcher and Reeves’ (1964) method.

gZ+ldk+l < —0.8]|gx+1 ”2

g. The Newton and quasi-Newton methods

A general function expanded about a local minimizer
x* is approximated well by a quadratic function. Thus,
methods based on quadratic function models should
have a rapid ultimate rate of convergence. Moreover,
the quadratic model is simple and a Taylor series of
F(x) about an arbitrary point x,, taken to quadratic
terms, will agree with F(x) to a given accuracy over a
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much greater neighborhood of x, than will the series
taken to linear terms.

If first and second derivatives of F(x) are available,
a quadratic model of the objective function is obtained
by taking the first three terms of a truncated Taylor
series expansion about the current point x,, i.e.,

Fxic+p) ~ Fxi) +2p +30"G(xe)p  (85)

where p = x — xi is the step to the minimum.

The minimum of the right-hand side of Eq. (85) will
be achieved if p; is the minimum of the quadratic
function v

1
Op)=g'p+ 3 p'Gip. (86)
A stationary point p; minimizing Eq. (86) will satisfy
the linear system
Gipr = — 8k (87)

giving the Newton method. The solution of (87) is the

Newton direction. Here G = G(Xx), gr = g(Xk)-
Application of the Newton method consists of the

iteration

(88)

where we assume that the inverse of the Hessian matrix,
G, !, exists and that the Newton direction

_ -1
Xp41 = X — G gk

pre=—Gy '8k (89)

- is a direction of descent, i.e., p'g < 0. The Newton
method involves the solution of the system of equations

Gipr = —gxk (90)

to find the Newton direction, and it also requires, zero,
first and second derivatives of F(x) to be available at
any point. Equation (90), solved by factoring Gy
= LDL", requires ¢#* + O(n?) multiplications per it-
eration.

The Newton method also needs #* + n scalar func-
tion evaluations. Its storage requirements are to store
a (n X n) symmetric Hessian matrix, i.c., 31> + O(n)
storage locations. Its rate of convergence is second
order.

Quasi-Newton methods are descent methods of the
form

o1

(92)

where B, ., is an approximation to the Hessian matrix.
At each iteration, the approximate Hessian is updated
by a matrix of rank two.

Quasi-Newton methods are based on the idea of
building up curvature information as the iterations of
a descent method proceed, using the observed behavior
of F and g; i.e., they are based on the idea that an
approximation to the curvature of a nonlinear function
can be computed without explicitly forming the Hes-
sian matrix.

Xic+1 = X+ agdy

Brbis1 = —8ir
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The quasi-Newton method requires only function
and gradient evaluations together with only O(r?) mul-
tiplications per iteration as opposed to O(#*) multipli-
cations per iteration of the Newton method.

The storage requirement is again for a symmetric
approximate (n X n) Hessian matrix, i.e., i + O(n)
storage locations for the approximation to the Hessian
matrix, which is the same as for the Newton method.
It has, however, only a superlinear rate of convergence.
The major advantages of the quasi-Newton method
over the Newton method are that the quasi-Newton
method requires only first derivatives, whereas for the
Newton method the user must supply second deriva-
tives, and that it has a better computational efficiency,
i.e., O(n%) multiplications versus O(n*) multiplications
for the Newton method.

h. The Shanno (1978) limited-memory quasi-Newton
method

The most popular updating method is the Broyden
(1970), Fletcher (1970), Goldfarb (1970), Shanno
(1970) (BFGS) formula:

By =Bir— B B, + T (93
ket =Be—Crp «SiSk By e yiye  (93)
where
Sk = Xp+1 — X = gl 94
Vi = 8k+1 — 8k- 95)

Quasi-Newton methods can also be formulated by up-
dating the inverse of the approximate Hessian. If Hy is
a quasi-Newton approximation to the inverse Hessian,
the search direction is defined by

di=—H,g (96)
and the quasi-Newton condition is
He. 1Y = Sk- O7
A quasi-Newton algorithm is then
Xic1 = Xt P 98)
Sk = o Pi
P = —ouHi gk 99)
and H, is updated by the BFGS formula
"H T H T
Hk+1 = Hk - _"‘—ky-llfpk + (1 + kT "‘—I—(l-Yk ) ___pk?k . (100)
Pt Yi -PL Y/ P Yk

For a derivation of the BFGS updating methods for
the Hessian and the inverse Hessian, see appendix C.

On the other hand, the conjugate-gradient algorithm
can be written as

do=—Hgo (101)

(102)

Xre+1 = X+ oy

iy = —Hg s + Bidy
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Hyx
diTyi
When H = | we regain the original conjugate-gradient
algorithm of Fletcher and Reeves (1964).

Perry (1976, 1977, 1978) and Shanno (1978a, 1978b)
propose a conjugate-gradient method with inexact line
searches that can be interpreted as a memoryless quasi-
Newton method with BFGS updating.

The memoryless (or limited-memory) quasi-Newton
method is based upon the idea of computing the di-
rection of search

Bi=gku (103)

P = audic (104)
as

—Hg (105)

where H; is a matrix obtained by updating the identity
matrix | with a limited number of quasi-Newton cor-
rections.

Although the direction of search d; is computed as
the product of a matrix with a vector, the matrix Hy is
never computed explicitly and the only additional
storage is the vectors defining the updates. Different
limited quasi-Newton methods can be defined, de-
pending on the number of updating vectors stored (see
Nazareth, 1979).

