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Summary 

A Poisson-type equation arising in a commonly used numerical weather forecasting 
model is solved using an alternating direction implicit (ADI) method with Wachpress 
optimum parameters on a trapezoidal domain which coincides with the operational 
forecast domain. 
Various optimum parameter sequences were obtained for the corresponding squares 
which enclose the region under consideration, computational efficiency being the 
criterion which determined the choice of the particular parameter sequence finally 
selected. 
In regard to accuracy and computational efficiency, results over several forecast days 
using the ADI method were compared with those obtained using the successive over- 
relaxation (SOR) method. I t  turned out that for a 48 • 29 grid the ADI method was 
nearly three times as fast as the optimum SOR method. 

Zusammenfassung 

ADI-l.~sung der inversen Bilanzgleichung iiber einer nicht-rechteckigen Region 

Eine in einem allgemein verwendeten Modell der numerischen Wettervorhersage ge- 
brauchte Gleichung vom Poisson-Typ wird mit Hilfe der ADI-Methode mit optimalen 
Parametern nach Wachpress auf einem trapezoidfOrmigen Gebiet, das mit dem Vorher- 
sagebereich zusammenf~illt, gel6st. 
Verschiedene Folgen yon optimalen Parametern wurden ftir die entsprechenden Quadrate, 
die die in Betracht gezogene Region einschliet~en, erhalten, wobei die Leistungsfahigkeit 
der Berechnungsmethode das Kriterium war, das die Auswahl der schlieglich gew~ihlten 
besonderen Parameterfolge bestimmte. 
Hinsichtlich Genauigkeit und Leistungsf~ihigkeit der Berechnungsmethode wurden die 
ftir einige Tage mit der ADI-Methode erhaltenen Ergebnisse mit den mit der 
SOR-Methode erhaltenen Ergebnissen verglichen. Es ergab sich, da$ ftir ein Netz von 
48 x 29 Gitterpunkten die ADI-Methode nahezu dreimal so schnell zum Ergebnis ftihrt 
wie die beste SOR-Methode. 
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1. Introduction 

Owing to its simplicity, the point SOR iterative method has been the most 
popular of  the iterative methods employed for solving the Poisson equation 
in problems of Computational fluid dynamics [8]. 
In SOR methods, however, the number of  iterations required for conver- 
gence increases with N, the number of  mesh divisions of  the space dimension, 
while when ADI methods [6] are applied to square regions the number of  
iterations required for convergence is almost independent of  N [1 ], so that 
when N is large enough, ADI methods are preferable (see, for example 
[1, 101). 
No guidelines are available for non-rectangular geometries, as in this case 
the theory on which the determination of an ADI parameter sequence is 
based no longer applies [4, 9]. Nevertheless, parameter sequences obtained 
for the smallest square which encloses the region under consideration are 
often used, and rapid convergence of the iteration procedure is achieved 
[4,3,121.  
It is the aim in this paper to introduce and apply such a method to a Poisson- 
type equation arising in numerical weather forecasting when the domain is 
not rectangular, but trapezoidal in shape. 
In Section 2 the Poisson-type equation which represents an inverse balance 
equation is described, along with the region on which it is to be solved. 
Finite-difference expressions are derived for the differential operator 
appearing in the equation. 
The ADI algorithm is introduced in Section 3, along with the Wachpress' 
method for obtaining a sequence of opt imum iteration parameters. The 
embedding-square method is then introduced. 
Finally, in Section 4, numerical solutions are discussed of the inverse balance 
equation for several forecast days, obtained using the ADI and SOR methods. 
Isolines of  the solution height field z for the 600 mb surface pressure are 
plotted on the operational weather forecast maps for solution based on both 
the ADI and the SOR methods. 

