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Summary 

Fourth-order difference approximations are implemented in a three-parameter baroclinic 
quasigeostrophic model of the atmosphere based on a modified version of the Bushby- 
Whitelam [2] model, currently in use at the Israeli Meteorological Office. 
The fourth-order accurate numerical forecast on a mesh covering Europe and the Mediter- 
ranean regions results in improved locations of low- and high-pressure centres as com- 
pared with the second-order forecast. The scheme also yields better estimates of the 
changes in position and intensity of the synoptic systems. The fourth-order numerical 
forecast tends, however, to lower the values at the pressure centres. This so-called pillow 
effect still has to be explained. 

Zusammenfassung 

Anwendung des Differenzenverfahrens vierter Ordnung auf ein baroklines Modeil der 
Atmosph~ire 

Differenzenverfahren vierter Ordnung werden auf ein drei-Parameter baroklines quasi- 
geostrophes Modell der Atmosph/ire angewendet. Dieses Atmosph/irenmodell, welches 
zur Zeit am israelischen meteorologischen Btiro benutzt wird, ist eine Modifikation des 
Bushby-Whitelam Modells [2]. 
Die numerische Vorhersage vierter Ordnung, die sich tiber Europa und das Mittelmeer 
erstreckt, ergibt eine bessere Lokalisierung der Hoch- und Tiefdruckzentren, als dies mit 
einer Vothersage zweiter Ordnung m6glich w~ire. Sie fiihrt auch zu besseren Absch/itzun- 
gender Positions- und Intensit/itsiinderungen des synoptischen Systems. Anderseits aber 
strebt sie dazu, die Werte in den Druckzentren zu verringern. Dieser sogenannte ,,pillow 
effect" muf~ noch welter untersucht werden. 
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1. Introduction 

The computational advantage of fourth-order accurate finite difference 
approximations over those of  second-order in reducing truncation and phase 
errors has been established by several investigators (e. g. [7, 10, 12, 14, 16]). 
Kreiss and Oliger [8, 9] established that fourth-order accurate methods are 
optimal in the sense that the gain in accuracy obtained by using difference 
approximations of  order higher than four is minimal in view of the volume 
of  computational work involved. On the other hand, as remarked by 
Grammeltvedt [4], fourth-order differencing schemes increase the magnitude 
o f  the interaction coefficients for the aliasing terms. Partially to overcome 
this disadvantage a selective dissipative term suggested by Kreiss and Oliger 
[9] is introduced here; this renders the approximation dissipative and makes 
it possible to control the amount of  dissipation. 
In Section 2 the main features of  the atmospheric model are described, in- 
cluding its basic prognostic equations. The fourth-order accurate finite dif- 
ference expressions for the differential operators used in the model equa- 
tions, e. g. the fourth-order Jacobians and Laplacians, are derived in 
Section 3. The dissipative term is introduced in Section 4 and it is shown 
that this term renders a fourth-order scheme (using leap-frog time differ- 
encing) dissipative and stable. Some numerical aspects of  the introduction 
of the fourth-order differences are discussed in Section 5. 
Finally, thee results of  operative numerical forecasts using fourth-order finite 
differences are.presented in Section 6. Statistical results are presented for 
two sequences of  24-hour forecasts, while a particular sequence of forecasts 
is synoptically discussed and illustrated by figures. 