Shanno (1978) developed his method by using an
observation of Perry (1976) that if

Vi 81
Br="F— Yi=8k+1— 8 (106)
Yi di
then
d T
Aiv1 = —8k+1 + Bidr = “‘(I"‘ k¥k )gk+1 . (107)
Yi di
If one denotes
Pr= o = Xpe g — Xi (108)

then one can obtain (see Shanno, 1978; Gill and Mur-
ray, 1979) the new direction with the “one-step” lim-
ited-memory BFGS quasi-Newton update using (95)
with H; equal to the identity matrix as

T. T T,
iy = —gk+.—[(1 LY yk)pk Beet _ Vi gk+1]

DkTYk PkTYk PkTYk
T,
R By (109)
Yi
If this formula is applied with an exact line search,
then pr+; = ag+1di+ is identical to the formula ob-

tained from the conjugate-gradient method as all vec-
tors multiplied by

SkTng = akdkTng =0 (110)

vanish. This means that the limited-memory quasi-
Newton method of Shanno generates mutually con-
jugate directions if an exact linear search is made.
However, the method of Shanno (1978) performs with
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inexact line searches and is relatively insensitive to line
search errors, yielding descent directions under mild
restrictions on line-search accuracy. Shanno (1978) in-
cluded Beale restarts in the limited-memory quasi-
Newton scheme (i.e., the Powell restart criteria) as well
as a scaling of the conjugate-gradient suggested by
Fletcher (1972):

it tues = QU1 = fi) e disi)icar. (111)

The basic linear search used Davidon’s (1959) cubic
interpolation to find a step length « that satisfies

f(x+ ad) < f(x)+ ad"g(x)0.0001 (112)

where d is the chosen direction, g(x) = Vf(x), and
d"g(x), the directional derivative of f(x) at x along d,
is negative. The value a must also satisfy

d"g(x + ad)/dTg(x) <0.9. (113)
The initial « at iteration step k + 1 is chosen to be
di"gx
1= . 114
e L gk (114)

Shanno’s (1978) and Shanno and Phua’s (1980) CON-
MIN algorithm implementing the quasi-Newton lim-
ited-memory conjugate-gradient requires seven vectors
of length N for x;, Xx+1, 8, 8+1, bk, d; and y, (this
includes memory for Beale’s restart).

4. Numerical tests: Comparison of different conjugate-
gradient algorithms for two meteorological prob-
lems

a. The methods tested

The choice of the conjugate-gradient methods to be
tested was dictated by the evolution of know-how in
the unconstrained optimization field and by the avail-
ability of conjugate-gradient codes, i.e., software.

To test the Fletcher-Reeves and Polak-Ribiere
methods, we used the NAG (1981) Fortran Library
Subroutine EO4DBF and slightly modified the same
routine to implement the Polak-Ribiere method -
(hereafter denoted EO4DBG).

When using EO4DBF the user must supply a routine
FUNCT to calculate the value of the function and the
values of its first derivatives (the gradient vector) for
any set of values of the variables. One iteration cycle
is completed when N conjugate directions have been
used. Another subroutine MONIT has to be supplied
by the user to print out current values of parameters
of interest and number of function calls (function and
gradient normal values). Each conjugate-gradient it-
eration involves a linear minimization involving at least
two calls of FUNCT.

For the Powell (1977) restart method we used the
ZXCGR subroutine of the IMSL Fortran Scientific Li-
brary (1981). The user has to provide an initial value
of the vector of variables x as well as a subroutine to
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calculate the objective function and its first derivatives
@f/3x;) (i = 1, 2, ++ -, N). The same subroutine
FUNCT was used. The criterion for termination (con-
vergence criterion) was that

lgl?<e (115)

where ¢ is a prescribed accuracy requirement.

The subroutine ZXCGR implements the Powell
(1977) algorithm with Beale restarts as described in
section 3. To implement the Shanno (1978) Beale re-
started memoryless quasi-Newton conjugate-gradient
method, we used subroutine CONMIN described by
Shanno and Phua (1980) and available from ACM Al-
gorithms Distribution Service. The subroutine CON-
MIN allows the user to employ two nonlinear uncon-
strained minimization techniques, namely, the Shanno
(1978) memoryless quasi-Newton conjugate-gradient
algorithm or a quasi-Newton method with a BFGS up-
date. The Shanno (1978) conjugate-gradient algorithm
requires 7n double-precision words of working storage,
while the quasi-Newton BFGS algorithm requires n%/
2 + 11n/2 double-precision words of working storage.

We only implemented the conjugate-gradient op-
tion, due to storage limitations. In our test version, the
same termination criterion was applied to all four con-
jugate-gradient methods for comparison purposes.

b. The numerical tests

1) ENFORCING CONSERVATION OF INTEGRAL IN-
VARIANTS

Our first application was toward unconstrained
minimization of an augmented-Lagrangian applied to
solving the problem of enforcing simultaneous con-
servation of integral invariants of the shallow-water
equations on a limited-area domain (see Navon and
de Villiers, 1983). In this case the vector x had 540
variables.

Using an accuracy criteria of

lex)?<e, (116)

the four aforementioned algorithms were tested with
increased accuracy requirements for computational ef-
ficiency measured in number of iterations, number of
functions calls and total CPU time. These runs were
done in single precision on a CYBER 760.

We minimized the following augmented-Lagrangian:

L\, p)= /(0 +ATe(x) +3 ol (117)

where the objective function f(x) had the form

Ny N,

f=2 2 [au—u’)+a(v—0+B(h— k)] (118)
j=lk=1

where A is the Lagrange multiplier vector, e(x) are

equality constraints, p is a penalty parameter, (1°, v°,

h°);, are the predicted variables of velocity and height,
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and (u, v, h); are the values of the same variables ad-
justed by augmented-Lagrangian nonlinear constrained
optimization. The a and 8 are weights determined fol-
lowing Sasaki (1976).

The vector x is a 3NN, component vector

= T
X=(U1, * ¢ UN N, V15 * 0 'stxNy,hlls < han,)
(119)

The four conjugate-gradient methods, namely,
Fletcher-Reeves, Polak-Ribiere, Powell restart and
Shanno-Phua (1980) quasi-Newton memoryless
method, were compared for the accuracy criteria

g’ <e,. (120)

The results for the different methods in terms of con-
jugate-gradient iterations, number of function calls and
CPU time are displayed in Table 1.

2) OBJECTIVE ANALYSIS OF PSEUDOSTRESS

The second problem solved concerns the objective
analysis of wind-stress data over oceans. A variational
method was utilized in an objective analysis-scheme
to provide monthly maps of pseudostress (pseudostress
being defined as the magnitude of the wind times its
component) winds on a 1° X 1° grid mesh from marine
surface observations scattered throughout the Indian
Ocean Basin (Fig. 1).