2. The Inverse Balance Equation 

2.1 Basic Equations 

List of symbols: 

d=Ax =ZXy 
m 

(1 

grid interval 
map magnification factor from earth to plane - 
mean radius of the earth 

1 + sin 60 ~ 
I + sin 0 

1s + sinqb 



r 

rn 
Z 

f 

P,PE 

x,y 
I 
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radial distance of the particle as measured from the centre of the earth 
latitude 
ADI iteration parameters 
height of the 600 mb pressure surface 
Coriolis parameter 
stream function 
parameters of the stereographic projection (see Fig. 1) 
coordinates of the stereographic projection plane 
identity matrix 

In the operational numerical weather forecasting model  commonly  in use at 
some meteorological services [7, 13] a Poisson-type equation arises whenever 
an inverse balance equation is to be solved, i. e. when the geopotential  height 
field z is to be derived f rom the stream funct ion for rotational wind com- 
ponent  field v = k x v ~). 
The general inverse balance equation can be writ ten as 

g~72Z = VOte7 ~)) + 2 3X 2 3y ~ ~ x 3 y ]  I (1) 

if the stereographic projection coefficients are ignored; if, on the other  hand, 
they are taken into account,  the most  general form of  the inverse balance 
equation is 

m2g (Zxx + Zyy) + 12 f2 = 1 [m 2 (~xx + r + f]2 _ 

2 ~xx-~v),  + 2 02 - (2) 
- PE + P 

m a [  4p x ~ y - Y ~ x ]  2 [ ~xfx--Ti- J 2 2 ~xv + - -  + m  2 ~lyfy+ 1 (r162 
- p ~  + 0 2 p 

The strem funct ion ~ is known,  and we therefore have a Poisson equation 
for z, the height field. 

2. 2 Trapezoidal In tegra tion Domain 

The Northern Hemisphere is mapped onto  a polar stereographic projection 
true at 60~ for which the map factor  is m = 1.866/(1 + sin 40. The opera- 
tional forecast domain is a rectangle inside the stereographic projection, 
extending f rom latitude 10~ to 90~ and longitude 100~ to 95~ The 
area is covered by a 48 x 29 horizontal  grid system which gives a grid size 
o f A x  = Z&y = 381 km at 60~ 
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Owing to the low value of the Coriolis parameter south of 10~ and also the 
scarcity of observations in that area, two triangular sections of the lower 
right-hand and lower left-hand corners of the rectangle are excluded from 
the domain of integration (Fig. 2). Thus the domain is not rectangular but 
trapezoidal. 
The North Pole is located at grid point (27,22) while the sloping boundaries 
introduced in this way consist of two straight segments passing through the 
grid points (1,11) to (11,1) and (1,35) to (14,38) respectively. 

~0 = N I p I  

PE = NI E~ 

F2 
~+ Sin 60  p 2 +  pE  z 

m : ~ : 
4+Sin e 2 p E  r 

Fig. 1. The polar stereographic projection 

2.3 Finite-Difference Operafors 

For the sake of  consistency with the direct Monge-Ampgre type balance 
equation, the standard five-point finite-difference Laplacian was used for 
q2ff and v ~ z,i .  e. 

72Zij = [ 2 i + l , j  + 2i- 1,1 + 2i, j+l + 2i, j -1  ~ ziJ]/d2 (3) 

where we adopt the notation 

zii = z ( iAx ,  j a y )  (4) 

a n d d = A x =  Ay. 

The "Monge-Amp~re" term ~kxx ~yy --~.2xy was computed with an interval 
length r d,i. e. 
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1 
t~xx Cyy --~J2xy = ~ -~  [~Ji+l,]+l --2 r  -F r  ) " 

�9 ( r  - 2 r  + VJi+l,]- i  ) - ( r  -I- VJi_l,]-Vji, j+ l  -q j i , ]_ l  )2 ].  ( 5 )  

Centered finite differences were used for the first derivatives to maintain 
an O(h 2 ) truncation error. An auxiliary contour of  points (a false boundary) 
was introduced to hand boundary conditions of fixed z and ~. 

(29,1) [ 

(I,I) (I,II) 

Fig. 2. The trapezoidal domain of integration 

{I,35) (l,4B) 

(29, 48) 

( 34; 48) 

3. The ADI Iterative Algorithm 

3.1 ADI Solution of the Poisson Equation for Rectangular Domains 

Eq. (2) can be written in the general form 

V2z = f(x,  y). (6) 

After finite-difference discretization we obtain a linear system of the form 

A z = s, (7) 

where A is an n �9 n real, nonsingular matrix, z is the unknown vector, s is 
fight-hand side known vector. 
The ADI algorithm consists in splitting A in a way to be specified below, 
into the sum of two matrices H and V 