2. The Three-Parameter Baroclinic Model 

2.1 Main Features o f  the A tmospher ic  Model  

The three-parameter model used in the numerical experiments is a modified 
version of the Bushby-Whitelam [2] model currently in operative use at the 
Israeli Meteorological Service. The model consists of  two layers of shearing 
fluid bounded respectively by the pressure surface P0 = 1000 mb, Pm = 
600 mb and Pl = 200 mb. Within each layer the thermal wind is taken to be 
constant in direction and assumed to have a speed varying linearly with pres- 
sure through the layer. 
The winds are obtained from the geostrophic relationship. Pressure is used 
as a vertical coordinate and the hydrostatic approximation is used in deriv- 
ing the equations of  motion; in this way sound waves are eliminated from 
the solution [17]. The vertical velocity is assumed to vary parabolically 
with pressure in each of  the two layers, vanishing at the upper boundary 
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surface, and i t  is de te rmined  at  the lower boundary  by the effects o f  forced 
vertical mo t ion  over the topography ,  and by surface friction. The vertical 
veloci ty at  the  interface Pm = 600 mb is cont inuous.  
The only non-adiabat ic  heat ing effect  taken into account  is that  o f  a warm 
sea heat ing cold air above it:  this effect  is confined to the lower layer. The 
twisting term and the vertical advect ion o f  vor t ic i ty  are neglected.  The 
topography  is approx imated  by taking at each grid po in t  a height equal to 
the mean height  over a symmetr ica l  surrounding square o f  side one grid 
length. Surface equat ions  o f  hor izonta l  mo t ion  involve a cons tant  coeffi-  
cient o f  turbulence ,  a p rocedure  which gives the Ekman  spiral variat ion of  
wind with height  in the fr ict ion layer.  The surface wind is supposed to blow 
over land into  low-pressure areas at an angle o f  30 ~ to the 1000 mb contour ,  
to have a speed 0,35 t imes that  o f  the corresponding geost rophic  wind, and 
to blow over sea at a 3 ~ angle and at a speed 0,85 t imes that  o f  the geo- 
s t rophic wind. 

2. 2 Basic Equations 

List of  symbols  used 

Y 
g 

P 
po 
Pm 
Pl 
no 
hi 
ao 
R 
t 

~o 
V* 1 

Po 
Pl 
r 

0) 0 
V 2 
J(A,b) 

Coriotis parameter 
acceleration due to gravity 
atmospheric pressure 
1000 mb pressure 
600 mb pressure 
200 mb pressure 
1000/600 mb layer thickness 
600/200 nab layer thickness 
rate of heating of lower layer of air over a warmer sea 
gas constant of air 
time 
thermal wind in the lower layer 
thermal wind in the upper layer 
map magnification factor from earth to plane = 1.866/(1 + sin r 
lapse rate in the lower layer = -0.0422222~ 
lapse rate in the upper layer = -0.05111 l~ 
latitude 
stream function 

vertical velocity 

vertical velocity at 1000 mb 
Laplacian operator 
Jacobian operator 

Five partial  dif ferent ia l  equat ions  have to  be solved for  five unknowns,  viz. 
the  t ime rates  o f  change o f  the thicknesses h~, h '  I in the two layers,  the t ime 

1" 



I. M. Navon and Z. Alperson 

rate of  change of  the stream function ~, and two coefficients in the vertical 
velocity formulae.  
The equations (after [2]) are as follows. 

~--~ +J(~ ,32v~+f)  + ~j J 3 2 g  2ho,h'o + (32~v2h; ' - V 2 

_ 2(Po-Pl ) I  {_4b (V2~+ f )  7 bg } + (V2ho + v 2 h l ) - ~  -- ( v 2 h ' l - V 2 h ; )  + 

o9o { g  ~h' f }  + (po-p,) 87 -(v~h;+v 1)+~- (1) 

i)t ] + g J  t~, V2ho +Y .h'o,fi2V2~/+f - . V = 

2 t 4 -) ( P o - P l )  a +  + b  2 V2ff + f2 - - V  h o  �9 ( 2 )  

- (Po-P,) a+--~--b 2 V2~+g---f i  - + v 2 h  ', . (3) 

3t - - -H+A a+ +Bb (4) 

where H=132J(~,h'o)-Qo-(E'-4)  o9o 

a = 0.125 ( P o - P l )  (div Vo + div V 1' ) - 0 . 2 5  o9o 

b = 0.125 ( P o - P l ) ( d i v  Vo'-div VI') 

~t - - z + c  ~ + - U  +Db (5) 

where I :132J(~,h 'l ) -  ( F - C )  o9o. 
o90 

Solving (4) and (5) for a + -~-  and b we have 

a+ o9o _ D ( ~h; t B 
4 AD-BC H+ 3t ! AD--BC 

(I+ ah;] 
~ t !  (6) 

( ah; t A b -  C H+ + - -  
AD-BC ~ t ] AD-BC (I+ Oh~3t ]t " (7) 
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09 0 
Substituting a + T and b f rom (6) and (7) into (2) and (3), we obtain 

two simultaneous partial differential equations of Helmhoitz type for 

ah; ah', 
--7- a n d - a t  " 

\a t  I +L[-aT-] +F~at ] + G = 0  (8) 

\ a t  I +L \ a t  I +M \ a t  I + N = 0 .  (9) 

The symbols E, F, G, L. M, N are defined in the appendix. 
The 600 mb height hm is obtained from the stream function by solving 
the balance equation 

(10) 

"in reverse". 
The linear eqs. (1), (8) and (9) are discretized by finite difference approxi- 
mations and the resulting algebraic equations are solved by iterative tech- 
niques. (S.O.R.) 