The function F to be minimized is expressed as a
weighted sum of lack of fits to data and constraints

1
f=FPEZ[(u—uo)2+(U“Uo)2]

x ¥y

1
+P'Y 2 Z[(u—uc)2+(v_uc)2]

x y
+L°T 2 [V~ u)P + [V —v.)F]
FBLZV-(v=v)P+a T Dk VX(v—v)]
x y X )y

(121)

where u, v are the eastward and northward components
of the resulting pseudostress wind v values, respectively;
Up, Vo are the components of the initial values; and u,,
v, are the components of an appropriate climatology.
The coefficients p, v, I', 8 and a are weights that control
how closely the minimizing analysis fits each type of
data or constraint, and L is a convenient length scale
that allows all the bracketed expressions to be of the
same order of magnitude.

The double sums are over 3133 points in the x-y
mesh. Since there are two components of the pseu-
dostress at each grid location (i.e., ¥ and v are variables),
the total number of variables in F is twice the number
of grid points in the analysis domain, i.e., Fis a function
of 6266 variables. The full description of the method
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TABLE 1. Eriforcing conservation of integral invariances of the shallow water equation.
Number of Number of Function value CPU time
Method iterations function calls at minimum (sec)
Accuracy ¢, = 1072
EO4DBF 12 25 0.4842 X 1075 33
(Fletcher-Reeves)
E04DBG 12 25 0.4842 X 1073 34
(Polak-Ribiere)
ZXCGR 5 iterations 21 0.4842 X 107° 2.7
(Powell) 3 Beale restarts
CONMIN 5 iterations 15 0.4842 X 107° 2.7
(Shanno-Phua) 1 Beale restart
Accuracy ¢, = 107*
EO04DBF 41 81 0.4842 X 107%
{Fletcher-Reeves) : 8.3
E04DBG 51 102 04842 x107° 9.7
(Polak-Ribiere) )
ZXCGR 12 iterations 31 0.48419 X 107° 39
(Powell) 8 Beale restarts
CONMIN 10 iterations 21 0.48417 X 1073 3.2
(Shanno-Phua) 1 Beale restart
Accuracy ¢, = 1078
E04DBF Failed Failed —_ —_
(Fletcher-Reeves)
E04DBG Failed Failed — . —
(Polak-Ribiere)
ZXCGR 17 iterations 42 0.48419 % 107° 5.2
(Powell) 13 Beale restarts
CONMIN 20 iterations 44 0.48415 x 1073 5.4
(Shanno-Phua) 10 Beale restarts
Accuracy ¢, = 1078
ZXCGR . Failed — — —
(Powell)
CONMIN 26 iterations 0.484136 X 1073 7.1

(Shanno-Phua) 12 Beale restarts

and its results will be given.in Legler et al. [1987 (in
preparation)].

Due to the large computational resources involved
the second problem was tested for only two cases of
accuracy requirements.

The behavior of the objective function scaled by its
initial value f/| fo| as well as that of the gradient given
by logolg/gol as a function of the conjugate-gradient
iterations is displayed in Figs. 2-9 for the Shanno-
Phua (1980) method and for accuracies ¢, = 1072, 1074,
10~ and 10~ accordingly for test problem 1. Of note
is the increase in accuracy of the gradient as the ac-
curacy requirement e, increases from 1072 to 1078,

For the second test problem we only display the be-
havior of the objective function scaled by its initial
value f'/| fol as well as that of the gradient scaled by its
initial value as a function of the conjugate-gradient
iterations for an accuracy of ¢, = 1072 for the Fletcher—
Reeves, Polak-Ribiere, Powell restart and Shanno-
Phua methods in Figs. 10-17.

c. Discussion of numerical results

Two unconstrained minimization cases typical of
meteorological problems of interest were tested. Since
the conjugate-gradient method requires “downhill”
search directions, it is clear that we are finding a local
minimum of the functions being minimized. Whether
this minimum is a global minimum will depend on
the nature of the function being minimized (convex
or not) and on the initial estimate of (x). All of the
methods were considered to have worked if they sat-
isfied the stopping criterion (120) or to have failed if
they did not satisfy the criteria (120) after 100 conju-
gate-gradient iterations.

The first test problem minimizing the augmented-
Lagrangian (117) was convex and quasi-quadratic, and
for a moderate accuracy (¢ = 1072) all the methods
performed well, with ZXCGR and CONMIN being
more efficient. The lead of ZXCGR and CONMIN
become more evident for ¢, = 10~* and fully prominent
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MINIMIZATIBN RESULTS
JULY 1984 PSEUR? STRESS VECTBRS FSU MAR 31,1986 13.13.35
RHB= 1.0 - PHI= .1  GC= 1.0 ALPHA= 1.0 BETA= 1.0
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FIG. 1. Results of minimizing analyses for the pseudostress vectors shown on a 2° X 2° grid
mesh from marine surface observations in the Indian Ocean Basin.

for a high accuracy of ¢ = 107® when both EO4DBF
and E04DBG failed. For a very high accuracy require-
ment of ¢, = 1078 only CONMIN was able to perform.

For the large-scale problems with # = 6266 variables
and for an accuracy of ¢, = 1072 we note first a high
increase in the computer time (CPU) required to
achieve the minimization (see Table 2). This is due
both to the increased number of variables and to the
more complicated form of the gradient. It is common

practice to weigh a gradient evaluation as equivalent
to n function evaluations, and this is particularly rep-
resentative when the gradients are obtained by finite
differences (see Le, 1985). .

The basic formula for CPU time consumption in an
optimization is

(122)

where trand ¢, are the time required per function and

T=tmmpttgngttin;=tr(ny+nny)+t;n;

TABLE 2. Objective analysis of wind stress over oceans.

