2360

MONTHLY WEATHER REVIEW

VOLUME 120

The Conjugate-Gradient Variational Analysis and Initialization Method:
An Application to MONEX SOP 2 Data

MOHAN K. RAMAMURTHY

Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois

I. M. NAVON
Department of Mathematics and Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida
(Manuscript received 15 July 1991, in final form 24 December 1991)

ABSTRACT

A conjugate-gradient variational blending technique, based on the method of direct minimization, has been
developed and applied to the problem of initialization in a limited-area model in the summer monsoon region.
The aim is to blend gridded winds from a high-resolution limited-area analysis with a lower-resolution global
analysis for use in a limited-area model that uses the global analyses for boundary conditions. The ability of
the variational matching approach in successfully blending meteorological analyses of varying resolutions is
demonstrated. Reasonable agreement is found between the blended analyses and the imposed weak constraints,
together with an adequate rate of convergence in the unconstrained minimization procedure. The technique is
tested on the 1979 onset vortex case using.data from the FGGE Summer MONEX campaign. The resuits
indicate that the forecasts made from the variationally matched analyses show positive impact and perform

better than those from the unblended analyses.

1. Introduction

The use of the calculus of variations to objectively
analyze meteorological fields was first suggested by Sa-
saki (1955, 1958) when he proposed an initialization
method that incorporated certain dynamical con-
straints in the postanalysis adjustment step. In this
variational method, one seeks to minimize, in a least-
squares sense, the variance of the difference between
“observed” and analyzed variables, subject to a set of
imposed constraints. Subsequently, Sasaki (1969,
1970a, 1970b) generalized the constrained minimi-
zation method to include both strong, as well as weak,
constraints and to include time-variation and dynam-
ical constraints so as to filter high-frequency noise from
analyscs. In Sasaki’s terminology, a constraint is defined
to be a strong constraint when an equality constraint
is identically equal to zero, while a weak constraint is
one in which the equality constraint is only approxi-
mately equal to zero. The weak-constraint formulation,
in fact, can be shown to be equivalent to the first step
in a penalty-constrained minimization method. In the
traditional variational formulation, a variational func-
tional is first defined, the minimization of which leads
to a set of Euler-Lagrange equations, which, in turn,
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can be expressed as an elliptic partial differential equa-
tion and then solved using some iterative numerical
technique. During the 1970s and early 1980s, several
researchers had applied Sasaki’s classical variational
approach to different meteorological problems (e.g.,
Stephens 1970; Lewis 1972; Lewis and Grayson 1972;
Sasaki and Goerss 1982; Navon 1981; Navon and de
Villiers 1983).

One of the basic purposes of a weak-constraint for-
mulation is to filter and suppress unnecessary high-
frequency waves in the initial data while at the same
time satisfying certain known dynamical constraints.
A major difficulty with the classical variational ap-
proach using explicitly derived Euler-Lagrange equa-
tions for large-scale (i.e., systems involving a large
number of degrees of freedom) meteorological prob-
lems, not withstanding its intrinsic complexity, has
been the prohibitively expensive computational cost
associated with the minimization process, particularly
for those problems involving many dynamical con-
straints. In most cases of real interest, however, this
approach has not proven particularly useful or prom-
ising since it can lead to partial differential equation
systems of mixed type, where considerable numerical
and regularity problems arise in all but the simplest
cases (Ghil and Malanotte-Rizzoli 1991). In the last
several years, however, a new class of variational anal-
ysis methods have emerged, those which are better
suited for minimization of nonlinear objective func-
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tions that contain a large number of degrees of freedom
(Navon and Legler 1987). These methods range from
simple methods such as the steepest-descent method,
which exhibits slow, linear convergence, to Newton
and quasi-Newton methods, which have quadratic and
superlinear rates of convergence, respectively. Unfor-
tunately, Newton methods suffer from a significant
computational impediment because they require stor-
age of the Hessian, an N X N matrix of second deriv-
atives of the objective function containing N degrees
of freedom. On the other hand, there exists a class of
methods, known as conjugate-gradient (CG) methods,
which are iterative descent methods and which produce
a better approximation to the local minimum of an
objective function with each iteration, that require
storage of only a few vectors of length N (e.g., Hoffman
1982, 1984; Testud and Chong 1983; Legler et al. 1989;
Atlas et al. 1991). Limited-memory quasi-Newton
methods represent a class of algorithms that can be
seen as extensions of the CG methods, in which the
addition of some modest storage serves to accelerate
the convergence rate (Zou et al. 1991).

