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ABSTRACT

The adjoint model of a finite-element shallow-water equations model was obtained with a view to calculate
the gradient of a cost functional in the framework of using this model to carry out variational data assimilation
(VDA) experiments using optimal control of partial differential equations.

The finite-element model employs a triangular finite-element Galerkin scheme and serves as a prototype of
2D shallow-water equation models with a view of tackling problems related to VDA with finite-element nu-
merical weather prediction models. The derivation of the adjoint of this finite-element model involves overcom-
ing specific computational problems related to obtaining the adjoint of iterative procedures for solving systems
of nonsymmetric linear equations arising from the finite-clement discretization and dealing with irregularly
ordered discrete variables at each time step.

The correctness of the adjoint model was verified at the subroutine level and was followed by a gradient check
conducted once the full adjoint model was assembled. VDA experiments were performed using model-generated
observations. In our experiments, assimilation was carried out assuming that observations consisting of a full-
model-state vector are available at every time step in the window of assimilation. Successful retrieval was
obtained using the initial conditions as contro} variables, involving the minimization of a cost function consisting
of the weighted sum of difference between model solution and model-generated observations.

An additional set of experiments was carried out aiming at evaluating the impact of carrying out VDA
involving variable mesh resolution in the finite-element model over the entire assimilation period. Several con-
clusions are drawn related to the efficiency of VDA with variable horizontal mesh resolution finite-element

discretization and the transfer of information between coarse and fine meshes.

1. Introduction

In recent years 4D variational data assimilation
(VDA) techniques have progressively gained in pop-
ularity, being applied both in meteorology and ocean-
ography. Recent research papers in this area include,
for instance, Derber (1987, quasigeostrophic finite-dif-
ference model), Le Dimet and Talagrand (1986),
Courtier and Talagrand (1987, 2D finite-difference
model), Ghil (1989), Talagrand and Courtier (1987,
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finite-difference model), Derber (1989, quasigeo-
strophic finite-difference model), Navon et al. (1992,
3D spectral model), Zou et al. (1992), and Thépaut et
al. (1993, 3D spectral model), to cite but a few. The
adjoint model of a meteorological or oceanographic
model is the most important component in the imple-
mentation of the 4D VDA process, being used to effi-
ciently calculate the gradient of the cost function with
respect to the initial conditions and/or other control
variables. The cost function is minimized by efficient
large-scale limited-memory quasi-Newton uncon-
strained minimization techniques (Liu and Nocedal
1989; Nocedal 1980; Gilbert and Lemarechal 1989)
that require both function and gradient values.

The main practical problem related to the operational
implementation of VDA is reducing CPU time required
to carry out minimization of VDA at operational res-
olution. In current operational practice at the Buro-



May 1994

pean Centre for Medium-Range Weather Forecasts
(ECMWEF), for example, the CPU time required for a
24-h 4D VDA is equivalent to the CPU time of 100
days of integration of the model ( Courtier et al. 1993).
To achieve this amount of computation within opera-
tional deadlines requires both a significantly faster
computer and substantial algorithmic improvements.
The massively parallel computers are promising faster
performance, and the finite-element method is a prom-
ising candidate for yielding efficient algorithms aimed
at porting numerical weather prediction models to high-
performance parallel computers.

Until now most of the VDA techniques in meteorol-
ogy were applied to either finite-difference (such as
Talagrand and Courtier 1987; Courtier and Talagrand
1987; Zou et al. 1992) or spectral discretized models
(Thépaut et al. 1993; Navon et al; 1992, among oth-
ers), and thus a rich body of experience in deriving the
adjoint models of finite-difference and 2D and 3D spec-
tral numerical weather prediction models has been
gained recently in meteorology. Our motivation is to
explore the feasibility of carrying out VDA using a
finite-element model. In this paper, therefore, we pre-
sent for the first time the derivation of the adjoint of a
finite-element shallow-water equations model in me-
teorology (Navon 1979) to perform VDA, which will
serve as a test-bed for carrying out further research
along this line using a primitive equations 3D global
model.

In general, the solution of a continuum problem ap-
proximated by the finite-element method always fol-
lows an orderly step-by-step process. With reference to
static structural problems, the step-by-step procedure
always includes the following stages: assembly of el-
ement equations to obtain the global equilibrium equa-
tions and solution for the unknown nodal displace-
ments, that is, solving for the unknown variables in the
global matrix using iterative methods (Rao 1989). This
process of solution is different from the finite-differ-
ence and spectral discretization methods. Therefore, the
adjoint model development of a finite-element model
has its specific numerical difficulties—for example, the
treatment of the iterative process required for solving
the systems of linear algebraic equations resulting from
the finite-element discretization.

A finite-element Galerkin discretization method with
piecewise linear triangular elements is employed in the
model, and the variable value at a node is related to
variable values at surrounding six nodes (for inner
nodes) or four nodes (for boundary nodes) in different
directions. [See standard textbooks on finite-element
methods such as Strang and Fix (1973) and Huebner
and Thornton (1982).] The systems of algebraic linear
equations resulting from the finite-element discretiza-
tion of the shallow-water equations model were solved
by a Gauss—Seidel iterative method. To save computer
memory, a compact storage scheme for the banded and
sparse global matrices (see Hinsman 1975; Hinsman
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and Archer 1976; Woodward 1981) was used. It re-
duces the N X N global coefficient matrix to a compact
system of an N X 7 algebraic equation and introduces
irregularly distributed storage locations for the sub-
script of a variable in the process of solving the systems
of algebraic linear equations. This compact storage pro-
cedure induces certain difficulties in building the ad-
joint of such a model.

In the present research we describe techniques em-
ployed for building the adjoint of the finite-element
model along with some simple retrieval experiments,
while in a follow-up paper we will develop an adjoint
VDS system for Staniforth’s 3D global finite-element
numerical weather prediction model.

While the present finite-element model is not tied
directly to Staniforth’s model (see Staniforth and
Temperton 1986; Co6t€ et al. 1990a, 1990b; Tanguay
et al. 1989), the two models can be easily generalized
to either a vorticity divergence or a primitive for-
mulation so as to have a large resemblance between
them (Staniforth 1993, personal communication;
Neta 1992; Williams 1981; Cullen 1979). The dif-
ference between using finite-element discretization
with basis functions on either triangles or rectangles
is not of essence and both this model and Staniforth’s
use the same Galerkin techniques. As such, once the
computational issues related to developing the ad-
joint of one finite-element model are addressed, de-
riving the adjoint of another finite-element model of
the shallow-water equations would constitute a much
simpler task.

The main focus of this paper centers on describing
the development of the tangent linear and the adjoint
models of the finite-element shallow-water equations
model as well as illustrating its use on a retrieval case
when the initial conditions serve as control variables.
The plan of this paper is as follows. The finite-ele-
ment Galerkin method for the shallow-water equa-
tions model and the derivation of its tangent linear
model are briefly described in section 2. The adjoint
model of the nonlinear finite-element shallow-water
equations model and the verification of the gradient
of the cost function with respect to the control vari-
ables are described in section 3. Basic assimilation
experiments using a random perturbation of the ini-
tial conditions as observations and their results are
presented in section 4. An experiment aimed at as-
sessing the impact of different horizontal mesh res-
olutions of the finite-element model on variational
data assimilation and the transfer of information be-
tween coarse and fine horizontal mesh resolutions is
provided in section 5, followed in section 6 by a sum-
mary and conclusions. A description of finite-ele-
ment assembled matrices used in compact storage
schemes is included in appendix A, while the de-
scription of the derivation of the adjoint of the
Gauss—Seidel iterative procedure is provided in
appendix B.
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2. The shallow-water equations model

a. The shallow-water equations and its tangent linear
model

The barotropic nonlinear shallow-water equations on
a limited-area domain of a rotating earth (using the §-
plane approximation) assume the following form in
Cartesian coordinates:

ou Ou ou 0d _
6t+u6x+vay+6x—ﬁ1-—0 (2.1)
O (i) v O
8t+u6x+v8y+8y+ﬁ_0 (22)
b d(gu)  9(¢v) _
at+ I + F =0 (23)
O0=x<L, O0=sys<D,

where « and v are the velocity components in the x and
y directions, respectively; f is the Coriolis parameter
defined by the S-plane approximation:

" a ‘D
r=i+6(r-3). (24)
where f and 8 are constants, L and D are the dimensions
of the rectangular domain of integration, ¢ = gh is the
geopotential height, A is the depth of the fluid, and g is
the acceleration of gravity. The Coriolis parameter f =
292 sinf is defined at a mean latitude 8,, where §2 is the
angular velocity of the earth’s rotation and @ is latitude.