Number of Number of Function value CPU time
Method iterations function calls at minimum (sec)
Accuracy ¢, = 1072
E04DBF Failed - — —
(Fletcher-Reeves)
E04DBG 10 iterations 19 0.51766726 X 1078 529
(Polak-Ribiere)
ZXCGR 4 iterations 9 0.52277593 X 1078 254
(Powell) 4 Beale restarts
CONMIN 4 iterations 9 0.51213279 X 10°¢ 257
(Shanno-Phua) 3 Beale restarts
Accuracy ¢, = 1073
E04DBG 14 iterations 27 0.48585018 x 107% 745
(Polak-Ribiere)
ZXCGR Failed — — —
(Powell)
CONMIN 9 iterations 22 0.48774742 X 1078 618

(Shanno-Phua) 8 Beale restarts
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FIG. 3. Variation of the value of the scaled gradient (logolg/gol)
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method with accuracy criteria ||g(x)|*> < 1072 for problem 1.
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the usual NAG library conjugate-gradient Fletcher-
Reeves algorithm failed, but a modified version de-
signed to implement the Polak—Ribiere version of sec-
tion 3 (E04DBG) was quite successful, if not very ef-
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FIG. 7. As in Fig. 3 but for accuracy ¢, = 1075,
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FIG. 8. As in Fig. 2 but for accuracy ¢, = 1075,

ficient. ZXCGR and CONMIN performed equally well
but CONMIN obtained a lower minimum value of the
function. For ¢, = 1073 the version ZXCGR of IMSL
failed but EO4DBG, the Polak-Ribiere modification
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of EQ4DBF of NAG (1981), performed very well. The
CONMIN routine of Shanno and Phua (1980) was the
more efficient of the two. The CONMIN algorithm
appeared to require too many Beale restarts near
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FIG. 13. As in Fig. 11 but for the Polak-Ribiere method.
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convergence. The good performance of the conjugate-
gradient method, in particular, for large-scale mini-
mization of ~10* variables, is very encouraging for
meteorological users. The success is partly due to the
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FIG. 16. As in Fig. 10 but for the Shanno-Phua method.

quasi-quadratic quasi-convex nature of the problems
arising in meteorological applications. The robustness
of CONMIN for the cases tested in this paper proves
that the method is successful for a given class of prob-
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lems. However, one should qualify this statement, as
it is well known in optimization theory that for different
classes of problems, different conjugate-gradient al-
gorithms prove to be optimal. As such, users should
experiment with several conjugate-gradient codes
mentioned in this paper to find the most suitable one
for their problem. As we shall see in the next section,
recent developments in unconstrained minimization
cover the full range of possible functions.

5. New developments for large-scale minimization

a. The truncated Newton method

Dembo and Steihaug (1983) proposed a method
called the truncated Newton method. Starting from
the fact that the Newton method is based on approx-
imating the function f(x; + di) by the quadratic model

1
o(di) = f (xx) + di"g(x) + 3 d'Hed,  (123)
and that the Newton direction is obtained from an exact
solution to ming¢(d,), they use a Hestenes-Steiffel
conjugate-gradient method to minimize the function
1

&(dy) = EdkTdek +d gk (124)
where H; is the Hessian matrix of f(x), i.e., the sym-

metric matrix of second-order derivatives.

Letting r = V¢, the gradient of ¢, a sequence of

approximations to the search direction d, is generated
by

4= —g (125)
So=—To (126)
&t =d + oy (127)
Si+1 = —Tiy T B;8; (128)
a;= —-ngr,/s,-THks[ (129)
Bi=rliri /rTT;. (130)

Using this inaccurate solution to the Newton equations
by the conjugate-gradient method, the sequence (125)~
(130) will in no more than 7 steps solve the linear sys-
tem. If the Hessian matrix H; has directions of negative
curvature, at some point the term s/H,s; in the de-
nominator of (129) will become negative. At such a
stage Dembo and Steihaug (1983) terminate the trun-
cated-Newton conjugate-gradient iteration and use the
approximation d,\” computed up to this point. Addi-
tional sets of rules for terminating the sequence of ap-
proximations d,(? before a full solution is obtained are
recommended by Dembo and Steihaug, yielding sub-
stantial savings in computer time without reducing
greatly the rate of convergence of the Newton method.
For instance, they use the truncated-Newton termi-
nation .
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if  rddl/lgl <n (131)
then d=d/"! (132)

where the sequence {7} is called a forcing sequence
and condition (131) is referred to as a truncated-New-
ton termination. Usually {»;} is chosen as nx = min{1/
k, llg(xi)|*} for some 0 < ¢ < 1, and Dembo and Stei-
haug show how to construct a truncated-Newton al-
gorithm possessing any prescribed order of convergence
between | and 2. One way to avoid storage of the Hes-
sian matrix is the observation that the matrix—vector
product Hys;, where s; is a direction generated within
the conjugate-gradient formula method, can be ap-
proximated using the finite difference formula

1

Hksi~;[Vf (xktos)—Vfix)].  (133)
This eliminates the need for storing any matrix but
requires an additional gradient evaluation. Then the
method becomes equivalent to a conjugate-gradient in
storage requirements. This method holds promise be-
cause of its Newton step, which near the optimum is
a good predictor of both step size and step direction,
whereas conjugate-gradient algorithms are only good
predictors of step directions. As such they require more
computations to determine a good step length ay. (See
appendix A.) A good choice for the finite-difference
step size o was chosen by Dembo and Steihaug (1983)
to be

Vmachine precision

=108

(134)

0' —
for their case.
b. The Buckley-Lenir (1983) quasi-Newton variable

storage conjugate-gradient method

Using the Shanno (1978) BFGS update of the iden-
tity matrix applied to gi., Eq. (109) can be written as

PVt + Vb

dey1=—|1+
et [ _ P Yk
+(1 Yk )’k)l)kl)k ]ng- (135)
Pk Y«/ P y

A preconditioned Fletcher-Reeves (1964) conjugate-
gradient algorithm has the form

Xk+1 = Xi— ordy (136)
i1 = Agir — Brdy (137)
Bic=gh+1AYk/dk Yk (138)

and
dO = AgO’

A being the preconditioner matrix.
Buckley and Lenir (1982, 1983, 1985) generahze the
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Shanno (1978) method for variable storage of 2 j storage
vectors of length n, where a j-step approximation to
the BFGS update may be kept in storage. They update
the matrix H; until 2 j storage locations are filled and
then H, is used as a preconditioning matrix in the con-
jugate-gradient sequence (136)—(138). At each subse-
quent step after the j initial steps the new search vector
is a preconditioned conjugate-gradient vector version
of Shanno’s limited-memory form, i.e.,

TH;+ Hyyipi”
dk+1=[Hj—kak ,T i YkPk
Pr Yk
T T
Y Hj)’k) PrPx ]
+{1+—=L= . (139
( v ) ptye |Bert (139)

The conjugate-gradient cycle continues until either
n steps of the conjugate-gradient have been done or
until a Powell (1977) restart requires a restart of the
conjugate-gradient procedure. At this point a new ap-
proximation of H starts. When the number j of storage
vectors available is just sufficient for one update, the
method collapses into the Shanno (1978) algorithm.
(See also Shanno, 1983.)