2. 3 Grid Mesh, Boundary Conditions, Computations 

The Northern Hemisphere is mapped onto a polar stereographic projection 
true at 60~ for which the map factor is given by j3 = 1.866/(1 + sin 4~). The 
area under consideration is a rectangle inside the stereographic projection 
extending from latitude 10~ to 90 ~ N and longitude 100~ to 95~ The 
area is covered by a 48 • 29 horizontal grid system which gives a grid size 
o f A x  = Ay  = 381 km at 60~ 
For upper and lower boundary conditions the vertical velocity co was taken 
to be zero at 200 mb pressure surface while it was taken to be equal to ~0 
at the .1000 mb pressure surface (at all grid points). Lateral boundary con- 
ditions were that there is no change in the heights of isobaric surfaces on 
the boundary during the period of the forecast. 
The equation for the rate of change of the stream function (1) is a Poisson 
elliptic equation, while eqs. (8) and (9) for the rate of change of the thick- 
ness in the two layers are a pair of simultaneous Helmholtz equations. The 
equations are discretized by finite difference approximations and the result- 
ing algebraic linear equations are solved by the successive overrelaxation 
(S.O.R.) iterative technique. A leap-frog time differencing scheme is 
employed throughout the numerical integration. To avoid separation of the 
odd and even time-step solutions, the odd and even solutions are averaged 
after a prescribed number of time-steps. A time-step o fA  t = 45 minutes was 
used for the fourth-order model. 
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3. Fourth-Order Horizontal Finite-Difference Operators 

We first define some basic difference operators to be used in this Section. 
We use the notat ion 

i= l , 2 , . . . , N x  
un. . =u(i  Ax ,  j A y, n A t), (1 1) 

~'/ J = 1, 2 , . . . , N y  

where Nx A x = L, Ny A y = D. L and D being the horizontal dimensions o f  
our rectangular domain. We now define 

n = in n X D+xui, ] (t i+ 1,/-Ui,/)/A 

D -  ~uT,/ = (uT,/-.7_ l a)/ A x (12) 

D o x  u~,/= (//n+l if-l/n_ 1 , / ) / 2  l~ x .  

Similar definitions apply to D+y, D_y,  Doy. 
Then a fourth-order finite-difference approximation to the first- and second- 
order derivatives o f  a function u = u(x, y, t) in the x direction is 

. .  = [(4/3)Do(ZXx)-(1/3)Do(2 Ax) l  ui, + 0(ZXx4) or 
t,/ 

( 3 u l  " = (Ui-zj--8 Uu-l , /+ 8 ui+lj -ui-2 , / ) /12 A x  + O(Ax 4) (13) 
~x] ia 

where Do(n A x )  u~,/ (2 17 A x )  -1 n n = [ui+n,/--Ui_n,j ]. (14) 

For  the second derivative we obtain 

Ox 2] i,j ( - u i - 2 d +  1 6 U ~ - l d - 3 0 u i d + 1 6 U i + l ' F U i + 2 ' i ) / 1 2 A x 2 + 0 ( A x 4 ) "  

(15) 

Similar expressions are obtained for the derivatives of  u in the y direction. 
Assuming A x =/X y = h, the fourth-order finite-difference expression for 
the Laplacian is 

2 n = { - 6 0  n +16(un+l , /  U i _ l , j W U i , j +  1 , I -  ~7 Ui, j Ui, j + n n + u n "  1 ) - -  

(16) 
-(ui+2,/+ ui-2d + uid+2 + u id-2)  }/12 h 2 + 0(h4). 