In this research, we extend the problem of variational
analysis using weak constraints to a direct minimiza-
tion problem, previously proposed by Hoffman (1984),
Navon and Legler (1987), and Legler et al. (1989),
via the method of conjugate gradients. Their approach
is adapted here to an initialization problem to smooth
out nonrepresentative, high-frequency meteorological
fluctuations in the initial conditions provided to a
primitive equation model. The aim is to blend gridded
winds from a high-resolution limited-area analysis with
a lower-resolution global analysis for use in a limited-
area model that uses the global analyses for boundary
conditions. Specifically, the technique of direct mini-
mization (see Hoffman 1984; Navon and Legler 1987)
is applied here to perform the variational blending.

The variational-blending technique allows infor-
mation from a myriad of sources to be combined op-
timally by minimizing the lack of fit to information
from all those sources while including other suitably
defined a priori dynamical constraints. For example,
the high-resolution objective analysis obtained over a
limited-area domain using the First Global Atmo-
spheric Research Program ( GARP) Global Experiment
(FGGE) level IIb observations can be reconciled with
the European Centre for Medium-Range Weather
Forecasts (ECMWF) level IIIb gridded analyses, subject
to a set of dynamic constraints imposed on the resultant
field. Because the constraints are only “weakly” im-
posed, they are expected to hold only approximately
in the final analysis. In this respect, the variational ap-
proach is fundamentally different from a Cressman-
type objective analysis approach, where the large-scale
information is communicated to the final analysis
strictly through the first-guess field, without regard for
dynamical constraints. In other words, the resulting
analysis does not necessarily have to meet any of the
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dynamical constraints one might wish to see obeyed.
Such dynamical constraints often become important
when the analyses are subsequently used in numerical
prediction models. On the other hand, if an optimum-
interpolation (OI) technique is used to perform the
analysis, then it does obviate the need for a subsequent
variational-blending step provided the Ol technique
accounted for the dynamical constraints in the first-
guess error covariances and the first-guess field (Phillips
1982). In the mathematical literature, a weak-con-
straint procedure, such as the one used in this study,
is referred to as unconstrained optimization. Although
the principles underlying the suggested formalisms are
similar to previous applications of the calculus of vari-
ations to selective matching of meteorological fields
(e.g., Stephens 1970; Seaman et al. 1977; Holl et al.
1979), both the methodology adopted here to carry
out the direct minimization procedure and the appli-
cation are quite different. For example, the fields by
information blending (FIB) method of Holl et al. con-
sists of a cyclic process of assembly, blending, and data
weight reevaluation until the desired degree of accuracy
in the final analysis is achieved. The FIB method, as
originally proposed by Holl et al. (1979), was devel-
oped for a special purpose and was designed to analyze
a particular set of variables over a certain domain.
The purpose of this paper is to describe the tech-
nique, which, as mentioned above, is based on the CG
method for direct minimization, and its application to
a specific initialization problem. In particular, the ob-
jective of the paper is to demonstrate that the afore-
mentioned direct minimization technique can be suc-
cessfully applied to variationally blend meteorological
analyses, thereby alleviating some of the frequently en-
countered problems with limited-area high-resolution
analyses. For example, a regional analysis, such as the
one used in this study, is not obtained using a contin-
uous data-assimilation system. As such, the circulations
in the regional domain are not well spun up, which
would be the case with the ECMWF gridded fields that
are obtained from a four-dimensional data-assimilation
system. Moreover, because of the limited extent of the
analysis domain, the planetary-scale features are not
always accurately portrayed in the regional analysis.
Now we present the outline of this paper. In section 2,
the overall methodology and the specific application
to the problem of variational blending are discussed.
A brief description of the CG algorithm is presented
in section 3, along with the details of its numerical
implementation. We present in section 4 a description
of the dataset used in this study and the synoptic over-
view of the onset vortex case to which the present tech-
nique is applied. Section 5 contains the particulars of
the numerical prediction model used, along with the
description of the experiments. Finally, the results from
the application of the variational-blending procedure
on the resulting analyses and the subsequent impact on
the forecasts of the model are presented in section 6.
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2. Variational-blending technique