The implementation of the method is described in
Buckley and Lenir (1985) and a code BBVSCG is fully
documented. This routine adapts to the amount of
user-available storage and will do automatic compu-
tation of finite-difference approximations for deriva-
tives if requested.

Other early attempts at combining quasi-Newton
and conjugate-gradient algorithms with variable storage
have been done by Buckley (1978), Nazareth (1979),
Nocedal (1980) and Nazareth and Nocedal {1982).

Recent work on conjugate-gradient methods in-
volves work of Shanno (1985) on implementing an
angle test to determine when to restart conjugate-gra-
dient methods in a steepest descent direction. The test
is based on guaranteeing that the cosine of the angle
between the search direction and the negative gradient
is within a constant multiple of the angle between the
Fletcher-Reeves search direction and the negative gra-
dient. Recent work by Le (1985) using an algorithm
employing conjugate directions and requiring only
three n-dimensional vectors seems to hold promise.

¢. The bundle algorithm

This algorithm carries out unconstrained minimi-
zation in the case where the functions involved have
discontinuous first derivatives. This causes classical
methods to fail (see Zowe, 1985). Two new concepts,
the subgradient concept and the bundle concept, are
then applied, allowing a minimum to be found even
then. The method has been initiated by Wolfe (1975)
and developed by Lemarechal (1980) and Lemarechal
et al. (1981). This method has been used by Le-Dimet
and Talagrand (1986), and a code M1FC]1 is available
for interested users (see Schittowski, 1985).
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d. Parallel computing of conjugate-gradient methods

In a recent survey on parallel computing in opti-
mization, Schnabel (1985) mentions that most of the
work done was for solving linear systems by conjugate-
gradient methods (see Adams, 1983; Kowalik and Ku-
mar, 1982). Some experiments with parallel nonlinear
conjugate-gradient algorithms on the ICL. DAP pro-
cessor array were conducted by a group at the Hatfield
Polytechnic led by L. Dixon (see Dixon et al., 1982).
Housos and Wing (1980) and Van Laarhoven (1985)
have also proposed parallel versions of unconstrained
optimization algorithms, including the nonlinear con-
jugate-gradient algorithm.

6. Summary and concluding remarks

This paper has summarized the current status of
knowledge and experience with conjugate-gradient
methods applied to large-scale unconstrained mini-
mization in meteorology. With the recent advances in
variational analysis summarized in-Le-Dimet and Tal-
agrand (1986) and Navon (1985, 1986), it becomes
evident that it is important to develop good algorithms
for large-scale unconstrained optimization—not only
because it occurs in many meteorological applications
on its own (Hoffman, 1982, 1984) but more so because
it must be solved in the inner loop of the solution of
nonlinear programming problems (constrained non-
linear optimization). Such methods will be the order
of the day in solving problems of variational analysis
and data assimilation of meteorological observations
by using the augmented-Lagrangian or the adjoint
equations techniques (Le-Dimet and Talagrand, 1986).
Experience with optimization techniques has shown
that the choice of an appropriate descent algorithm
can be very efficient in reducing the total cost of a
constrained minimization process.

From the conjugate-gradient methods présented and
tested in this paper, the most consistent and performing
one for most applications turned out to be the Shanno-
Phua (1980) quasi-Newton memoryless conjugate-gra-
dient algorithm. For moderate accuracy requirements
the implementation of Powell’s (1977) restart conju-
gate-gradient algorithm (ZXCGR) as well as a modified
version of the NAG (1981) library EO4DBF routine,
implementing the Polak-Ribiere (1969) method, per-
formed reasonably well. For future large-scale mini-
mization applications in meteorology the new methods
presented in section 5 should be thoroughly investi-
gated.

At present there are no vectorized versions of the
conjugate-gradient minimization method, although
versions adapted for parallel processors are available
(Housos and Wing, 1984). Such methods can result in
substantial economy of CPU time spent on large-scale
unconstrained minimization, in particular, for high-
resolution global analysis data where more than 10 000
grid points have to be considered.
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The success of the different versions of conjugate-
gradient methods applied to meteorological problems
is also due to the particular form of the functions to
be minimized. It turns out that for all of the problems
where large-scale unconstrained minimization is re-
quired in meteorological applications, the functional
is either quasi-convex or convex and almost quadratic.
This, of course, facilitates the task of the conjugate-
gradient algorithm.

Finally, a word of caution for practitioners. When
using finite-difference approximations for estimating
derivatives, one must be careful not to request too high
an accuracy since differences can only be evaluated to
a precision roughly half that of the machine in most
cases (see also Hoffman, 1984). Each unconstrained
minimization algorithm has a set of problems on which
it performs optimally. As scientific libraries have a cer-
tain time lag for adopting new methods, researchers
are highly encouraged to experiment with new uncon-
strained-minimization methods obtainable directly
from their authors in order to find the conjugate-gra-
dient algorithm best suited to their problem.
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APPENDIX A

Computation of the Step Length

The conjugate-gradient method, being a descent
method, proceeds from one iteration to the next iter-
ation using the formula AN

X1 = X+ oy dy . (A1)
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where d, is the search direction generated by thie con-
jugate-gradient method and «y is a positive step length.
The value of oy is generally computed by an iterative
step-length procedure.