We shall use the Arakawa [ 1 ] formulation for finite-difference Jacobians to 
obtain a fourth-order finite-difference approximation to the Jacobian J(~', ~0) 
of  two functions ~'(x, y, t) and ~(x, y, t). 
In his notat ion the fourth-order accurate Jacobian is 

J(~', ~)  = 2 Jl(~ ~ ) - J 2  (~', ~) + 0(h4)  (17) 
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where Jl and J2 are two finite-difference analogues for the Jacobian 

Jl(~, ~ ) =  [d++(~, ~ )+ j+x(~ ,  ~ ) + j x + ( ~ ,  if)]/3, (18) 

J2 (~, ~) = [jxx (~, ~) + j+x2 (~., ~) + jx+2 (~-, if)l/3, (19) 

the additional superscript 2 indicating that additional grid points (i + 2, j), 
( i -2 ,  j), (i, j + 2), (i, j - 2 )  are used. The finite-difference expressions for 
jr++, j+x, jx+, jxx, j+x2 and jx+2 are given in [ 1 ]. 
Sundstr6m [ 15 ] suggested a general method of constructing a fourth-order 
Jacobian from one of second order by 

Jr(*) (/;, g)ij = (4/3) J(h) ~ g)i,/-(1/3) J(2 h) (f, g)i,j + O(h a ), (20) 

where the * stands for 5- or 9-point second-order formulae for the Jacobian 
and J(2 h) means that we employ a double-space increment throughout. For  
instance, the 9-point Jacobian is 

J(9) (f, g)i,j = ~ -  [(f/+ 1,i-fi- l , /)  (gi,j+ 1 --gi,j-1 )-- 

-(f,',j+ 1 -ft ' , i-2) (gi+ 1,j-gi-l,j)] + ~ -  [J~+l,j(gi+l,j+l -gi+l,j-1 )-- 

--fi- 1,j(gi-l,j+l --gi- 1,j- 1 )--fi,/+ 1 (gi+l, j+l --gi- 1,j+l ) + 

2--a 
+ fi , j-  1 (gi+l,/'- 1 --gi-l,j-1 )] + - 7  [gi'j+2Oei+l'j+l --.f/- 1,j+l )-- (21) 

--gi,j-1 (fi+l,j- 1 - - f / - l , j -  1 )--gi+l,j(fi+l, j+l --f/+l,j-1 ) + 

a--1 1 [(J~+l,j+l--f/-l,j-1) " (gi-l,j+l--gi+l,j-1)- +gi-l'j(fi• 3 2 

--(gi-l,j+l --f/+l,]-I ) (gi+l,j-1 --gi-l,j-1 )] } �9 

Using (20) and (21) with a = 1 we obtain the fourth-order Arakawa Jacobian. 
Sundstr6m [ 15 ] suggests that it is better to take a = 0 to get the smallest 
phase-speed error. In our fourth-order model we used the Arakawa fourth- 
order Jacobian. 

4. Inclusion Of the Dissipative Term 

Difficulties are experienced in the convergence of  the iterative S.O.R. algo- 
rithm to the solution (within a prescribed accuracy) when fourth-order 
accurate space finite differences are employed. This effect is attributed to 
aliasing, due to the fact that the fourth-order scheme introduces larger 
aliasing coefficients than a second-order scheme. It was conjectured that if 
the short-wavelength components (which are the principal contributors to 
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aliasing) were removed,  this difficulty would be overcome. Hence we includ- 
ed in our scheme a dissipative factor  o f  the form suggested by Kreiss and 
Oliger [9], viz. 

e h6D3+D 3 - 

64 (22) 

Including this term in the discretized solution of  the simple hyperbol ic  
system 

Ou 3u 
= A - -  (23) 

Ot a x  

where A is a constant  symmetr ic  matr ix,  and using the leap-frog t ime dis- 
cretization, we have 

n+l ( eh6D3D3 ) un-1 
ui,y = 1 ? ~  - z,j + 2 A t A  [ ( 4 / 3 ) D o ( h ) - ( 1 / 3 ) D o ( 2 h ) ] u  ~'~,j.(24) 

This approximat ion  is accurate of  order (ZX t 2 , A x 4 ) but  dissipative of  
order 6, as the eigenvalues of  the amplification matr ix  are given by 

I k] I = 1 - e  sin 6 w--h-h2 for I X i = ZX~xt < 1 e, e < 1 (25) 

j = 1, 2 ; . . . ,  n where n is the order of  the matr ix  A and w is the frequency.  
The discretized form of  the dissipative factor  o f  order 6 in the x direction 
is 

eh6 l n e n n 
D+3xD_3x ui, j = " ~  [ui+3,i-6 ui+2d + 15 un+l , j -20 un,/�9 + 15 Un_l, j -  