As mentioned in the Introduction, the primary
interest lies in blending a high-resolution analysis per-
formed over a limited domain with a relatively coarse-
mesh analysis obtained from the ECMWF global data-
assimilation system. The variational blending is con-
fined only to wind data for the following two reasons:
(a) it is widely recognized that, due to the barotropic
nature of the atmosphere, the temperature variations
in the tropics are quite small and are often within the
range of measurement errors of the instrument, there-
fore, the wind field in the tropics is more reliable than
the temperature field; (b) geostrophic adjustment the-
ory dictates that the mass field should adjust to the
winds in the tropics (e.g., Washington 1964; William-
son and Dickinson 1972). As a result of the breakdown
of the geostrophic balance in the tropics, wind obser-
vations are particularly important from the standpoint
of numerical weather prediction. Moreover, given the
importance of organized convection in the tropical cir-
culation, it is even more important to obtain reliable
estimates of the divergent component of the wind. The
variational matching of winds is accomplished using
the CG unconstrained minimization technique, which
is described in detail in the following section.

Before the variational matching can be performed,
however, some consideration is required in the for-
mulation of the cost function (also known as objective
function) that is to be minimized. The variational-
blending technique, after all, finds the best fit to various
sources of information by minimizing a defined cost
function, which is a sum of squares of lacks of fit; and
the success of the variational method approach. as well
as the rate of convergence of the minimization process,
are closely tied to the selection of the individual terms
within the cost function and their accompanying
weights. First, gradient fields, such as vorticity and di-
vergence, generally exhibit a greater degree of variability
at shorter wavelengths than the temperature field or
individual wind components. Second, the ECMWF
IIIb fields were generated using an adiabatic normal-
mode initialization procedure (Bengtsson et al. 1982).
As a result, diabatically forced divergent motions due
to Hadley and Walker circulations are known to be
severely damped in the final IIIb analyses (Puri and
Bourke 1982; Krishnamurti et al. 1984 ). Therefore, in
order to alleviate the problems due to adiabatically in-
itialized fields, the cost function includes terms that
will constrain the vorticity and divergence of the
blended wind field to be closer (fit) to those for the
fine-mesh analysis. Using different weights, the option
of selectively blending or emphasizing the divergent
and rotational components of the wind field is also
present, although this was not done in this study. On
the other hand, the final analysis is explicitly smoothed
by including a Laplacian term that is minimized with
respect to the coarse-mesh global analysis. It should be
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mentioned that, in addition to the explicit smoothing
via the Laplacian matching, there is also an implicit
filtering built into a direct minimization procedure such
as the one used in this study, because the objective
function matches finite-difference analogs of first de-
rivatives of two analyses representing different scales
of motion. In summary, the underlying idea is to en-
hance the ECMWEF global analysis with our enriched
fine-mesh analysis in such a way as to retain the large-
scale information from a global data-assimilation sys-
tem and, at the same time, add detailed information
at smaller wavelengths from the fine-mesh analysis
within the domain of interest. The cost function F to
be minimized can be expressed as
1 2 2

F==p2 2 2 [(u—u=w)’+ (v - vm)’]
L X y p
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where the subscripts FR and EC stand for fine-reso-
lution analysis of FGGE level IIb data and ECMWF
level IIIb analysis, respectively, # and v are the eastward
and northward components of the wind, respectively,
while the coefficients p, v, T', 8, and « are weights that
control how closely the direct minimization analysis
fits or does not fit each constraint. The scaling param-
eter L is a convenient length scale that allows the
bracketed expressions to be of the same order of mag-
nitude, thus accelerating the convergence rate of the
unconstrained minimization procedure.