Periodic boundary conditions are assumed in the
east—west direction, while a solid wall condition on the

north—-south boundaries is imposed:
v(x,0,t) =v(x,D,1)=0. (2.5)

The tangent linear model of the shallow-water equa-
tions (2:1)—(2.3) can be written as

.(?i'._}_ '_aﬂ_*_ '%
ar e T oy
op" , O O o
+Bx+u8x+v8y for=0 (2.6)
@i+u'-@+v'2‘)—
ot ox Oy
’ 801 ’ ,
+—67+u5;+v-5y—+fu 0 (2.7)
9’  O(¢'u) 9(d'v) O(pu’) I($v') _
A P VN v
' (2.8)

where the prime denotes a perturbation around the ba-
sic-state variables.

MONTHLY WEATHER REVIEW

VOLUME 122

In operator form, the discretized (2.6)—(2.8) can be
written as (see Navon et al. 1992)

X' () = (D)X’ (t0), (2.9)

where P (1) represents the result of applying all the op-
erator tor matrices in the linear model to obtain x’(¢)
from x'(2):

X'(t) = (e, v, "), (2.10)

where the superscript T notation stands for the trans-
position of a matrix; x’(¢) is an N-component vector
of forecast variables that contains the values of two
components of the velocity field and the geopotential
field at all nodes at a given time ¢.

b. The Galerkin finite-element algorithm of the
shallow-water equations

Linear piecewise polynomials on triangular elements
are used in the finite-element Galerkin discretization.
The representation of a variable £ can be written as

a = 2 gj(t)vj(x9 Y), (2*11)

where ¢, represents the scalar node value of variable £
at the nodes of the triangular element, and V; represents
a basis function (interpolation function) defined by the -
coordinates of the nodes. Here a Galerkin formulation
with the Einsteinian notation is used; for example, a
repeated index implies summation with respect to that
index, The notation used is

S vo= 3 [[reywaa

elements

[ ey, @
 global

which defines the inner product when a function is mul-
tiplied by a trial function.

A time-extrapolated Crank—Nicolson time-differ-
encing scheme was applied for integrating in time the
system of ordinary differential equations resulting from
the application of the Galerkin finite-element method
(see Navon 1979).

Using linear piecewise polynomials on triangular el-
ements, the linearized continuity equation is solved first
in the tangent-linear model given by (2.6) —(2.8) (see
Navon 1979a, 1979b, 1987):

(M-3R o - on - ao, + 0 =0,

(2.13)

where the tilde represents the basic-state variable, n
is the time level (¢, = nAr), and ®; and ®,; are given
by
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= n b 2.14 TaBLE 1. Transposition of matrix LOCAT (6, 180), all the locations
d)l] Rld)] + Kig; ( ) of nonzero elements in Eq. (2.32) are stored using the compact
K ( “ ) (2 15) storage scheme for nodes i (i = 1,2, ---, N).
;= 5 Ka(; :
1 2 3 4 5 6
M is the mass matrix given by ) N 5 169 70 0 0
2 1 13 14 3 170 171
M= ff ViVidw, (216) 3 2 14 15 4 171 172
11 10 22 23 12 179 180
where wy is the area of triangular element, the matrix = 12 11 23 24 180 0 0
K, gives rise also to a 3 X 3 element matrix, and, only S ; é 1‘; ﬁ 2(5’ 2(6’
after the assembly process, the global N X N matrices | 3 14 3 16 % >
are obtained, whose expression is given by L o e . . e
o w,, B & nomowmo
A} adl 91 89

K= -Uu. ViV 50 duw + ff ViVii gy 2 92 9% 101 o1 103 132 14
(217) 169 157 158 170 1 0 0
oV 170 158 169 159 17 1 2
ko[ vvarGaws [ vparSas, momoomw@ w3
“ el 178 166 177 167 179 9 10
(2.18) 1719 167 178 168 180 10 11
180 168 179 11 12 0 0

where u; and v are given by

3 1 -

up = S uk = 5 uk Y+ 0(AP) (2.19)
3 1 P, =- f f fiViVidw (2.25)
vp = Ev;: - Ev;‘“ + O(AF?); (2.20) vl

uy and vy result from a time-extrapolated Crank—Nic-
olson time-differencing method (see Wang et al. 1972;
Douglas and Dupont 1970), which is used to quasi-
linearize the nonlinear advective terms.

The u and v momentum equations are obtained as

M+ 2R, )t - )
(W3R

+ At(Kzu) + Kgii") + K (N"+1 - "))

J
Ar +1

where M is the same mass matrix as (2.16), while the
matrices K., K;, K;;, and P, are given, respectively,

ov;
K_ff 9.8t o [[ tvn i,
2 wc\ k w:‘k kay

(2.22)
KZ—J‘f TIAAA ’dw+ff T),’:VVkanw
Wel Wel ay
(2.23)
n+1 n+1 aVk
Kit = SIS dw (2.24)

(M + ar K3)(v”+1 - v})
. N At ol ~
+ At(K} + K57) + — Kz( it - 97)

+ %t(Ké'f‘ + K5) + ArP; = 0, (2.26)

where K, Ks, K,i, and P; are given, respectively,

K3 = ff +1VVk Jdl.l.) +ff VVk
Wel Wel

(2.27)
K; = ” i, ’dw+ff ,:"vvk
Wep Wel
(2.28)
(e ” ¢z+lv,- aV" (2.29)
P, = f f ful'\ViVidw. (2.30)

The explicit form of matrices computed along with
the compact storage scheme is detailed in appendix
A. For recent applications of the finite-element model
to the shallow-water equations, see Navon (1983),
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Steppeler et al. (1990), Priestley (1992), and Neta
(1992). For operational applications, see Staniforth
and Mitchell (1977, 1978), Staniforth and Daley
(1979), Beland et al. (1983), and Silvester (1969).
For comprehensive reviews of the application of the
finite-element model to the shallow-water equations,
see an early review by Navon (1977), Staniforth
(1984, 1987), Navon (1988), and Neta (1992).

The boundary treatment in the tangent linear model
is the same as that presented by Navon (1979).

¢. The Gauss—Seidel iterative method for the linear
system of the finite-element equations model

The solution of the resulting nonsymmetric systems
of linear algebraic equations is obtained by a Gauss—
Seidel iterative method where the system of algebraic
equations is given in matrix form as

A¢ = Db; (2.31)
- that is,
ay Gy ay; a\n &
Ay Qpn T A N &
a;y Gz a; ain &
ay, ays ay; ayy gN
b
b,
= b, , (2.32)
by

where &; represents either u;, or v;, or ¢;, respectively.
The Gauss—Seidel iteration assumes the form
i-1 N
©=3cpeP+ 3 el +d

j=1 j=it1

(i=1,2 ,N), (233)

where k stands for the iteration count, while c; and d;
are

" fl_‘l —_ é’_ ;o= 1 e

ci= e d; = 2’ (i,j=1,2, ,N). (2.34)
We see from (2.33) that the kth values of the variables

are used as soon as they are available.
In the finite-element equations model, a compact
- storage scheme was adopted that is based on the fact
that the maximum number of triangles supporting any
node is six. Bach row i in the N X N global matrix
(here corresponding to the matrix A) represents the
equations written for the point { and will have at most
seven entries. In other words, there are at most seven
nonzero elements at each row of the matrix. Thus, to
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reduce the N X N global matrix into an N X 7 con-
densed matrix, a correlation address matrix is used
whose size is N X 7. The location of nonzero elements
was recorded in a matrix of dimension (N, 7), which
will be denoted LOCAT(j, i) (see Table 1). Now,
(2.33) becomes

i-1 6 :

*x) __ (k) (k~1)

&7 =Y el + ), byt
j=1 j=itl

(i=1,2 -,N), (235)

where c; represents the element of the global matrix
that had been stored by the compact scheme, where ¢
represents- either of the u, v, or ¢ variables, respec-
tively, and

L, =LOCAT(j,i) (j=1,2, - 6;i=1,2, - N).