- 6  un_2,i + un3,j],  (26) 

and similarly in the y direction. A value of  e = 0.015 was adopted for the 
calculations in our model.  
At points  adjacent to the boundaries a lower order of  dissipativity was 
employed,  viz. a term of  the form 

e h4D2+D 2 - 

16 
(27) 

5. Numerical  Aspects of  the Fourth-Order  Scheme and Baroclinic Model 

5.1 The Time Step in the Fourth-Order Scheme 

As pointed out  by Gerri ty et al. [3 ] the linear stability criterion has to be 
modif ied when higher-order difference approximat ions  are used for the 
spatial derivatives. 
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If  by (A t)2 we denote the limit on the time-step associated with the second- 
order scheme and by (/X t)4 the corresponding limit for the fourth-order 
scheme, we obtain 

(ZX t)4 -~ 0.72 (A 02- (28) 

The use of the fourth-order scheme thus requires a 28 per cent reduction in 
the time-step used in the numerical integration. 

5.2 Treatment  o f  the Helmhol tz  Equations 

In the three-parameter baroclinic model we have to solve a system of two 
simuJtaneous Helmholtz equations of the general form 

V z 4)-~(x, Y)4) = f (x ,  y ) ,  (29) 

where 7 z, already defined, is the two dimensional Laplace operator, c~(x, y) 
is non-negative and f (x ,  y )  is a "forcing function". 
When approximated by a finite-difference scheme, eq. (29) reduces to a 
system of linear algebraic equations 

A x  = b. (30) 

The size and the sign of the Helmholtz coefficient a(x, y) are extremely 
important as they determine whether or not the matrix A will be diagonally 
dominant, i. e. whether or not an iterative procedure for the solution of (30) 
will converge. To see this we take a finite-difference approximation to (29) 
using the fourth-order finite-difference Laplace operator (16) to get 

(4/3)(Ui+l,j + U i - l , j  Jr Ui./+ 1 + l t i . j_  1 )--  

- (1 /12 ) (u i+2 j  + ui-2,y + ui,/+ 2 + ui,y-2) ( 5 + ~ h  2 ) = f ( x , y ) h  2. 

(31) 

tf in (31) c~ < 0 we lose the diagonal dominance of the matrix A and are not 
assured of  the convergence of an iterative method of solution for (30). 
We can fall back on the discrete spectrum of the operator A and thus have a 
singular problem (Prof. G. Fairweather - personal communication). On the 
other hand for large values of cr > 0 the matrix A is strongly diagonally 
dominant and only few iterations are required when using for instance 
the S.O.R. iterative method. 
By large c~ we mean here h2c~ >> 5 and by small c~, h2c~ ,~ 5. In order that the 
systems of  two simultaneous Helmholtz equations in our model should be 
diagonally dominant, the signs of the coefficients E and M in (8) and (9) 
should always be 

E ~ 0 ;  M~<0. (32) 
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Whenever E or M are violating the criteria given by (32) they are set to be 0. 
The minimal value of the Helmholtz coefficients in the integration domain is 
used to determine PB, the optimum relaxation factor for the S.O.R. method. 

5.3 Boundary Conditions 

Problems arise at points adjacent to the boundaries when the fourth-order 
accurate space differencing is used, as it requires two additional nodes in 
each horizontal direction for the difference operators. 
In the solution first employed in the numerical experiments, two lines of 
auxiliary points were used, the values there being set in accordance with the 
boundary conditions. This procedure results in a loss of the fourth-order 
accuracy except at a truly symmetric boundary. To avoid this we later 
employed a method introduced by Oliger [ 11 ] utilizing third-order uncen- 
tered differences at the boundaries and retaining an overall fourth-order 
convergence. 