The next step is the specification of the individual
weights in the objective function. Ideally, the individual
weights (p, v, T, 8, and a) should be based on the
analysis error estimates at different levels and locations
for the two analyses and should have three-dimensional
spatial variation, since the ratio of the reliability esti-
mates for the two analyses is, among other things, a
function of geographical distribution of observations
and historical performance of the two models over that
region. Several other techniques have also been pro-
posed in the literature to select the choice of weight
matrices (e.g., Wahba and Wendelberger 1980). In this
study, the weights are prescribed to be uniform over
the three spatial directions. Perhaps it is worth men-
tioning that it is also possible to combine this varia-
tional technique with Errico’s scale-selection Fourier



OCTOBER 1992

filtering approach (Errico 1985, 1987) to selectively
blend information on certain wavelengths.

3. The conjugate-gradient method

As the model domain is a rectangular latitude-lon-
gitude grid with ten discrete vertical levels and a (46
X 46) horizontal mesh domain, the discrete uncon-
strained minimization functional contains 46 X 46
X 10 X 2 (or 42 320) components. Essentially, the
problem is one of finding a minimum of Eq. (1) in a
multidimensional vector space containing 42 320 de-
grees of freedom. It is easily seen that a problem of this
complexity spanning so many manifolds easily qualifies
as a large-scale, unconstrained, optimization problem.

Given the computational intensiveness of the prob-
lem, a Beale-restarted quasi-Newton, memoryless CG
minimization algorithm, CONMIN, was chosen, which
is based on a variation of the Shanno (1978a,b) method
implemented algorithmically by Shanno and Phua
(1980). The CONMIN routine is available from ACM
Algorithms Distribution Service. A description of the
Shanno-Phua algorithm follows.

Step (i): Choosing the vector. Let X, be the vector

Xo = (U * + ',1)1«,(1\',1\/,,)-r

for the three-dimensional limited-area domain in x, y,
and p, where N,A, = L, NyA, = D, and N,A, = H.
The initial estimate of the Hessian matrix of second
derivatives Hp = I, and

Jie = f(xx)

is computed using the functional in (1) as well as g
= Vf(xy), the gradient of g, s, = —g, the first CG
direction, and

*s UNNN,s Viip 0

T =
Sk&k+1 = 0.

Step (ii): Linear step-size search. Then a linear
search is performed to find an optimum step length a;
satisfying the following two conditions:

F(xi + agesi) < f(xi) + 0.00001 57 gx
|skg(xx + osi)sigel <0.9.
Step (iii): Test for convergence. Set
Xka1 = Xk + oSk
Jerr = f(Xu1)
i1 = 8(Xi+1)
Dr = Xt — X
Y = &ivr — &k

If | g+ | < emax(1, || xx+]l), then stop. If not, proceed
to step (iv), where ¢ is a predetermined tolerance.

Step (iv): Beale restart. Perform a Beale (1972) re-
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start procedure according to the Powell (1977) criteria;
namely, (a) the iteration of k is a multiple of n, the
number of variables in the function to be minimized,
or (b) | g¥i8k! = ll gesill®.

If either of the two conditions holds, compute the
new search direction s, by

+ vyZyk) Pigiss vylgkﬂ]
pive | PEve  Piwk

'Yp{gkﬂ
pzyk

Sk+1 = Y8k+1 — [(1

+

ks
where v = p{yi/yi vk

Set p, = s, and y, = y, and go to step (ii), the linear
search procedure.