We see from (2.35) that the sﬁbscript of the variable
€ results in a nonsequential storage location due to the
adoption of the compact storage scheme.

3. The adjoint of the finite-element mode!
a. The cost function and its gradient

We define a cost function whose gradient with re-
spect to the control variable is found by integrating the
adjoint model backward in time and forcing its right-
hand side with the difference between the direct model
forecast and the observations when an observation dis-
tributed in space and time is encountered. The cost
function is defined as the weighted squared difference
between the model solution and observations over the
interval (time window) of assimilation:

2 <w(tr)[X(tr) - Xobs(tr)]’
X(tr) - Xobs(tr)>’ (31)

where J[X(#,)] is a cost function depending on the
initial conditions X (£,), Xs(,) are the observed value
of the model variables at time ¢, R is the number of
time levels where observations are available in the as-
similation interval, { , ) denotes the inner product of two
vectors in a given norm (usually the Euclidean norm),
and W(#,) is a weighting factor that is taken to be the
inverse of the statistical root-mean-square observa-
tional errors on geopotential and wind components, re-
spectively. In our test problem, the diagonal entries of
W are taken to be constant values: namely, W,
=10"*m™2 s? for geopotential component, and W,
= 1072 m™2 s? for the velocity field components.

The VDA problem consists in minimizing the cost
function (3.1) by using large-scale unconstrained mini-
mization algorithms such as the quasi-Newton algorithm
and the limited-memory Q-N algorithm L-BFGS (lim-
ited-memory Broyden-Fletcher-Goldfarb—Shanna) of Liu
and Nocedal (1989) that require the gradient of the

X ()] =3
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T U, B
-
. ] 1 1 1 1 1 1 1 1
N ¥ 1 1 ' ] 1 I I 1
= [ I“_"_n Yeoaen teer x_-__» [
) o ¢-] ¢ ¢+]
i e (-1 e+ OO\ _
o~
h - ———
- 1 I i | 1 t 1 ' [
! 1 1 1 i 1 ] ' 1
T b ] 1 ' 1 ' 1 i 1
~ 2 s ==
(§5)) xi = (Li)
1 2. i-2 i-1 i i+l i+2 . I-1 1

Fic. 1. The domain is subdivided by triangular right-angled ele-
ments, the coarse solid lines denoting a variable value at a node /,
which is related to variable values at the other six neighboring nodes
(inner nodes) or four nodes (boundary nodes) in different directions:
l=j+G-Dj=12,-,L5i=12 -, N=U.

cost function with respect to control variables. The gra-
dient of the cost function with respect to the initial con-
dition can be found using the adjoint of the nonlinear
finite-element model (see Navon et al. 1992) as follows:

VX (1)) = 3 X (10), (32)

where X’(t,) is the solution of the following adjoint
model:

R (t0) = PIW()[X (1) — Xeu(1)],  (3.3)

where P] () represents the adjoint of P,(¢) [see (2.9)].
For instance, if we assume that the linear model is the
result of the multiplication of a number of operator ma-
trices,

P,=QQ; --QP,_,, (3.4)

where each matrix Q; (i = 1,2, - - - K) stands for either
a subroutine or a DO loop, then the adjoint model will
be the product of the following adjoint subproblems:

PT = PL_,Qi .-QyT. (3.5)

Since both (3.2) and (3.3) are linear, the gradient of
the cost function with respect to the initial condition
can be obtained by integrating the adjoint model back-
ward in time from £, to ¢, with zero initial conditions
at time 7z while a forcing term

WX (#) — Xoos(2)] (3.6)

is added to the right side of the adjoint model equations
whenever observations are encountered at time ¢,, r
=R,R -1, , 1, 0.

ZHU ET AL.

951

b. The adjoint of the iterative procedure

The development of the adjoint model of the finite-
element shallow-water. equations model involves over-
coming issues related to building the adjoint of the
Gauss—Seidel iterative procedure as well as the treatment
of the irregular subscripts of variables required to solve
the nonsymmetric systems of linear equations (see section
2¢). In the finite-element model the variables are discre-
tized on an area of compact support [a hexagon with im-
plicit gridpoint index (see Fig. 1)] rather than on a line
with explicit gridpoint index, and some of the variables
to be solved at the current iteration level are reused, while
some are not reused in the Gauss—Seidel iterative proce-
dure. For example, the Gauss—Seidel iteration formula for
the inner nodes I (j # 1, 2, J; i # 1,1, where [ is the total
number of the grid points in the x direction and J is the
total number of the grid points in the y direction and N =
1J) at the kth iteration (excluding the last iteration) is

k (k=1)
5( ) = CH§L“ + 01251,2, + 01351,3, + c14éi,,

+ cl,séf;,l) :,652:1) +d, (3.7)
where
l=.}+(l_1)‘], j=334:”.91—11
i=23---,I-1. (3.8)

Following Table 1 and Fig. 1, formula (3.7) can be
written as

k) _ (k-1)
1

= 6‘11514 + Clzfl 1+ Czsfz (1-1) + €r4€im1
-1
+ Czs§1+(1 n+ Czsfzu b+ d. (3.9)

We see from Fig. 1 that the varlable { -y ) will be reused
at the next iteration when £{< (23) is 1terat1vely solved;
& f”l and & f’i(}) 1y will be reused when & ,+)( J-2) 1S itera-
tively solved; {f -1y Will be reused at following
step [’ = { + 1, that is, when ¢5%, is iteratively solved;
3o Y is not reused %Y will be reused when
13 ,+)( 51y 18 iteratively solved
In short, only the §,+1 is not reused while all the
rest of the variables in formula (3.9) are reused. For
the reused variable values, only £ ff), will be reused at
the next iteration while all the others will be reused at
same iteration. [ For the difference in writing the adjoint
code when a variable is reused or not, see Navon et al.
(1992, appendix A).] Therefore, the corresponding ad-
joint model counterparts of the Gauss—Seidel iteration
given by (3.9) assume the following form:
2R __ c é(k) 2 (k)
1,181

-J = =7
Af'i’l = Clzé( yi)l
Aff)(J—x) = CI3§(k) égf)(J—l)
Af’i}” = 01,461
6::11)1) = Cz,ségk) + $5f~?}31)
Einr” = el + E157, (3.10)

where the caret represents the adjoint variable.
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The key issues related to developing the adjoint of
the Gauss—Seidel iterative procedure are the following.

First, the maximum number of iterations K must be
recorded when the forward model is integrated, and
second, in order to obtain the adjoint of the Gauss—
Seidel iterative procedure the relationship between dif-
ferent nodes must be analyzed. (For details of the anal-
ysis and the corresponding adjoint model formulas for
the Gauss—Seidel iterations on other nodes, see appen-
dix B.)

In summary, the maximum number of triangles sup-
porting any node is six, while the minimum number is
four (boundary triangle), when the piecewise linear
triangular Galerkin finite-element scheme for the shal-
low-water equations is used. The variable value at any
given inner node is related to the values at six neigh-
boring nodes surrounding it, and the variables in the
Gauss—Seidel iteration play both input and output
roles. Thus, when a variable value is iteratively solved,
some inputs in the iterative formulas are reused while
others are not, depending both on the position of the
variable as well as on the level of iterations.

c. Verification of the correctness of the adjoint model

The correctness of the adjoint model can be checked
by requiring the following equality to be satisfied:

(PX)T(PX) =X"[PT(PX)], (3.11)

where P represents the code of the tangent linear finite-
element model while X represents the initial conditions
of the tangent linear model, and P*(PX) denotes the
backward integration of the adjoint model. We have
verified equality (3.11) for each subroutine up to ma-
chine accuracy.