6. Discussion of the Results 

Two series of  numerical experiments were conducted. One in November 1974 
consisted of 24-hour forecasts using the three-parameter baroclinic model 
with second- and fourth-order differences for the 1000, 500 and 200 mb 
pressure surfaces. A dissipation factor using e -- 0.6 in the x-direction only 
was included in the fourth-order model. 
The second series of experiments was conducted for the winter period of 
February 1976 and was in all respects similar to the first series of experi- 
ments except that the dissipation factor used was e = 0.015 in the x and 
y directions in a variable relaxation factor was used for solving the Poisson 
eq. (1). The results were then compared with corresponding figures of the 
actual synoptic situation as obtained 24 hours later. The correlation coeffi- 
cient between the forecast and the actual contour heights as well as the root 
mean square error (RMSE) were calculated for 24-hour forecasts of  the same 
synoptic hour at the 1000, 500 and 200 mb surfaces respectively. 

6.1 A Synoptic Comparison Between, Second- and Fourth-Order Forecasts 

We shall illustrate in detail a synoptic situation using 24-hour forecast of the 
500 mb pressure surface maps obtained by the second- and fourth-order 
models respectively. This discussion will outline experimentally the improve- 
ment in the phase speed error due to use of the fourth-order accurate space 
differences. 
Fig. 1 shows the initial contour analysis of  the 500 mb pressure surface at 
0000 GMT of 28 February 1976. On the eastern part of the map we observe 
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. ' 

Fig. 1. Actual synoptic 500 mb height field analysis at 0000 GMT of 28 February 1976 

a trough which has crossed the shores of  Israel; beyond it, over the Black Sea, 
a small ridge is penetrating. A secondary trough is developing in the south- 
western part  of  the Black Sea. 
The second-order 24-hour forecast (Fig. 2) for the 500 mb surface good for 
0000 GMT of 29 February 1976 shows the secondary trough that was previ- 
ously over the Black Sea to have penetrated to the south - up to the south- 
western part  o f  Turkey. The small ridge has passed over Israel. 
The corresponding fourth-order 24-hour forecast (Fig. 3) has the same essen- 
tial features, with the following differences. The trough has penetrated more 
deeply and the trough-line is displaced by 2 ~ to the East. The ridge, which is 
very weak, is also found to be further east. 
The actual situation, viz. the 500 mb contour analysis at 0000 GMT of  
29 February 1976 (Fig. 4) is better  approximated by the fourth-order 
24-hour forecast (Fig. 3). The ridge has almost disappeared and the trough 
has widened, its western part being along the line joining the centre of  
Turkey to the south-west of  Cyprus. 
The penetration of  the trough towards the south more closely resembles 
in its extent the fourth-order forecast than that of  second order. The evident 
shortcoming of  the fourth-order 24-hour forecast as compared with the 
operative second-order one is the lower values it forecasts at the centres of  
high and low pressure. For instance, the high centre over Nor them Italy has 
the values 5760 m for the second-order forecast (Fig. 2) and 5720 m for the 
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Fig. 2. Height field at 500 mb on 29 February 1976 "0000 GMT) using the operative 
second-order forecast model 

Fig. 3. Height field at 500 mb on 29 February 1976 (0000 GMT) using the fourth-order 
forecast model 
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]// '/. ' ,  

Fig. 4. Actual synoptic 500 mb height field analysis on 29 February 1976 (0000 GMT) 

~gO,v~,l',,:, ,,H ~' ~ " 7  ~' " ~ ~ " "  "'~ '/ " " ' ~ " / /  ~ / '  " ' 

d ; ~  - i - . ~ ,  / / ~ ,  / ~ / u  .i 

,. ,i,, ,  x . , . _ : : . . . ,  . . . . . . . .  . . . . . .  : 

Fig. 5. Height field at 500 mb on 1 March 1976 (0000 GMT) using the operative 
second-order forecast model 
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/, 

Fig. 6. Height field at 500 mb on 1 March 1976 (0000 GMT) using the fourth-order 
forecast model 

fourth-order forecast (Fig. 3), while in the actual synoptic map the height is 
5800 m (Fig. 4). 
The low in North-Africa is 5590 m for the second-order forecast (Fig. 2); 
it is 5540 m for the fourth-order forecast (Fig. 3) and in the actual synoptic 
map it has a value of 5580 m (Fig. 4)~ 
A very fast change occurred during the 24 hours following 0000 GMT of  
29 February 1976 (see contour analysis map for 0000 GMT, 1 March 1976, 
Fig. 7). For  instance, the trough line that was located west of  Cyprus was 
shifted to longitude 40~ at 32 ~ latitude, and at southern latitudes, to 
longitude lines 37~176 
The location of  the trough in the 24-hour forecast map by the fourth-order 
model (Fig. 6) is nearer to the synoptic situation prevailing at 0000 GMT, 
1 March 1976, than the 24-hour forecast map by the operative second-order 
model (Fig. 5). 
In the second-order forecast the trough location is parallel to longitude 
lines 35~176  whereas in the fourth-order forecast it is parallel to longi- 
tude lines 37~176 But, again, the tendency is evident for the fourth- 
order forecast to give somewhat lower values at the pressure centres. 