Step (v): Two-step memoryless BFGS scheme.
Compute the new search direction by a two-step mem-
oryless BFGS scheme as suggested by Shanno
(1978a,b). That is, compute si+;, the new search di-
rection, by

T
- Dk 8k+1

Siv1 = —Hygrer +
+1 8k+1 Pl{,Vk

ﬁJ’k

_ [(1 + y{ﬁk)’k) DA giny _ y{f}kng]
pivi | Pk pEyx

Here H is an approximation to the inverse Hessian,
while the vector H; g, and H, ), are defined by

T T
4 Di ). Dic 8+t
H —3 — ———
k&8k+1 tT ng+l y,Tyt t
D81 Vifsi
W —"F., |7
Dt )i Yi Vi
and
T T T
5 Di Y. De Vi Pt Yk YiVk
Hye=—3"Ye~"7Y +(2——‘——) .
iy yive ! plye yiv ]

As suggested by Fletcher (1972), the search direction
vector s is scaled by

Jerr = 12(firr — o)/ 8F 1Skt 1Sk -

The scaling is used only for each nonrestart step.
Go to step (ii).

The CG algorithm used in the present study is an
optimized version of CONMIN (Shanno and Phua
1980) and forms the basis of current quasi-Newton-
like limited-memory methods, such as the variable
storage method of Buckley and Lenir (1983, 1985) and
Buckley (1989) and the EO4DGF algorithm (Gill and
Murray 1979) of the Numerical Algorithm Group
(NAG) library (1987, Mark 12 Update). As is well
known (see Navon and Legler 1987) for solving large-
scale nonlinear optimization problems, memory and
computational efficiency considerations mandate the
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FIG. 1. (a) The 700-mb wind field for the variationally blended initial state valid at 1200 UTC 17 June 1979;
(b) 12-h forecast from (a); (¢) 24-h forecast; (d) 36-h forecast.

use of CG-type algorithms. In fact, Derber (1985, 1987)
has successfully applied a similar technique to the
problem of variational four-dimensional analysis using
quasigeostrophic constraints. The CONMIN CG al-
gorithm was recently revised for efficient vectorization
by Navon et al. (1988, 1990). The vectorized version
resulted in a significant speedup on a CYBER-205 su-
percomputer for the given, as well as other, large-scale

nonlinear optimization problems. Recently, Liu and
Nocedal (1989) and Gilbert and Lemarechal (1989)
have proposed a more efficient variable-storage, lim-
ited-memory, quasi-Newton method (L-BFGS). This
method has been tested recently by Navon et al. (1991)
on a four-dimensional data-assimilation application to
an adiabatic version of the National Meteorological
Center spectral model and was found to be efficient
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and robust in a variety of test problems (Zou et al.
1992).

4. Synoptic overview and dataset

a. Synoptic overview

The variational blending technique proposed here
was applied to the Summer Monsoon Experiment
(SMONEX) special observing period (SOP 2) dataset.
The SMONEX, a regional campaign within FGGE,
resulted in an unprecedented data collection over the
summer monsoon region, an area that traditionally suf-
fers from paucity of data for numerical weather pre-
diction. Besides the conventional observing network,
the SMONEX dataset includes data from several spe-
cial observing platforms like dropwindsonde observa-
tions, satellite cloud-drift winds, constant-level balloon
data, and flight-level data from research and commer-
cial aircraft. The particular event for which the analyses
are performed in this study is the so-called onset-vortex
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FIG. 2. (a) The variation of the scaled objective function with the
number of conjugate-gradient iterations; (b) as in (a), except for the
scaled gradient; (¢) as in (a) except for individual terms in the objective
function representing divergence, vorticity, and smoothness.