A = H +  V (8) 

so that the iteration procedure can be expressed in the matrix equations 
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and (9) 

where I is the identity matrix of  order ( N - l )  �9 ( N - I ) ,  rn is an iteration 
parameter and the successive values of  r are called a parameter sequence 
which optimize the convergence of the iterative process. 
The solution of eqs. (9) involves solving two systems of equations having a 
tridiagonal coefficient matrix for each iteration sweep. 
When the Laplace operator is approximated by a five-point difference scheme, 
the H matrix includes horizontal coupling (along lines of  constant y-value) 
while the V matrix includes all vertical coupling (along lines of constant 
x-value). 
The ADI algorithm for the Poisson equation 

v 2 z i j  = gi/, (10) 

where g is the load function, takes the form: 

~ k ; } ) + ( 2 _ l / r  n I ~ + ~  ( k + ~ ) _  k k k , ~ Z _ , )Zi /  + Z i - l ' J  - - -Z i ' / - l+  ( - 2 - 1 / r n ) Z i d - z i ' / - l + g i ' i d  (1 1) 

(k+l) ,  . (k+l). (k+l) _ z ~ k l , i > + ( 2 _ l / r n  ) (k+~) (k+~) r d2 " 
Zi, j~_ 1 "I" ( - - 2 - - 1 / r n ) Z q  t Zi, I+ 1 = _ 2i, I --Zi+l,f +gif t  

The space increment is d = Ax = &y and the typical internal point is 
z ( i  A x,  l A Y )  = Zil. 
For a discretized rectangular domain comprising M. N grid points, the H 
and V matrices are of order ( (34-1) .  ( N - l ) )  and it can be shown that 

H = 

-C 0- 
\ 

0 

C 
\ 

\ 

"c 
, V =  

with C a matrix of  order ( M - l )  given by 

2 J  - J  0 
\ N 

- J  2 J - J  
\ \ '  

\ \ 
X X 

0 -~J 2 J  - J  
\ 

- J  2 J  
m 

(12) 
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C = 

m 

2 -1  0 
\ 

-1  2 -1  
\ \ \ 

\ \ \ 
\ \ 

- 1  2 
\ 
-1  0 

\ 
-1  

\ 

2 

and J the unit matrix of order (M-  1). 

The vectors z and g in eq. (10) are given by 

(Zl,  1 '  . . . , Z l , N - 1 ;  Z 2 , 1 , . . . , Z 2 , N - 1 ; . . .  ; Z M - I , 1 ,  . . ., Z M - 1 , N - 1 ) T  

~g '1 ,1  ' " ' "2 " g '  , r , ' ' ' , g l , N - 1 ,  g 2 , 1 , . . . , g  , N - I ; . . . ,  n - l , 1 , . . . , g M - 1 , N - 1 )  . 

(13) 

(14) 

(15) 

The components of the vector g' arise from the load function g and from the 
boundary values. 

3. 2 Optimum Iteration Parameters 

For our problem we shall use the parameter sequence given by Wachpress 
[10, 11]: 

- c (n = 0,  1, ., n o - l )  rn+l  2( 7r ) ' �9 
2 cos ~ -  

where no (> 2) is the smallest integer such that 

( / 2 -  1) ("~ ~< tan 7r 
2 M '  

M being the number of grid points in the square with side L = Md. 

(16) 

(17) 

For a rectangle with sides LI =Mid and Lz = Nld  we setM = max (Na, MI). 
For the details of the derivation of this parameter sequence see [ 10]. 
The ADI iteration process is terminated when at the end of  one iteration 
cycle consisting of  no ADI iterations with no different iteration parameters 
rn, n = 1,2 . . . . .  no, the error in eq. (18) is within the desired range of 
accuracy for all the points of the discretized forecast domain. 
In our case the values of  the height field for the 600 mb surface vary around 



46 I.M. Navon 

the mean value o f  5.103 m and the required m a x i m u m  error  is 4 m, i. e. the 
i te ra t ion  process will t e rmina te  whenever  

(s + 1) (s) 
Zi/ --Zi/ • 4 f o r a l l  i =  1 . . . . .  M , / =  1 . . . .  , N  

s being the number  o f  full ADI i te ra t ion  cycles. 