If convergence of the minimization algorithm is to
be assured, the step length must produce a “sufficient
decrease” in F at each iteration (see Ortega and Rhein-
boldt, 1970). The “sufficient decrease” requirement can
be satisfied by various conditions on ay. The exact line
search would have given

min(F(xk + adk) (A2)
but in general the solution of the nonlinear function
dF/da = 0 cannot be implemented in a finite number
of operations. In practice, the line-search (or step-
length) algorithm is terminated when certain conditions
for an approximate minimum along the line are sat-
isfied.

For instance, a sufficient decrease in F(x) is achleved
when oy, the step-length, satisfies the Goldstein—-Armijo
principle (See Goldstein and Price, 1967; Ortega and
Rheinboldt, 1970): :

0 < —prongi’ < F(x) — F(x + ayedy) < —uzakngdk
(A3)

where u; and u, are scalars satisfying

O<usu<l. (Ad)

The upper and lower bounds of (A3) ensure that «; is
neither “too large” nor “too small.” When the gradient
of F(x) is available at trial step lengths, a practical cri-
terion based on interpreting oy in terms of univariate
minimization requires that the magnitude of the di-
rectional derivative at x; + a; d; be sufficiently reduced
from that at x,

lg(xx + axdi) die| < —ng"di (A5)
where

O<g<l. (A6)

To guarantee a suitable reduction in F, step-length al-
gorithms include the following condition (see Gill et
al., 1982)

F(x¢) — F(x+ axdi) = —poygr di

where 0 < pu < %2,

Other methods for finding the step length use either
quadratic interpolation (Powell, 1971) or cubic inter-
polation (Davidon, 1959). The Powell (1971) method
uses function values only, while Davidon’s method uses
the function and its derivatives.

APPENDIX B
The Beale Restart Method

Beale (1972) showed that it was possible to derive a
simple conjugate-gradient formula given any general
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starting direction. Let us start with a quadratic objective
function

fx)=c"x+ %xTGx (B1)
where x is a column vector, ¢ a column vector repre-
senting the gradient of fat the origin, and G is a sym-
metric matrix representing the Hessian of the objective
function. :

Recalling the definition of conjugacy [Eq. (2)], a set
of search directions d; are said to be mutually conjugate
with respect to G if

dGd;=0 whenever i#j. (B2)

If we knew the Hessian matrix G, and knew it was
positive definite, we could construct a set of mutually
conjugate directions d,, ..., d, from an arbitrary set

of linearly independent directions 7, . .., 1, by the
Gram-Schmidt process by putting
dl =M (B3)
i—1
di=‘ﬂi+ Zaijdj i=2,3,---,n (B4)

Jj=1

where the coefficients a;; are chosen so as to make

47Gd, =0 forall k=1,-.--,i—1; (BS)
i.e., the coefficients a; must satisfy the equations
, i-1
7 Gd,+ > a;4,"Gd,=0. (B6)

j=1

Equation (B6) defines i/ — 1 simultaneous equations
for the i — 1 unknowns g, but by using the fact that
d,, ... d;_, are mutually conjugate, Eq. (B6) reduces
to i — 1 simple equations

a;= _ﬂiTGdj/djTGdj. (B7)

The denominator in (B7) cannot vanish if G is positive
definite since the 7, are assumed to be linearly inde-
pendent. Hence the d; cannot vanish.

If, however, we wish to minimize the function f
without calculating the Hessian matrix G and only cal-
culate the gradient g; at each point x; reached at the
end of each linear search as well as at the initial point
X,, we can use the general relationship [obtained from

(BD)]

g=c+Gx (B8)
so that if
X; =Xy + Aidi (B9)
then we get by using (BS§) that
gi—gi-1=NGd;. (B10)

If we now take an arbitrary downhill direction &,
(i.e., subject only to d,"g, < 0), we can now use (B4)
to define d, for k > 1 with

M= —Bk-1- (B11)
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We see using (B10) that the coefficients a;; defined by
(B7) can be computed as

ay= g1 (g~ g-1)/d (g~ gi-1)

without any explicit evaluation of the Hessian.

By making use of the fact that after j linear searches
along the conjugate direction, fhas been optimized in
a hyperplane spanned by these directions, then g; must
be orthogonal to this hyperplane, hence to d,, . . ., d;,
and since these directions were constructed from g;,

., 8j—1 we see that ’

(B12)

g.7g=0 O0<k<j. (B13)
Hencea;=0forj=2,3,---,i—2.
So that (B4) reduces to
d; =—g, +and, (B14)
di=—gi1 + @ad; + agp-1di-  (k>2).  (BLS)
If we now identify
d, =4, (B16)
W1 =Yk,  Aici—1= P (B17)
We get Eq. (79)
di = —gk—1 + Bidi—1 +vids (B18)
and by using (B12) we get
oo ENE @)
Vi= iy = g—’::((:ﬁ‘{:—g. (B20)
APPENDIX C

Quasi-Newton Methods
1. The derivation of quasi-Newton updating methods

The matrix of n? second partial derivatives is called
the Hessian. If the partial derivatives dF/dx;, dF/dx;
and 62F/6x,»6xj are continuous, then 62F/6xj6x,- exists

and
PF _ PF
ax,-axj ijak,

The n? second partial derivatives are represented by a
square symmetric matrix, the Hessian matrix of F(x)
denoted in optimization literature by V2F(x) or by G(x).

Quasi-Newton methods are based on the idea of
building up curvature information as the iterations of
a descent method proceed, using the observed behavior
of the objective function F and of its gradient g. The
theory of quasi-Newton methods is based on the fact
that an approximation to the curvature of a nonlinear
function can be computed without explicitly forming
the Hessian matrix. Instead, G(x), the Hessian matrix,
is approximated by a symmetric positive definite matrix

(&)
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G™, which is corrected or updated from iteration to
iteration.

The initial Hessian approximation G© can be any
positive definite matrix, but is usually taken as the
identity matrix | in the absence of any better estimate.