case of June 1979. During this period (SOP 2) a unique
opportunity arose to observe an intense tropical storm
over the Arabian Sea, one which was responsible for
the onset of the monsoon over the Indian subcontinent.
During the second week of June, the Somali jet rapidly
intensified, and the resulting barotropic instability of
the jet is believed to be responsible for the genesis of a
depression in the Arabian Sea on 12 June 1979 (Krish-
namurti et al. 1981) just off the west coast of India. In
the next several days, the depression intensified rapidly
and moved initially northward, in the process estab-
lishing the onset of a monsoon over the Indian pen-
insula. The vortex, which subsequently was classified
as a cyclonic storm, with winds in excess of 50 kt in
its southern flank, then drifted west-northwestward,
eventually making landfall near Oman on 20 June.
The 700-mb flow field from the blended (BL) analysis
and forecasts, depicting the location and intensity of
the onset vortex at 12-h intervals between 1200 UTC
17 June and 0000 UTC 19 June, is shown Figs. la-d.
A more detailed account of the synoptic situation can
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be found in Krishnamurti et al. (1979) and Rama-
murthy and Carr (1987). The various dynamical in-
stabilities associated with this vortex have been ex-
amined by Krishnamurti et al. (1981), Mak and Kao
(1982), and Mishra et al. (1985). The principal con-
clusion to be drawn from these studies is that barotropic
instability, coupled with latent-heat release due to in-
tense, widespread convection, played a dominant role
in the formation and subsequent intensification of the
storm, while the direction of movement is largely at-
tributable to the beta effect.

F1G. 3. (a) The 700-mb u component for the fine-resolution analysis
valid at 1200 UTC {7 June 1979; (b) as in (a) except for the ECMWF
analysis; (¢) as in (a) except for the blended analysis.

b. Dataset

The significance of the meteorological event, coupled
with the richness of the ensuing database, led to the
selection of this particular dataset for this study. A
multitude of special observations went into the objec-
tive analysis phase, including those from dropwind-
sondes, constant-level balloons, research and com-
mercial aircraft, tropical-wind observing ships, and a
satellite. The details of the complete FGGE level IIb
dataset used here can be found in Ramamurthy and
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Carr (1987). To provide the first-guess field for the
fine-resolution analysis, the analysis step began with a
12-h integration on a 1° latitude-longitude grid of the
forecast model, which is described in the following sec-
tion. This integration started at 0000 UTC 17 June
1979 and used the FGGE level Illa analysis, again bi-
linearly interpolated to a 1° grid. At this time, the onset
vortex was near its peak intensity. Using the 12-h fore-
cast values as the first guess, an analysis is performed
at 1200 UTC 17 June 1979 of all of the available level

FI1G. 4. (a) The 700-mb v component for the fine-resolution analysis
valid at 1200 UTC 17 June 1979; (b) as in (a) except for the ECMWF
analysis; (c) as in (a) except for the blended analysis.

IIb observations within a window of +6 h. The objec-
tive analysis scheme is a four-dimensional Cressman
(1959) approach, and it uses a Gaussian weighting
function in time and logarithmic weights in the vertical
direction. To account for the different observational
errors associated with the various observing systems,
the observations were also weighted for their reliability
following Ramamurthy and Carr (1987). Once the
fine-resolution analysis is prepared, the resulting wind
analyses are variationally blended with the ECMWF
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FIG. 5. (a) The 700-mb vorticity analysis (107> s™!) for the fine-
resolution analysis valid at 1200 UTC 17 June 1979; (b) as in (a)
except for the ECMWEF analysis; (¢) as in (a) except for the blended
analysis.
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level IIIb winds valid at that time, which are also, as  vertical, and the horizontal spacing is 1° X 1° on a
before, interpolated bilinearly to a 1° latitude-longi- latitude-longitude grid. It employs a semi-Lagrangian

tude analysis grid. advection scheme, which is coupled with an Euler-
backward scheme for time integration. The model has
5. Model description and experimental design a fairly complete set of parameterizations for large-

scale precipitation, convection, radiation, and bound-
ary-layer physics and is fully described by Ramamurthy