We observe that the adjoint check given by (3.11)
depends only on the tangent linear model. To ensure
the correctness of the adjoint model with respect to the
original nonlinear model, we also need to_check the
correctness of the tangent linear model. We used two
methods to check the correctness of the tangent linear
model version of the finite-element model. First, for a
state vector X and a perturbation X', the following for-
mula derived from a Taylor’s series expansion should
be verified (see Thépaut and Courtier 1991):

_G(X +aX') - G(X)
a “al(X');

T(a) =1+ 0(a),

i=1,2---,N, (3.12)

where G denotes the nonlinear finite-element model op-
erator, L represents the tangent linear model operator
resulting from the linearization of the nonlinear finite-
element model, and the subscript i denotes the ith com-
ponent of a vector.

Both the nonlinear as well as the linear models were
integrated for a 10-h period with various a values, and
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a good approximation of the evolution of perturbations
for the tangent linear model were obtained.

We also tested the accuracy of the gradient of the
cost function. The check formula is

_JX+aV)) - JX)

F(a) (@vI. V) 1+ O(a), (3.13)
where ( , ) denotes the inner product. For a small « that
is not too close to the machine accuracy, the value of
F(«a) must be close to 1 if the gradient VJ is correct
(see Courtier 1987). A value of F(a) is obtained that
is close to unity with increasing accuracy as the values
of a vary between 1072 and 10 ~'? (see Fig. 2).

4. Numerical experiments
a. The test problem

To test the ability of carrying out VDA with the fi-
nite-element model, we test a problem related to the
limited-area shallow-water equations model, using .
piecewise linear triangular elements to discretize by a
Galerkin finite-element method the equations over a

1-8 T T T L T LA A B T 1T
16
14 y
g 12 J
) ]
]
1 ]
0.8 I 5
06 1 | E— . 1 1 1 | E—
107 10°® 10° 10" 10 10° 10
o
I
3
g
&0
2
| L 2 1 1

-10 -8 -6 -4 -2 0 2
log (&)
FiG. 2. Verification of the gradient calculation: (a) variation of

F(a) with respect to a and (b) variation of log(F — 1) with respect
to log(a).
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limited-area domain that consists of a cylindrical chan-
nel on a latitude belt with north—south walls. Cyclic
continuity is assumed in the x direction. An initial
height field condition of Grammeltvedt (1969) was
used. This initial condition is given by

9[(D/2) —
h(x,y) = Hp + H, tanh —[—(LZD)—Xl
+ H, sech? ?ﬂ)—/?-;y]- sin 2—21 (4.1)

The initial velocity field components were derived
from the initial height field by means of the geostrophic
relationship; that is,

g oh
“TTroy
v= fgg (42)
The constants used are given as
L=6000km, g=10ms™
D =4400km, f=10"*s""
B=15%X10"1sTm!
Hy=2000m H, =220m
H, = 133 m. (4.3)
The time and space increments are
Ax = Ay =400 km, Ar=1800s. (4.4)

The boundary conditions used in the numerical inte-
grations are cyclic in the x direction and solid wall for
the normal component of velocity in the y direction,
shown as follows:

v|y=0 = v|y=D = 07
ulx=0 = u|x=L,

U|x=0 = v|x=La
Plico = ¢|x=L~

The model was run with a resolution of (/ X J = 15
X 12) nodal mesh points, using a regular grid domain.

In the following experiments, observational data
consists of model-integrated values of wind and geo-
potential at each time step starting from the Gram-
meltvedt initial condition defined by (4.1) and (4.2)
(see Fig. 3). Random perturbations of these fields, ob-
tained by using a standard library randomizer RANF
on the CRAY-YMP machine, serve as the initial guess
(Fig. 4) for the solution. The length of the assimilation
window is 20 time steps (10 h).

(4.5)
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FiG. 3. (a) Geopotential field for the Grammeltvedt initial condi-
tion. (b) Wind field calculated from the geopotential field by the
geostrophic approximation.

b. Numerical experiments and results for the control

of initial conditions

One of the difficulties related to successfully imple-
menting large-scale nonlinear unconstrained optimi-
zation problems resides in choosing adequate scaling
factors. It is well known that a badly scaled nonlinear
programming problem results in slow convergence due
to the distortion of the ellipsoid generated (Navon and
de Villiers 1983; Courtier and Talagrand 1990). The
general form of a scaling procedure is

X* = 8X
g’ = Sg,

(4.6)
(4.7)
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FiG. 4. Random perturbation of the (a) geopotential field and
(b) wind field.

where S is a diagonal scaling matrix and X and g are
the state variable and the gradient, respectively. In the
first experiment, the velocity and geopotential fields are
scaled by the factors 10* and 10°, respectively.
Computations were carried out on the CRAY-YMP
supercomputer at the Supercomputer Computations
Research Institute at The Florida State University. Ran-
dom perturbations of (4.1) and (4.2) were used as the
initial guess of the integration of the finite-element
model. In all following experiments, the limited-mem-
ory quasi-Newton method of Liu and Nocedal (1989)
was used to minimize the cost function consisting of
the weighted sum of the difference between model so-
lution and observations (3.1). The adjustment was per-
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formed on the 10-h interval [¢#,, £z] (window of assim-
ilation) preceding tz. The adjoint model is integrated

‘backward in time, with a forcing term (3.6) being

added to the adjoint variable at every time step when
an observation is encountered. When a prescribed con-
vergence criterion is attained, the minimization process
was terminated. The convergence criterion applied for
the numerical experiments was

lgdl < e max{1, | X}, (4.8)

where g, is the gradient of the cost function at the kth
iteration and € = 10" was chosen to obtain an accu-
rate solution. .

In the first experiment, a VDA was performed in
which a scaled cost function was used. The minimi-
zation iteration process converged without detecting
any errors after 64 iterations and 83 function calls. In
Fig. 5 we present the variation of the value of the nor-
malized cost function (solid line) and the normalized
gradient of the cost function (dotted line) with the
number of iterations in the unconstrained minimization
process. After 60 iterations, the cost function was re-
duced by about three orders of magnitude. The norm
of the gradient was reduced by two orders of magnitude
while the prescribed convergence criterion was met.

After 64 iterations, a satisfactory solution with an
almost perfect retrieval was obtained. It is well known,
that in the case of random perturbations one should
expect to retrieve the unperturbed initial conditions.
The differences of geopotential fields between the re-
trieved and the unperturbed fields are shown in Fig. 6.
The error is reduced by more than two orders of mag-
nitude. This clearly shows the capability of the varia-
tional data assimilation method using the adjoint model
to adjust the model solution to a set of ‘‘observations’’
distributed in both time and space.
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FiG. 5. Variation of value of the normalized scaled cost function
J/J, (solid line) and the norm of gradient [VJ|/|[V.Jy]| (dotted line)
with the number of iterations.
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FiG. 6. Retrieved initial (a) geopotential field (Fig. 6a) and
(b) wind field using proper scaling.

To assess the accuracy of the retrieved initial con-
ditions, we display the maximum absolute difference
between the retrieved initial conditions and observa-
tional initial conditions and the difference between the

TABLE 2. Maximum absolute differences between the perturbed
and the unperturbed, the retrieval and the unperturbed initial wind
and geopotential fields.

max(u'? + v'H? max|¢’|
Koer — Xos 0.1606E+2 0.1012E+4
ret — Xobs 0.7428E0 0.1762E+2
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Fic. 7. The differences of time variations of the geopotential field
at a grid point between the initial guess and true solution (solid), the
retrieved initial conditions after 15 (dash—dot), 35 (dashed), and 60
iterations (dotted), and the true solution.

initial guess and observational initial conditions in Ta-
ble 2. We see that the maximum differences of both the
geopotential and wind fields were reduced by about two
orders of magnitude during the VDA retrieval.