6.2 Verification Statistics for the Second- and Fourth-Order Forecasts 

A verification program was run to compute statistical measures of  the agree- 
ment  between actual synoptic data and the forecast maps of the fourth-order 
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Fig. 7. Actual synoptic 500 mb height field analysis on 1 March 1976 (0000 GMT) 

Table 1. Statisties for 24-Hour Forecasts for November 1974. (The verification relates 
to small control areas: Europe, the Mediterranean and North Africa.) ** fourth-order 
model + dissipation of e = 0.6 in the x direction only; * second-order operative model 

Date 1000 mb 500 mb 200 mb 

Corr RMSE Corr RMSE Corr RMSE 

** �9 ** �9 ** �9 ** �9 ** �9 ** �9 

1.11.7400Z .90 .82 26 29 .91 .82 38 50 .84 .65 39 52 
3.11.7400Z .55 .63 31 19 .47 .50 44 37 .57 .60 56 56 
5.11.7400Z .57 .63 66 44 .50 .55 55 45 .39 .22 71 68 
9.11.7400Z - .73 - 45 -- .72 - 46 - .79 - 78 

11,11.7400Z ,75 .74 66 42 .76 .68 48 35 .85 ,77 57 52 
13.11.74 00Z .88 .81 33 25 .83 .79 30 34 .83 .78 57 63 
15,11.74 00Z .42 .45 33 22 .72 .67 30 29 .77 .78 49 49 
17.11.74 00Z .66 ,67 37 26 .40 .43 42 40 .26 .33 67 60 
19 . t l . 7400Z .77 .79 25 17 .87 .81 24 32 .87 .82 35 47 
21.11.7400Z .76 .77 47 21 .68 .68 39 29 .80 .81 57 37 
23.11.7400Z .79 .79 42 23 .87 .80 39 38 .90 .77 47 51 
25.11.74 O0Z .80 .88 67 36 .84 .86 61 40 .72 .64 70 65 
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Table 2. Statistics for 24-Hour Forecasts for February 1976. ** fourth-order model + 
dissipation of e = 0.015 and variable relaxation factor in Poisson equation; * second-order 
model;L the entire forecast domain, S small control area (Europe, the Mediterranean 
and North Africa) 

Date 1000 mb 500mb 200mb 

Corr RMSE Corr RMSE Corr RMSE 

3.2.76 00Z .53 .49 48 47 .71 .59 60 67 .47 .39 94 93 L 
,73 .63 31 32 .81 .74 53 51 ,79 .76 82 54S 

8.2.7600Z .69 .63 38 39 .66 .64 55 52 .56 .52 87 82L 
.66 .75 55 46 .55 .57 56 43 .44 .48 87 81S 

13.2.7600Z .72 .65 37 38 .68 .67 50 46 .58 .61 81 7 tL  
.92 .89 23 23 .85 .81 35 40 .52 .42 56 59S 

15.2.7600Z .69 .61 45 42 ,53 .51 54 51 .35 .32 85 83L 
.37 .42 41 40 .44 .46 54 53 .68 .73 49 45 S 

16.2.76 00Z .60 .65 48 39 .68 .69 5 2  49 .55 ,55 72 6?L 
.14 .26 44 27 .68 .73 53 42 .75 .79 63 49S 

20.1.7600Z .74 .73 34 32 .60 ,54 56 56 .64 .58 73 74L 
.73 .74 26 16 .68 .60 29 28 .55 ,51 41 42S 

252.76 00Z .81 .82 57 42 ,67 .66 77 63 .45 ,44 102 89L 
,83 ,89 80 32 .71 .62 104 68 .58 ,61 145 104S 

27.2.76 00Z .44 .42 69 49 ,55 .55 72 55 .66 .64 70 66 L 
.55 ,48 90 46 .83 .80 106 58 .75 .70 121 87S 

28.2.7600Z .55 .60 47 37 .53 .59 57 44 .62 .65 67 56L 
.61 .66 64 33 .68 .72 81 51 .63 .74 91 57 S 

29.2,76 00Z .61 .58 43 39 .70 .67 48 48 .47 .40 71 70L 
.70 .79 52 27 .83 .87 54 39 .69 .67 83 64S 

model  (including the dissipative factor)  and the second-order  operat ive 
model  (Tables 1 and 2). Mean statistics (correlat ion coeff icient  and RMSE) 
for the 24-hour 100 ,500  and 200 mb forecasts using the fourth-  and second- 