The forecast model used in this study.is a pressure- (1986) and, to a lesser extent, by Ramamurthy and
coordinate, limited-area, primitive equation model. Carr(1987). The model domain for these experiments
There are ten equally spaced (100-mb) levels in the extends from 7.5°S to 27.5°N and from 52.5° to

a. Numerical model
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97.5°E. Time-varying boundary conditions, derived by
interpolating between ECMWF level 11Ib analyses at
adjacent times, are prescribed along the lateral bound-
aries via a Perkey-Krietzberg-type scheme (Perkey and
Krietzberg 1976).

b. Experiments

Three forecast experiments have been conducted to
assess the impact of the aforementioned variational
blending approach. The first experiment was performed

FIG. 6. (a) As in Fig. 5a except for the 12-h forecast; (b) as in Fig.
5b except for the 12-h forecast; (c) as in Fig. 5c¢ except for the 12-h
forecast.

using only the ECMWEF IIIb fields as the initial state
at 1200 UTC 17 June 1979. In the second experiment,
the initial conditions provided by only the fine-reso-
lution analysis were used. The final experiment has
been initialized using the variationally blended fields.
All of the initial states are adjusted using the Carr et
al. (1983) variational method so as to remove the ver-
tically integrated column divergence. This efficacious
procedure helps to eliminate the Lamb wave noise from
the initial conditions, while keeping the changes to the
analyzed, interpolated, or blended fields to a minimum.
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Given the limited size of the model domain used in
the experiments and the fact that the impact of the
initial state often diminishes rapidly in a regional model
after a certain period of time, all forecast integrations
are restricted to a period of 24 h from 1200 UTC 17
June 1979.

6. Results and conclusions

We first present the computational results in finding
the minimum of the cost function given in (1). Because
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FiG. 7. (a) The 1000-mb height field (m) 12-h forecast for the
fine-resolution experiment valid at 0000 UTC 18 June 1979; (b) as
in (a) except for the ECMWF analysis experiment; (c) as in (a)
except for the blended analysis experiment.

the CG method requires finding gradient descent
(downbhill) directions, the minimum found by the CG
algorithm could, depending on the convexity of the
cost function, the degree of nonlinearity, and the first-
guess information provided, be either a local minimmum
or a global minimum. Despite the large number of
variables involved (n = 42 320), the CG algorithm was
able to find the minimum of the cost function in about
40 iterations. Like Navon and Legler (1987), we also
found that the convergence rate decreased as the min-
imum was being approached, with CONMIN, the CG
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algorithm, requiring frequent Beale restarts near the
minimum. The behavior of the objective function,
scaled by its initial value, is shown in Fig. 2a, while a

similar plot for the logarithm of the absolute value of

the gradient, also scaled with respect to its initial value
of the cost function (log,o|g/go|), is shown in Fig. 2b.
An examination of the convergence rates of the various
parts of the cost function are also of some interest,
because it would reveal how well the different con-
straints imposed are evolving during the minimization
procedure. The behavior of the individual terms, again

FiG. 8. (a) As in Fig. 6a except for the 24-h forecast; (b) as in Fig.
6b except for the 24-h forecast; (c) as in Fig. 6¢ except for the 24-h
forecast.

scaled with respect to their initial values, as a function
of an iteration number is shown in Fig. 2c. It is inter-
esting to note that the vorticity constraint has the
steepest convergence rate and is closely followed by the
divergence constraint. The Laplacian (smoothness)
constraint, on the other hand, wildly oscillates and even
initially diverges before slowly exhibiting oscillatory
convergence. Given that the case in consideration is
an intense tropical storm with a strong rotational com-
ponent, the faster convergence rate for the vorticity
constraint is not entirely surprising. The initial ten-
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-dency to diverge in the case of the Laplacian constraint
is perhaps due to the fact that there are more constraints
in the objective function that are nudging the resulting
analysis toward the fine-mesh analysis than there are
toward the ECMWEF analysis. The examination of the
individual terms can also be extended to the selection
of weights, thereby providing an inexpensive way to
perform sensitivity analysis.