To illustrate the issue that the VDA minimization
procedure can be stopped prior to the cost function
achieving its asymptotic rate of decrease, we present in
Fig. 7 the differences of the time integrations of the
geopotential field at a grid point started from the initial
guess and true solution (solid line); the VDA retrieved
initial conditions after 15 (dash—dot line), 35 (dashed
line), and 60 (dotted line) iterations; and the true so-
lution, respectively. We note that even after 15 itera-
tions, when the cost function and the norm of the gra-
dient have decreased only one order of magnitude, the
difference between time integrations started from the
true solution and the retrieved initial conditions be-
comes much smaller than that between the true solution
and the guess field. After 30 iterations, the difference
is very small. After 60 iterations, there is practically no
difference between the time integrations started from
the true solution and the retrieved initial conditions.
Therefore, we conclude that the VDA achieves most of
the large-scale retrieval for the shallow-water finite-el-

TaBLE 3. CPU time used by the finite-clement shallow-water
equations, its tangent linear model, and adjoint model for a 10-h time
integration, the cost function and its gradient with respect to the initial
condition. The time step is 1800 s. ’

CPU time (s)

Nonlinear model 0.5120
Linear model 0.7429
Adjoint model 1.4835
Cost function J 0.5123
Gradient V.J 1.5997
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ement model during the first 15-30 minimization it-
erations, while in the latter part of the minimization
process only small-scale features are being assimilated.

An estimate of the computational cost required for
calculating the gradient of the cost function using the
adjoint technique was obtained. Table 3 displays the
CPU time used by the finite-element model, its tangent-
linear model, its adjoint model, and the gradient of the
cost function using the adjoint technique for a 10-h time
integration that spans the window of assimilation. The
time step used is 1800 s. The values of the state vari-
ables used in the tangent and adjoint models were
stored in memory during the nonlinear model integra-
tion to avoid recomputation in the adjoint. We observe
that the integration of the nonlinear finite-element
model requires only 0.512 s—the CPU time required
by the tangent linear model integration being longer
than that of the nonlinear model integration—and that
the CPU time required for the integration of the adjoint
model is the longest among the three aforementioned
models, almost tripling the CPU time required for the
integration of the nonlinear model. The high CPU com-
putational cost of the adjoint model, compared to the
tangent linear model, is due to the high cost incurred
mainly in the Gauss—Seidel iterative algorithm where
we need to calculate location of lower indices of the
reused variables.

In the second experiment, we used the same model
and method except that no scaling factors were used in
the cost function and again we tested the retrieval of
the initial conditions using random perturbations as the
initial guess of the solution. The aim of this experiment
is to assess the importance of using a good scaling pro-
cedure to ensure the success of the large-scale uncon-
strained minimization problem measured by a faster
rate of convergence that translates into fewer numbers
of iterations. It is kriown that if adequate scaling factors
are not used to scale the cost function and its gradient,
the minimization algorithms yield poor results charac-
terized by a longer, slowly convergent minimization
process, thus implying very costly CPU time require-
ments. .

A VDA retrieval was performed in which the cost
function was not scaled. Table 4 shows that for an iden-
tical prescribed convergence criterion (here; the max-
imum absolute differences were almost identical) to be
met, the number of minimization iterations for the same
problem differs dramatically from the case when the
cost function was adequately scaled. More than 300
iterations were required for the nonscaled case to attain
the same prescribed accuracy previously attained in 64
iterations when adequate scaling was used. When the
number of minimization iterations reached the one for
which the first scaled experiment converged (Nfun, the
number of function calls, is then 87) the solution ob-
tained at this iteration for the unscaled case was unsat-
isfactory. The solution of the geopotential field without
scaling the cost function after 78 iterations is the same
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TABLE 4. Maximum absolute differences between the retrieval and
the unperturbed initial wind and geopotential fields by scaling and
not scaling the gradient of the cost function.

Iterations Nfun max(u’? + v')" max|¢'|
Scaling 64 87 0.7428E0 0.1762E+2
Not scaling 64 71 0.9371E+1 0.1010E+4
Not scaling 347 365 0.7493E0 0.1784E+2

as Fig. 4a, that the geopotential field after 78 iterations
resembles the perturbed field; that is, no successful re-
trieval was achieved.

5. Experiments with different horizontal mesh
resolutions

In recent years, higher-resolution numerical predic-
tion models have been used due to the availability of
powerful computers with larger memories and faster
CPU time. The results of high-resolution models may
describe in more detail the realistic state of the atmo-
sphere and result in reduced truncation and phase er-
rors. However, both the availability of data as well as
the required CPU time may still constitute a problem
for high-resolution models.

If the results obtained from a coarse-mesh model can
retrieve most of the information of a fine-mesh model
by using VDA methods, the results may turn out to be
useful in meteorology or oceanography.

In this section we first carry out experiments in
which we use the VDA to control initial conditions in
finite-element models with various horizontal resolu-
tions. The purpose is to observe and compare the effi-
ciency of VDA for variable horizontal resolution in fi-
nite-element shallow-water equation models and the
transfer of information among different scales of mo-
tion. Then, we try to test and assess the impact of fitting
observations obtained with different horizontal mesh
resolutions using the VDA optimal control method.

. o
a. The case of coarse-mesh versus fine-mesh
horizontal resolution

In our experiments we used a coarse-mesh model
with 8 X 9 gridpoint resolution, while for the fine-mesh
case we used a resolution of 20 X 21 grid points on the
same domain as described in section 4a. In both cases
the initial conditions as given by (4.1) and (4.2) were
used while the boundary conditions were identical with
those given by (4.5). In the coarse-mesh (8 X 9) model
the time and space increments are

Ax = 750 km
Ay = 550 km
At = 1800 s, (5.1)
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respectively. In the fine-mesh (20 X 21) model the time
and space increments are

Ax = 300 km
Ay = 220 km
At = 600s, (5.2)

respectively. The adjoint model is unchanged except
for the variable number of mesh points. The length of
the assimilation window is 10 h.

In the first experiments, by testing the VDA with
various mesh resolution (8 X 9 and 20 X 21) models,
we found out that by using the same scaling as the one
(with 15 X 12 gridpoint resolution) used in section 4b,
the minimization failed to converge for both the fine-
and the coarse-mesh resolution models. For the fine-
mesh model, the minimization stopped due to rounding
errors after 11 iterations, and no reasonable retrieval
was obtained. For the coarse-mesh model, after 27 it-
erations, the minimization terminated with an error
message. However, when suitable scaling factors vary-
ing with the horizontal resolution were chosen
(namely, the velocity and geopotential fields were
scaled by factors 5 X 10* and 10° for the coarse-mesh
model, while for the fine-mesh model the scaling fac-
tors were taken to be 5.5 X 10* and 10°, respectively),
the minimization was successful. The results of the
minimization with observations available at every time
step in the assimilation window are similar to results
presented in Fig. 5. The evolution of the value of the
normalized cost functions for three variable horizontal
resolution meshes—namely, fine mesh 1 (20 X 21)
(solid line), coarse mesh 1 (15 X 12) (dotted line),
and coarse mesh 2 (8 X 9) (dashed line ) —versus the
number of iterations is displayed in Fig. 8. Figure 9
presents the variation of the value of the normalized
gradient of the cost functions in three meshes—fine
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FI1G. 8. The variation of the value of the normalized cost functions
on three different horizontal mesh resolutions: that is, the fine-mesh
1 (20 x 21) (solid), the coarse-mesh 1 (15 X 12) (dotted), and the
coarse-mesh 2 (8 X 9) (dashed) with the number of iterations.
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F16. 9. The variation of the value of the normalized gradient of
the cost functions on three different horizontal mesh resolutions: that
is, the fine-mesh 1 (20 X 21) (solid), the coarse-mesh 1 (15 X 12)
(dotted), and the coarse-mesh 2 (8 X 9) (dashed) with the number
of iterations.

mesh 1 (20 X 21) (solid), coarse mesh 1 (15 X 12)
(dotted), and coarse mesh 2 (8 X 9) (dashed) —ver-
sus the number of iterations. We observe from these
figures that the rate of convergence of the cost function
associated with the coarse mesh is faster than the rate
of convergence corresponding to the fine-resolution
models, the cost function associated with coarse-mesh
resolution being reduced by more than four orders of
magnitude, while the value of the norm of the gradient
of the cost function decreased three orders of magni-
tude after 60 iterations. However, the value of the cost
function associated with the fine-mesh resolution was
reduced by only two or three orders of magnitude,
while the norm of the gradient of the cost function de-
creased by only two orders of magnitude for an iden-
tical number of iterations.