If first and second derivatives of F are available, a
quadratic model of the objective function can be ob-
tained by taking the first three terms of the Taylor series
expansion about the current point

Fix+d) = Fi+ gi’d +d7Gd (C2)
where d is the step to the minimum. The minimum of
the right-hand side of (C2) is achieved if d; is a mini-
mum of the quadratic function

$(d)=gd+d"Gd (C3)

and a stationary point of (C3) satisfies the linear system

Gid; = —g;. (C4)
Let s, be the step taken from x;:
- Sk = Xp+1 — Xk (C5)

If we expand the gradient function about x; in a Taylor
series around s; we obtain

(C6)
The curvature of F along s is given by s,"Ggsi,

which can be approximated by using only first-order
derivative information [from (C6)]

g(xktsi) =gt Grsi+ - - -

Sk G ~ (8 (X + Si) — 8k) 'Sk (o)}

Let B, denote the approximate Hessian at the be-
ginning of the kth iteration of a quasi-Newton method.
If B, is taken as the Hessian matrix of a quadratic model
function, the search direction py is the solution of a
linear system:

Bipi=—8k (C8)
or

P = —By g = —By 'V F(xy). (C9)

After x;,; has been computed using a line search along
Sk ‘

(Sk= X4t — Xi = akl’k) giving

Xke+1 = Xt oSk (CIO)

a new Hessian approximation By, is computed by
updating B, to take into account newly acquired cur-
vature information.

If we denote by y, the change in the gradient

ykzgkﬂ—gk‘:Agky (C11)

the standard condition required of the updated Hessian
approximation is to approximate curvature of F along
ay, 1.e., based on (C8) to satisfy the quasi-Newton con-
dition
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(C12)

During a single quasi-Newton iteration, we obtain in-
formation about the second-order behavior of F only
along one direction. As such, the quasi-Newton update,
By.1, is expected to differ from B, by a matrix of low
rank. (The rank or dimension of a subspace is the
smallest integer r such that the entire subspace can be
generated by a set of r linearly independent vectors.)
A matrix of the form uv”, where u and v are vectors,
is termed a matrix of rank one. Every column of uv?’
is a multiple of the vector u and every row is a multiple
of the vector v7. It can be shown that the quasi-Newton
condition can be satisfied by updating B, with a rank
one matrix.
Assume

By 1Sk = Yk-

Bk+1 = Bk + llVT.

(C13)
From the quasi-Newton condition (C12) we get

By 18k = (Br+uvi)s, =y, (C14)
or
u(v's;) =y, — Bysy. (C15)
Therefore u is in the direction y; — Bysy.
For any v such that v's, # 0, the vector u is given
by
(C16)

1 .
——{(¥x— Bxsk)
vV S

and we get

1
Br+1 =B+ —— (Y — Bisi)v'. (C17)
: V' Sk

Given any vector w orthogonal to s, the rank one
matrix zw! annihilates s, and the quasi-Newton con-
dition (C12) holds if further rank-one matrices of the
form zwT are added to B, .

The quasi-Newton methods have evolved by re-
quiring updates to possess properties of hereditary
symmetry and positive definiteness, i.e., since the Hes-
sian matrix is symmetric and positive definite, one
looks for updates such that if B, is symmetric and pos-
itive definite so is the next approximation to the Hes-
sian By.,;. .

For rank-one updates, requirement of symmetry in-
heritance uniquely determines the update. In such a
case, the vector v must be a multiple of u in Eq. (C17),
and the rank-one update becomes

1
B+ = Br+ —————— (Y& — Besi Xy — Bisi)™.
k1= Br k_Bksk)Tsk(ykv Sk (Yi — Brsk

(y
(C18)

It was found that a more flexible formulation is ob-
tained by allowing the updates to be of rank two. Such
an update with the property of hereditary symmetry
resulted in (see Gill et al., 1981) the update:
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1
Byy =Bt Vs [k — Bisi)v (yx — Bisi)"]

(ye—Bisi)' o
————vv'. (C19
R (€19
The quasi-Newton update matrix in (C19)is of rank
two and is well defined for any v that is not orthogonal
to s;. When v is taken as y; the Davidon-Fletcher-
Powell (DFP) update is obtained, i.e.,

Bry =By — ; BysiSi By + % A
Sk Bk Sk Yi Sk
+ (5" BreSi) Wi Wi
where ’
o1 1
W = S5 Vi~ sTB.s Bysi (C20)

One can verify by substitution that the vector w, is
orthogonal to s, and as such, any multiple of the rank-
one matrix w,w,! can be added to B, without af-
fecting the quasi-Newton condition (C12).

This led to the one-parameter family of quasi-New-
ton updates

B7g+1 =Br—

1
BisiSk Bt —— Yy
Y Sk

1
T
i BiSi

+ dr(si Bsi)wiw,”  (C21)

where ¢ is a scalar depending on y; and B;’s;.

It is now believed, after a considerable amount of
research, that the most effective quasi-Newton update
is the one corresponding to the choice ¢, = 0, called
the Broyden-Fletcher-Goldfarb—Shanno (BFGS) up-
date:

1 1
By =B;— Bisesi Bt ——yiyi'.  (C22)
kSi Y& Sk

SkT
Hereditary positive definiteness can be proven for the
BFGS quasi-Newton update.

The BFGS quasi-Newton update was found to be
greatly superior to the DFP formula in most cases with
rather crude linear searches. It is also less prone to loss
of the positive-definiteness property through rounding
errors, it has better theoretical convergence properties,
and it is the simplest rank-two update for implemen-
tation. Currently the BFGS quasi-Newton update for-
mula is well accepted.