(18) 

3. 3 Embedding Method for Non-Rectangular Domains 

F o r  non-rec tangular  domains  the matr ices  H and V (eq. (12))  no longer 
c o m m u t e  and consequent ly  the theory  on which the de te rmina t ion  o f  a 
pa ramete r  sequence is based no longer  applies.  
Mouradoglou [5] and Crowder  and Dal ton  [2] have done some pre l iminary  
work  on ADI  convergence proper t ies  in a non-rectangular  mesh. Paramete r  
sequences can, however,  still be ob ta ined  for  the smallest  square within 
which the region under  cons idera t ion  can be enclosed (see [3, 4]). Numerical  
exper iments  were conduc ted  using various embedding  squares for  the  t rape-  
zoidal  domain ,  the  sides o f  the  squares ranging f rom L = 4r  �9 h ~ 37 d 
to L = 50 d; deriving the corresponding ADI i te ra t ion  pa ramete r  sequences;  
and apply ing  these to the Poisson eq. (2). 
I t  was found  that  op t imal  convergence o f  the  i te ra t ion  procedure  in terms o f  
the  number  Ntot = s .  no o f  ADI  i te ra t ions  necessary to  a t ta in  the required 
accuracy was achieved for  an embedding  square wi th  side L = 48 d. The 
number  o f  i te ra t ions  in the  opt ica l  cycle was no = 5 and the  number  o f  
cycles  s = 2. 
The o p t i m u m  pa ramete r  sequence derived using eq. (16) was 

rl  = (3 .99571800)  -1 

r 2 = (0 .72295481)  -1 

r 3 = '  (0 .13080603)  -1 

r4 = (0 .02366705)  - I  

r s = (0 .00428214)  -1 .  

The  r~ were appl ied  in a mono ton ica l ly  decreasing~order (rs . . . . .  r l  ) as sug- 
gested by Wachpress [ 11 ]. 
Table 1 i l lustrates  the re la t ionship  be tween the number  o f  ADI  i te ra t ions  
Ntot and the number  N o f  grid poin ts  in the  side o f  the embedding  square 
o f  side L = Nd. no is the  number  o f  i te ra t ion  parameters  in an ADI  i te ra t ion  

cycle. 
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N 37 40 45 48 50 

4 4 4 4 4 
no 

5 5 5 5 5 

$ 

Number of complete 6 5 4 4 5 
ADI cycles to 
attain prescribed 5 5 3 2 3 
accuracy 

Ntot = s- no 24 20 16 16 20 
Total number of 
ADI iterations 25 25 15 10*pt 15 

4. Comparison of Results Obtained Using ADI and SOR Methods 

Several experiments were conducted for various forecast days, eq. (2) on 
the trapezoidal domain being solved by use of  the ADI iterative method of  
Section 3.3 and a point SOR iterative method with identical accuracy 
requirements. 
The optimal overrelaxation factor Wb = 1.63 for the SOR algorithm was 
determined using a working procedure suggested by Wachpress [10]. 
The average number  of  SOR iterations required to attain the same accuracy 
oscillated around N = 35. 
The numerical experiments were conducted at the Israeli Meteorological 
Service using a Sigma-5 computer. 
In order to ensure that identical accuracies would be obtained, the solution 
height field z of  the 600 mb surface pressure was plotted on the operational 
weather forecastmaps,  for both the ADI and the SOR algorithms (Figs. 3 
to 6). 
A perfect matching of  the isohypses was obtained everywhere except near 
the sloping boundaries, where slightly different finite-difference approxima- 
tions were used for the ADI and the point SOR algorithms. 
Using for the non-rectangular trapezoidal domain the ADI algorithm with 
iteration parameters derived by means of the embedding approach, the 
computat ion time was found to be hardly more than one third that required 
for the same problem by the point SOR algorithms. 
For this non-rectangular region the ADI algorithm thus retains a net 
superiority over the SOR method.  
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5. Conclusions 

Many meteorologis ts  prefer  SOR methods  for  compl ica ted  regions because 
programming  is simpler.  The au thor  hopes,  however,  that  the  results derived 
in this paper  will encourage researchers in numerical  wea ther  forecast ing to 
emp loy  ADI  iterafive me thods  more  f requent ly ,  even for non-rectangular  
domains.  
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