This can be explained by noting that the results from
the fine mesh contain more small-scale features than
the corresponding ones from the coarse mesh, and the
dimension of the control variable also impacts upon the
convergence rate so that the retrieval with the fine-
mesh model data becomes more difficult. This results
in a slowdown in the convergence rate of the minimi-
zation procedure since the presence of small-scale fea-
tures results in an increase in the condition number of
the Hessian of the cost functional of the fine-mesh res-
olution model due to the introduction of small eigen-
values in the spectrum of the Hessian (see Axellson
and Barker 1984).

b. Fitting model results with various horizontal mesh
.resolutions

One of the applications of the optimal control
method for distributed parameters is to minimize the
difference between two different states, so as to obtain
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Fic. 10. The difference between perturbed initial geopotential height field of the
coarse-mesh model and initial geopotential height field of the fine-mesh model.

the best fit between these states. Here we carry out
some experiments to study transfer of information
among different horizontal mesh resolutions using the
same finite-element model.

To perform our experiment, we define a cost func-
tion that differs from the one given by (3.1); that is,
the cost function is now defined as

T[Xeu(t0)] = 5 T (W) HXen () = Xan(2)],
[HXeo(1,) = Xsa(2)])s (53)

where X (¢,) is an m-dimensional vector of the model
variables at time ¢, defined on the coarse-mesh space
R.,.; Xsn is an n-dimensional vector (n = m) defined
on the fine-mesh space R,; and H is a projection op-
erator (interpolation or extrapolation operator) from
R, to R,, which is the cubic-spline interpolation in
following experiments; R is also the number of time
levels where observations are available in the assimi-
lation interval; {, ) denotes the inner product of two
vectors in a given norm (usually the Euclidean norm);
and W(#,) is an N X N diagonal weighting matrix. The
proof of the uniqueness of the solution of this optimal
control problem is equivalent to that obtained by Zou
et al. (1992, 1993).

The gradient of the cost function with respect to the
initial conditions is obtained in the same way as that in
section 4, but the forcing term added to the adjoint vari-
able during the integration of the adjoint model is re-
placed by the following term:

H"W(HX,,, — Xs), (5.4)

where H" is the adjoint version of the projection op-

erator H. Here, we may view data originating from the
fine-mesh resolution model Xg, as observations. and
X0 as the model solution.

In all the following experiments, we use the L-BFGS
(Liu and Nocedal 1989) unconstrained large-scale
minimization algorithm to minimize the cost function,
and a mesh with a resolution of 20 X 21 grid points is
used as a fine-mesh model. The time step for the fine-
mesh model is 600 s, and the initial conditions for the
fine-mesh model are given by (4.1) and (4.2).

In the first experiments a 10 X 21 coarse-mesh res-
olution model was used for X... The time step for the
coarse-mesh model is also 600 s, and the initial con-
ditions on the coarse-mesh model were perturbed by
random perturbations of (4.1) and (4.2), obtained by
using a standard library randomizer RANF on the
CRAY-YMP machine for the solution. Figure 10
shows the difference between the perturbed initial
height field of the coarse-mesh model and initial height
field of the fine-mesh model. The difference formula is
as follows:

6¢ = H¢coa - ¢ﬁn- (55)

The length of the assimilation window is 3 h and the
forcing terms are inserted on the right-hand side of the
adjoint model at every time step during the adjoint in-
tegration in this experiment. Figure 11 shows the vari-
ation of the normalized cost functions and norm of the
gradient of the cost function with the number of itera-
tions. The cost function and norm of its gradient display
a decrease with the number of iterations. The difference
between the VDA retrieved initial geopotential height
field of the coarse-mesh model and the initial geopo-
tential height field of the fine-mesh model is displayed
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FiG. 11. The variation of the normalized cost functions (solid) and
norm of its gradient (dotted) of the cost function with the number of
iterations.

in Fig. 12. It represents a sizable decrease in the dif-
ference between the corresponding geopotential fields
prior to VDA as portrayed in Fig. 10. This result illus-
trates also the fact that the VDA solution of the model
using the coarse-mesh horizontal resolution is closer to
the true solution.

We also carried out an experiment aimed at mini-
mizing cost function (3.1), where the mesh resolutions
of both X,, and Xj, are 10 X 21. Figure 13 shows the
variation of the normalized cost function and its gra-
dient with the number of iterations. We find out that
the convergence rate of minimizing the cost function
given by (5.3) is slower than that required for mini-
mizing (3.1). The difference in the convergence rates
can be attributed to the condition number of the Hessian
matrix that depends on the cost function given by the
projection operator.

CONTOUR FROM -37.56 TO 32.44 BY 10

Fig. 12. The difference between retrieval initial geopotential
height field of the coarse-mesh model and initial geopotential height
field of the fine-mesh model.

FI1G. 13. Variation of the value of the normalized cost function J/
Jo (solid) and the norm of gradient [|[VJl/IIV.Jyl| (dotted) with the
number of iterations.

A minimization was carried out in which a flat field
served as the initial conditions of the coarse-mesh res-
olution model. The observations are still the same as
above. A satisfactory retrieval was obtained. This ex-
periment indicates that the retrieval difference is in-
dependent of the initial errors.

Then, we carried out a 12-h forecast of both the
coarse-mesh model and the fine-mesh model (Fig. 14).
The integrations started (a) from initial conditions
given by (4.1) and (4.2) on the fine-mesh resolution,
(b) from random perturbations of (4.1) and (4.2) on
the coarse-mesh resolution, and (c¢) from variationally
assimilated data where the cost function measured the
lack of fit between the coarse- and the fine-mesh res-
olutions model on the coarse-mesh resolution. We ob-
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FiG. 14. A 12-h forecast of the geopotential height fields at a grid
point from the initial field of the fine-mesh model (solid), the per-
turbed initial field of the coarse-mesh model (dotted), and the re-
trieval initial field of the coarse-mesh model (dash—dot).
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FiG. 15. Temporal variation of rmse of the geopotential fields, over
a 12-h period, between the variationally assimilated integration of the
coarse-mesh (10 X 21) model and integration of the firie-mesh model
(solid), between the guess integration of the coarse-mesh model and
the integration of the fine-mesh model (dotted).

serve from Fig. 14 that the forecast result integrated
" from the assimilated initial field of the coarse-mesh
model is almost identical with the forecast result inte-
grated from the initial field of the fine-mesh model.
To better assess the temporal variation of the height
fields, we display. the temporal variation of the root-
mean-square error (rmse) i in Fig. 15. The rmse is de-
fined as follows:

. 1 . /2 .
e(t) = {N M [H¢ma(l t) ~ ¢ﬁﬁ(i; t)]2} , (5.6)
. i=0 . '
wherte i denotes the number of horizontal. grid points,
N is the total number of grid points, and ¢ represents
time. We see from Fig. 15 that the temporal variation
of the rmse between the variationally assimilated result
of the coarse-mesh model and the result of the fine-
mesh model is much smaller than the temporal varia-
tion of the rmse between the guess result of the coarse-
mesh model and the result of the fine-mesh model.
These results indicate a successful VDA fitting of
model data originating from the coarse- and fine-hori-
zontal mesh resolutions after minimization of the cost
function given by Eq.-(5.3).

Next, another model mesh resolution (10 X 11) was
used as the coarse-mesh model to carry out the VDA
experiment. The initial conditions used are the same as
in the first experiment and the time step for the coarse-
mesh model integration is 600 s. A smaller time step
is used here in order to avoid interpolations in time for
the fine-mesh grid. Figure 16 shows a 12-h evolution
forecast of geopotential height fields at an arbitrarily
chosen fine-mesh grid point corresponding to the three
initial conditions (a), (b), and (c) used in the first
experiment. We observe from Fig. 16 that the result of
the forecast integrated from the assimilated initial field
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F1G. 16. A 12-h forecast of the geopotential height fields at a grid
point from the initial field of the fine-mesh model (solid), the per-
turbed initial field of the coarse-mesh (10 X 11) model.(dotted), and
the variationally assimilated initial field of the coarse-mesh model
(dash—dot).

of the coarse-mesh model is much closer to the result
of the forecast integrated from the initial field of the
fine-mesh model, while some difference between the
two forecasts is still noticed. The temporal variation of
the rmse is displayed in Fig. 17. The temporal variation
of the rmse between the variationally assimilated in-
tegration of the coarse-mesh model and the integration
of the fine-mesh model after 12 h is much smaller than
the temporal variation of the rmse between the guess
integration of the coarse-mesh model and the integra-
tion of the fine-mesh model but the magnitude of the
rmse is slightly larger than that displayed in Fig. 15.
Finally, we choose a mesh resolution of 8 X 9 grid
points as a very coarse mesh model to perform a sim-
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F1G. 17. Temporal variation of rmse of the geopotential fields, over
a 12-h period, between the variationally assimilated integration of the
coarse-mesh (10 X 11) model and the integration of the fine-mesh
model (solid), between the guess integration of the coarse-mesh
model and the integration of the fine-mesh model (dotted).
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ilar VDA experiment. This time the minimization
process failed. After 30 iterations, the minimization
terminates unsuccessfully due to rounding errors
prior to a prescribed convergence criterion being at-
tained.