2. The connection between direct and inverse updates
of the Hessian

Earlier quasi-Newton methods were formulated in
terms of maintaining an approximation to the inverse
Hessian matrix since solving

Bipi = —g« (C23)
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for the dlrect approximation from scratch would re-
quire order n® operations compared with order n? op-
erations to form the matrix product

Pr = Higr (C24)

where H,, = (B,)™! is an approximation to the inverse
Hessian. The quasi-Newton condition for the inverse
Hessian is

Hpy 1Yk = Sk- (C25)

Starting with Eq. (93), which is the direct BFGS
quam-Newton update, we can obtain Eq. (100) for the
inverse update Hy., (if H; is equal to B;™") by the fol-
lowing interchanges:

BkHHk
B+ > Heis

Sk = Ax Oy = Agr

(C26)

, o oy
Now the product of By, in Eq. (93) and H,, in Eq.
(100) can be shown by straightforward algebraic ma-
nipulations to be equal to the unit matrix 1, ie., by
establishing

BYFGHEE s = 1. (C27)
To better see this, one can cast Egs. (93) and (100) for
the direct and inverse BFGS quasi-Newton updates in
the forms:

T
YSk Y Sk Yk)’k
B =|1— B |I— (C28)
kot [ YkTSk] k[ YkTsk] 'Sk
S Sk S
Hk+l—[1—s’°y" ]H [1— "”‘] +%. (€29)
St Ve Sk Vi Sk Yk

Note that a product x"y gives the usual inner product
(x,y)=x"y (C30)

whereas a product xy! is the outer product giving a
matrix of rank one.

For further information on quasi-Newton updates,
see reviews by Dennis and More (1977) and Gill and
Murray (1972) as well as the book by Fletcher (1980).

APPENDIX D

Conjugate-Gradient Minimization
of a Quadratic Function

Theorem 4. If conjugate search directions are em-
ployed sequentially, the minimum of a quadratic func-
tion of n variables will be found in at most n iterations.

Proof: Assume the quadratic function

F(x)=a+b"x +-;-XTGX (D1)
where
8°F
= =V2 D
G (ax,-axj) FG) (D2)
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is the positive-definite symmetric Hessian matrix, so
that

VF(x)=b+Gx (D3)
and at the minimum, x*,
VF(x*) =0 (D4)
that is, from (D3),
x*=—G'b. (DS5)

At the end of the nth iteration of the conjugate-gra-
dient method we have
n—1

X,,=X0+ Z akdk.

(D6)
k=0 :

For each search we determine o by a line minimization
of F(x; + axdy), that is,
dF(x; + a;d
___(il;?ak_k)_ = VTF(Xk)dk + (dk)Tsz(Xk)akdk =0
. -

(D7)

obtained by a Taylor series expansion around Xi.
This yields ,
VTF(x, )dg

= oAk 8
A & TV2F(x s (D8)

[This relation is used in Eq. (42)]. By substituting oy
into (D6) we obtain

n—1 T
R (R0
Xn=Xo ké) [——dkT Gd, ]dk. (D9)

By using Egs. (D3) and (D6) we get
k-1
dIVF(x) = d,(Gx +b) =, {G(xo+ > a;d;) +b}.

i=1
(D10)
We remember that d; and d; are conjugate directions,
ie.,
dkTGdi =0 foralli.
Hence Eq. (D10) reduces to

(D11)

- dIVFx) = dT(Gx° +b) (D12)

and substituting (D12) into (D9)

"< (@) T(Gxo +b)

d
a.'Gd, ¢

Xz =Xo—
k=0
"= ‘{d Gdk] _" 1 4, Tbd,

=%~ 213,764, 24, 7Gd,

(D13)

The second term on the right-hand side of Eq. (D13)
is just —Xg, and the third and last term, when multiplied
by G-G™! = |, leads to

MONTHLY WEATHER REVIEW

VOLUME 115
_, "< 4, Tbd,
= GG'!
X"=Xo—Xo— Z % 4,7Gd,
n—1 3 T,
d. Gdk
= -G 'b 1
Z > 4,°G dk “'b= (D14)
which by Eq. (D5) is x*, i.e.,
x" = x* (D15)

i.e., the minimum was found in, at most, n conjugate-
gradient searches.

APPENDIX E

Proof of Orthogonality of Conjugate Directions and
Gradients for a Quadratic Function Minimization

Starting from Eq. (1), the gradient of F(x) is

g(x)=b+Gx (E1)
and for another point x;
g(xx) =b+ Gxy. (E2)
From Eq. (8), the line minimization is
. dF(x;+ ad
F(x+ apdy) = minF(x;+ ady) = -—(i’:f—") =0.
(E3)

Taking a quadratic approximation by Taylor series
about the point x;

S )= Fox)+ T Fos)(x = %)
- )R- X0 (E4)

and taking X — x; = oy dx and substituting in (E4) we
obtain for Eq. (ES)

F(x;+
m‘dL"") VTF(x,)d; + 4TGad, =0 (ES)
(44
where G = V2F(x;), the Hessian of F, yielding
VTF(x: )i
= E
T Td7Gd, (E6)
writing
VTFR(x) = g(xx) =b+ Gx;. (E7)
We obtain from (ES)
(b + ka)dk + dkTGakdk =0. (ES)
Introducing
Xpe+1— Xie = oy (E9)
we obtain from (E8)
dkT(b + GXk) + dkTG(Xk.H e Xk) =0 (EIO)
or
dT(b + Gx11) = di"8i1 = 0; (E11)

i.e., the gradient at the point X, in the conjugate-
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gradient minimization of the quadratic function F(x)
is orthogonal to the previous search direction d,.
To prove now that ‘

g+1d;=0 foreach i=0,1,--.,/—1 (El12)
we start from
g;=b+Gx, (E13)

and from the conjugate directions search we obtain
-1 -1
g = b+G(Xk+ z aid,-) =b+ka+G z a,-d,»

i=k i=k

(as X1 = X+ ardy) (E14)

where x; is the arbitrary point from which conjugate
searches start.

Since
g.=b+Gx; (E15)
-1
g=g+ 2 a;Gd; (E16)
i=k

premultiplication of this Eq. (E16) by df_, yields
-1
diig=di_ g+ 2 odi_ Gd;.
i=k
The first term on the right-hand side of (E17) van-
ishes since we have already proven that the gradient at
a point is orthogonal to the previous search direction
if the quadratic function is minimized in that search
direction [Eq. (E11)]. All of the terms in the sum of
the second term on the right-hand side of Eq. (E17)
vanish because of conjugacy. Hence

di-1g=0 (E18)

and because the analysis above is still valid for k£ having
any index number between 1 and /

di_g=0 O0<i</—1.

(E17)

(E19)
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