order models  were computed .  

The results show that  the four th-order  scheme is superior to that  o f  second- 
order when correlat ion coefficients  are compared for the 200 and 500 mb 

levels, while no definite conclusion can be drawn for the 1000 mb level. 

However ,  the RMSE o f  the four th-order  scheme is greater than that  o f  the 
second-order scheme whereas a decrease could have been expected [7], The 
in t roduc t ion  o f  the dissipation factor  may account  for this result. 
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As the fourth-order scheme gave us a better estimate of  the change in posi- 
tion and intensity of  the synoptic system, specific statistics may be required 
to account for the improved location of the pressure centres due to the use 
of  the fourth-order scheme. 

7. Conclusions 

The results obtained using fourth-order horizontal finite differences in the 
three-parameter baroclinic quasigeostrophic model are quite encouraging. 
A better  location of the high- and low-pressure centres was obtained, indi- 
cating a significant reduction of  the phase error. 
As, however, other errors such as vertical truncation errors are associated 
with the use of  the operative numerical forecasts, and as simplified physics 
is used in the construction of the model, the improvement due to the use 
of  the fourth-order scheme is limited. I t  appears that the improvement is 
more limited on sea or desert regions where there are fewer reporting 
stations. 
The lowering of the values at the pressure centres by the fourth-order 
scheme remains to be explained. 
It  is felt by the authors that the use of  a compact fourth-order scheme 
suggested recently by Kreiss [13 ], which is effectively a three-point scheme, 
would further reduce the truncation error (see [5] and [6]) and that this 
scheme would have the further advantage that boundary conditions should 
be easier to impose. 

Appendix 

The detailed expressions for the symbols E, F, G, L, M, N are given below. 

E =  
g(Po-P 1 ) (AD-BC) 

2f(A-B)(2{V2~+F2) - -~  v2h0) 
F =  

g(P o-P 1 ) (AD-BC) 

2.2 (2 
G= 

g(Po -P  1 ) (AD-BC) 

+f J (~, -~ v2hro)+ J (ho,{32V2~ + f- -~ ~72h0) 
Arch. 31"or. Geoph. Biokl .  A. ]qd. 27, H.  1 
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L = 

M = 

I. M. Navon and Z. Alperson 

2flD+C) (2(V2~+S-) + fg V2h'l) 
g(Po - P  1 ) (AD-BC) 

-2.f'(A + B) ( 2 (V2 ~ + ~-2 ) g v2h,) + f  
g(Po- P 1 ) (AD-BC) 

( f ) +  gV2h't) (H(D+B) 
+ N ~ - g~o-P I ) (AD-BC) 

A, B, C, D, E' and F' are respectively: 

RVo [ 8__pop L log~{po+pl ]  P o + 3 P ~ ]  
A- 2g t(po_pp~ \-~OT-po ! + (po-pl) 

R Po [ 4 P o ( P o + P l )  {Po+Pa t ( 3 P o + P l )  I 
B -  2g (po_pl)2 loge + \ 2Po ] (Po-P l )  ] 

C -  m RI'1 [ 8pop_l loge / 2Pa ] +  3 P o + P l ]  
2g  [ (p0-p l )  2 ~Po+P~] (Po-Pl) 

R 1~1 l -4p_ l (Po+Pl ) loge t  2])1 ] ( P ~  
D-  2g [ (po-pl) 2 ~Po+Pl! (Po-Pl) 

17;, 1 g . 8 (Po-Pl )  (Po-PO ~ 2Po ] 

F'-  R r'i [ 5 pl-Po 
g [ 8 (Po -P l )  

P~ logelPo+Pll] 
(po-p~) 2 ~ 2p, II 
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