To better understand the underlying reasons for the
failure of the minimization, we calculated the con-
dition number of the Hessian of the cost function for
the three mesh resolutions used in our VDA experi-
ments.

Table 5 presents the maximum and minimum ei-
genvalues as well as the condition number of the
Hessian at the initial guess of the minimization for
the three mesh resolutions. Since the dimension of
the control variable in variational data assimilation
is very large (up to 10° or more), it is computation-
ally too expensive to calculate the eigenvalue spec-
trum of the full Hessian. However, it is possible to
obtain an estimate of the maximum and minimum
eigenvalues as well as the corresponding condition
number of the Hessian by using the power method
and shifted power method, which requires only the
value of the Hessian multiplied by a vector (Golub
and Van Loan 1989; Zou et al. 1992). We observe
from Table 5 that reducing the mesh resolution (i.e.,
using a rather coarse mesh) results in a negative min-
imum eigenvalue of the Hessian in case 3, corre-
sponding to the very coarse mesh resolution. Thus,
an indefinite Hessian obtains for this case, indicating
the presence of multiple minima or saddle points, that
is, an ill-posed problem.

These experiments point to the fact that variational
data assimilation method can be used to fit results pro-
duced with fine-mesh resolutions of the shallow-water
equations model using the coarse-mesh model when
the difference between the corresponding mesh reso-
lutions is not too large and when the coarse mesh can
still adequately resolve large-scale Rossby waves so-
lution.

6. Summary and conclusions

In this paper, we presented a VDA scheme using a
finite-element model of the shallow-water equations
and its adjoint. This is to the best of our knowledge
the first derivation of the adjoint of a finite-element
model in meteorology. A particular hurdle in the der-
ivation of its adjoint model was the derivation of the
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adjoint of the Gauss—Seidel iterative procedure that
differs in a discernible way from other iterative
schemes, in that some of the variables are reused while
others are not, when deriving the adjoint of this iter-
ative procedure.

The large-scale unconstrained minimization lim-
ited-memory quasi-Newton method of Liu and No-
cedal (1989) was used to minimize the cost function
consisting of the weighted squared difference be-
tween model solution and observations over the in-
terval (time window) of assimilation. Using random
perturbations of the Grammeltvedt (1969) initial
condition fields as initial guess for the solution, we
carried out VDA experiments using the adjoint model
to adjust the model solution to a set of observations
distributed in space and time. The minimization was
able to retrieve the initial conditions with a satisfac-
tory rate of convergence when adequate scaling was
employed. However, both the convergence rate and
the accuracy of the retrieval are quite different from
those obtained in the case where no scaling was em-
ployed. As expected, the minimization with adequate
scaling yields much better results than those obtained
in the case of no scaling, converging much faster, that
is, requiring a smaller number of minimization iter-
ations.

Adequate scaling factors are a simple but crude way
to do preconditioning since ultimately we need to know
the Hessian matrix of the cost function to efficiently
deal with small-scale features and carry out a more so-
phisticated preconditioning based on knowledge of the
Hessian spectrum. We also illustrated in a series of nu-
merical experiments that most of the large-scale VDA
retrieval was achieved during the first 10-15 iterations
of the VDA minimization process.

A number of experiments were carried out for com-
parison purposes, involving VDA with the same finite-
element model of the shallow-water equations but with
various horizontal resolutions.

First, three horizontal mesh resolutions were tested
using the aforementioned random perturbations of
the initial conditions as the initial guess, and all the
VDA experiments were able to retrieve the initial
conditions when proper scaling was employed, but
the convergence rate and accuracy of the retrieval for
the three cases of horizontal resolution turned out to
be quite different. The minimization of the cost func-

TABLE 5. Values of the maximum and minimum eigenvalues (Amax; Amin), and the condition number (Cond num) of the Hessian of the cost
function at the initial guess point, when the fine-mesh resolution is 20 X 21 and the coarse-mesh resolutions are 20 X 21 (case 1), 10 X 21

(case 2), and 8 X 9 (case 3), respectively.

Cases Nenax Nomin Cond num Convergence criteria
Case 1 0.2444 x 107 0.3516 X 1078 695.1

Case 2 0.2056 X 1073 0.1723 X 1078 11933 {N® — \&D| < 1070
Case 3 0.2718 X 10~° —0.1936 X 1077 —140.4 (k the iteration number)
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tion and the norm of its gradient for the coarse-mesh
resolution model exhibited a faster convergence rate
than the one corresponding to the fine-mesh model.
This confirms the obvious expectation that the con-
vergence rate of the minimization process is related
to the horizontal resolution; that is, the higher the
resolution, the slower the convergence rate is, due
mainly to the presence of smaller scales to be bal-
anced. It was also found that even though the variable
horizontal mesh resolution is changed in conjunction
with the same model it is still necessary to employ
variable scaling factors corrcsponding to the various
horizontal resolutions.

We then used a VDA method for fitting dlfferent.

model solutions corresponding to different mesh reso-
lutions in order to investigate the transfer of informa-
tion among different scales of motion. We found that
results from coarse-mesh model integration can recover
most of the information of the fine-mesh model in the
framework of VDA when results of the fine-mesh
model serve as observations and the L-BFGS large-
scale unconstrained minimization was used for mini-
mizing the respective cost functional measuring the
lack of fit between model results originating from high-
and low-resolution meshes, respectively. The smaller
the difference between the mesh resolutions is, the bet-
ter the VDA fitting adjustment results are for model
results obtained with. various horizontal mesh resolu-
tions.

The results obtained in this research indicate that us-
ing a finite-element model to perform VDA using the
initial conditions as control variables was successful.
This first application in meteorology of a finite-element
adjoint model development for VDA is the forerunner
of a continuing effort aimed at developing 4D VDA for
finite-element numerical weather prediction models
with real data.
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APPENDIX A

Descrlptlon of the Assembled Matrices Used in
Section 2b

A convenient procedure for evaluating integrals for
each triangle can be analytically used by the foliowing
formula for area integrals (see Silvester 1970):

. alblc!
arbrc -~
”‘,,,L1L2L3d"d,y (@a+b+c+2)’

(A1)
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where a, b, and c are integers, L; (i = 1, 2, 3) are the
basis functions for the triangular linear element of the
natural coordinate variables:

1
L,‘ = 2w (a,'x + b,y + Ci) i= 1, 2, 3, (A.2)

el
where w, stands for the area of the triangle and
@ =X — X,
b=y —y,

'c,~ = XYk — %Y (A3)
and i, j, and k are cyclically permuted (i, j, k =1,
2, 3).

The derivatives of the shape functions L; are

OLi_ b 123,
2we[

6Li o ‘ai
O 2wy By (A'f)

Using these formulas we can derive four different types
of element matrices (3 X 3) that are required for the
assembly in the global matrices. They are

211
sl—f Vde-%(l 2 1), (A5)
wa \11 2

- where w,; is the area of the triangular element—this

type of element matrix is related to Eq. (2.16)—and

32 = ff Vk—dw = ff Vk
Wel Wey 2wel .

a, a; as:
1 a1 a; a3
4 a; as

a,'=xk_x]

N

(A.6)
where x; and x; are the local Cartesian coordinates for

a given triangle. This type of element matrix is identical
with Egs. (2.24) and (2.29):

83 = ff Vk{] dw = ff kaj
el Wel
1
= é-w—d Ejaj " V,-dew

1 211
oy =Y E,a, 1 21
1 1 2

where ¢ represent either u;, v;, or ¢,—this type of el-
ement matrix is related to K,, K; in section 2b:

| (A7)
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”wd &V, Vk dw = Hm &V, Vk - 2‘:;1 zk (we. g+ gk)
1 &L+ &+ &)ar 2+ 6L+ EG)ay G+ 6+ &)as
= 2% (G +26+8&)a; (GL+26+8&)a (6 +26 +63)as
G +&E+28)a (GL+&E+285)a (§+ &+ 26)as
1 M. GNla  Q37,
2 1 aym, Ayl asny | s (A.8)
[ P P 2 Y

the subscripts 1, 2, and 3 standing for three points
in the triangle, respectively, and 7,, n,, and 7,
are

Na=26+8&+ &
N =6 + 26+ &

ne =& + & + 26s. (A9)

APPENDIX B

The Adjoint of the Gauss~Seidel (G—-S)
Iterative Procedure

The adjoint of the G—S iterative procedure on some
inner nodes, boundary nodes at kth, and the adjoint of
the last iteration are as follows.

1) For the G—S kth iteration not including the last
Kth iteration we have the following.

This type of element matrix is related to K; in sec- (a) Forthenodes [/ =2+ (i—1)J,i=1,2,---,
tion 2b. I] the iterative formulas are given by
k) k k k k-1 k-1 k—1
; = Cl,lgg—.)l + 01,2§§-—)1 + CI,3£§—)(J—1) + Cl,4E§+1 )+ Cz,5§§+(111) + Cz,s€§+1 )+ d
1=2+(G—-1)xJ, i=23,--,I-1 (B.la)
k k k-1 k-1 k=1 k-1 k—1
; ) = Cl,]ff—)l + Cz,z§§+(f)-1) + Cl,3§§+/ )+ C1,4§§+1 )+ Cl,5£§+1(l)—1) + Cz,e€§+1(1)—1)+1 + d .
I=2+(@G(—-1)J, i=1 (B.1b)
*)
1= q 151—1 + szgt St 6'1351 v-1 F Cz4§1+1 + 01551—1(1—1) 1+ Clsfl—J(] n+d
I=2+@G-1)J, i=I1 (B.lc)
One observes by using (B.1a) that thez kveglable £, will ¢ fi‘(}ll) = ¢;5¢] ®
be reused at the next iteration when { =@ is iteratively A=) 20 L A1)
solved; g, 2 will be reused when §,+( 7-2) is iteratively w = Gl + &g
solved; £{¥,_;, will be reused at the followmg step, on d=8"+ad, (B.1a)’

node I’ = [ + 1—that is, when § 1+1 18 iteratively
1) k~1)

solved %7 is not reuseg &i+y21y is not reused;

§ I+ , ) will be reused when £ §+)( 7-1) 18 solved; d, is reused

at the next iteration on node /. The corresponding ad-

joint formulas of (B.1a) are

2(k) 2 (k) 2k
Siry=ciéi + &y )
¥ Ak k
¢M) = Cz,zf§ )+ ff—)1
(K N
&0 = al® + 820y
& (k1) ( )

I+1° = Cia

where in the following formulas the caret represents
the adjoint variable.

A similar analy51s as the above usm% the fact that the
variable values in (B.1b), £ ffl s and £ ,+(,_1) are not re-
used. [Note: here the position of £ 1+ is different from
(B.1a).]

In (B.1c) the variable values { w!
are not reused.

(b) For all the north-boundary nodes [ = J + (i
—-1)J,i=1,2,3, -+, I] the iterative formulas are

> and 51—1(1—1) 1

¢ = Ctlfl—J‘*'Cn& 1+013§1+(1 1)+C14§1+11)+d I=J+(@G—-1)J, i=23,---,I-1 (B.2a)
B = + Ct,2§z+(1—1) +eabin ) + Cl,4§t+1(1—1) td I=J+(0G-1)], i=1 (B.2b)
M = it + 6" + Cz,3f§f)1(1-1)-1 + C1,4§§f)1(1—1) +d 1=J+J(i-1), i=1I (B.2¢c)
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We see from (B.2a) that the Varlable { - ), will be reused
at the next 1teratlon when £{57; (27) is iteratively solved;
(k) 1) (k)
£ and §,+(, 1 vaﬂl be reused when &, ;_») is itera-
tlvely solved; & f )(,_1) w111 be reused at the follow-
1ng step, that i 1s when 5 1+1 1S iteratively solved; 5 ,k D
k1) (k
is not reused; f 1+s _ will be reused when &5 b is it-
(k—1) k)
eratively sol\)/ed &rer” will be reuks)ed when § I+@—-1y 18
solved; f 1+3(I-1)» § 1—)1(1—1) 1 and f i~sg-1y in (B.2b) and
(B.2c) are also reused.
The corresponding adjoint model formulas for
(B.2a) are

k Tk
EE = ¢80 + £

(k)
1

(k)

=q 1€1+J + C:2§:+_1

MONTHLY WEATHER REVIEW

* (k-1 .
= ¢1€1-; +szfl—(1—1)+0131§1+1 + cra€ivy ‘+d, I=1 + (i —1)J,
—— (k_l .
+ C13§1+J(1—1) + Ct,4§1+1(1)—1)+1 +d
(k) (k) .
&= Cnf!—z + C1p€10 w-1 t C13§1+1 +cabigg-ny +d I=1+ (G~ 1),

VoLuMmE 122
gy _ P10 7 (k)
-1 =28 + &5
glk—1) g0 2(k—1)
Eivgly = 38l + gl
2 (k=1) A(k) 2 (k-1
s = Ca&) + &ias )
4 k
d =¢8P +d. (B.2a)’

The corresponding adjoint model formula for (B.2b)
and (B.2c) are derived in a similar manner as for
(B.2a)'.

(c) For the south-boundary nodes [/ =
-1)J,i=1,2,

1+ (i
, I] the iterative formulas are

i=2,3, I-1 (B3a)
I=1+(G(-1)J, i=1 (B.3b)
i=1; (B.3c)

only E ,+1 ) is not reused while all the other values with a subscript not equal to ! + 1 are reused.
(d) For west-boundary nodes (cyclic boundary condition on west—east direction) the iterative formulas are

given by

(k) _ (k) (k-1) (k=1
1= ciéicn + c2bivuty t s

where £5 is solved, only the variable § &

) (k—1) (k—1) (k—1)
+ crabivr’ + as€irri-1y + Cie€ivig-1y+ + di

I=j, j=3,4 ---,J—1; (B4)

) is not reused while all the other variable values with subscripts

different from / + 1 are reused. The corresponding adjoint model formulas are derived in a similar manner to

that of Eq. (3.10).
(e) For east-boundary nodes

(k) (k) (k—1)
1= Ca6i-y t 01,251—1 + C1,3§1-(J—1) + c14€ih

when the variable £ §"’ is solved only £ f'ffll) is not reused
while all the other variables with subscripts different
from I + 1 are reused. The adjoint formulas are similar
to that of Eq. (3.10).

2) Kth iteration:

(a) Fornodes ! =jandl=j+J,j=1,2,---,J
— 1 we obtain identical relations to those of the kth
iteration.

(b)Fornodesl—]+JI——1)]—23 J
— 1, in addition to the E i+1 , three other 1nputs ¢ ,(f,),
3 fﬁ and £ 5_,)(,_5) 1 are not reused when we solve for
the variable £{. -

The corresponding adjoint model formulas are given

by
2 2K
EfJ) = ¢16;
2(K) 2(K)
-1= 12§
2(K) 2(K) | 2B
-u-1) = asér + 51—(1—1)
2(K-1) (K)
+1 0 T Cig

X C L)
+ 01,555—)1(1—1)—1 + Cl,6£§—?l(1—1) + d,

l=j+U-1)J, j=3,4,--,J—1; (BS5)
ggf}(l—l)—l = Ct,ségk)
55}(1-1) = Ctsg(x) + ng}(l—.l)
(21 = (K) + d] (B.6)

ISC) For the rest of the nodes, another variable,
f i~ , is not reused besides the variables discussed
above for the Kth iteration.
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