Despite the success of the CG algorithm in this ap-
plication, a problem that contained a large number of
variables, it should be reiterated that other systems may

PorrEEr sy

FiG. 9. (a) As in Fig. 7a except for the 24-h forecast; (b) as in Fig.
7b except for the 24-h forecast; (¢) as in Fig. 7c except for the 24-h
forecast.

be somewhat less convex or quadratic and, as such,
may need a greater number of iterations to converge.
In that case, a penalty term containing additional in-
formation may have to be included to render the cost
function convex. Also, it would be necessary to care-
fully reformulate the scaling parameter in the cost
function so that all of the constraints are of the same
order of magnitude, or else the Shanno-Phua conju-
gate-gradient descent algorithm, with its inexact line
searches, will be extremely slow to converge. This, in
effect, constitutes a preconditioning approach that
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serves two purposes: 1) to reduce the condition number
of the Hessian matrix of the cost function, and 2) to
cluster its eigenvalues. Another logical extension to the
proposed blending method would be the inclusion of
spatially inhomogeneous weights that would take into
account the density, distribution, and reliability of the
observing network. For instance, over data-rich regions
there would be more confidence in the analyses, and,
correspondingly, a greater weight would be assigned,
whereas over data-void regions, the opposite would be
the case. It may also be beneficial to increase the weight
assigned to the ECMWF analysis along the lateral
boundaries, since the first-guess information for the
fine-mesh analysis was derived from a limited-area
model integration. Nevertheless, based on its overall
performance in our application, the CG direct-mini-
mization algorithm shows considerable promise for
other large-scale meteorological minimization prob-
lems.

The remainder of this section concentrates on the
comparison of the variationally blended analysis with
those obtained from the ECMWF level IIIb dataset and
the fine-resolution regional analysis and also on the
impact of the different initial analyses on the ensuing
forecasts. In general, the results indicate that the vari-
ationally adjusted analysis has succeeded in achieving
a reasonable compromise between the ECMWF anal-
ysis and our fine-resolution analysis. Figures 3a-c and
4a—-c show, respectively, the 700-mb u and v compo-
nents of the wind field for the three analyses. This level
is chosen because 700 mb is near the level of nondiver-
gence for this cyclone and also happens to be the lo-
cation of strongest vorticity. It is clear from the dipole
pattern in, for example, Figs. 3a—c that the strength of
the onset vortex is the strongest in the fine-resolution
analyses, while the ECMWF analysis portrays a much
weaker cyclone. For example, in the southern flank of
the onset vortex, the fine-resolution analysis the the
westerlies exceed 28 m s, while the easterlies, north
of the storm, are in excess of 24 m s™'. In comparison,
the ECMWEF analysis shows a much broader and no-
ticeably weaker region of southwesterly flow equator-
ward of the vortex. The variationally adjusted analysis,
on the other hand, has managed to find a reasonable
compromise between these two sets of analyses. The
variational matching technique has generated a dipole
pattern that is much closer to the fine-resolution anal-
ysis than the ECMWF analysis, a consequence of the
vorticity constraint term in the objective function. At
the same time, the blended analysis, because of the
diffusion constraint, has achieved a level of smoothness
not evidenced in the fine-mesh analysis. The smooth-
ness of the blended analysis is more readily seen in the
gradient quantities, such as divergence and vorticity.
Similar features are also noticeable in the 700-mb v
fields. In fact, the 700-mb v field for the fine mesh has
a well-defined dipole over the Arabian Sea, near the
onset-vortex region, while the corresponding v field

RAMAMURTHY AND NAVON

2373

20N

10N

60E 7

E 80E

FiG. 10. The 1000-mb height field for the ECMWF analysis valid
at 1200 UTC 18 June 1979. This is the verification field for the three
24-h forecasts shown in Fig. 9a~c.

from the I1Ib analysis lacks this feature, again indicating
a much weaker vortex in the ECMWF global analysis.
The vorticity fields for the three analyses are shown in
Figs. 5a~c. The BL and EC vorticity fields are smoother
than the FR field, whereas the center of the vortex in
FR and BL are in closer agreement. Similar results
were noticed at other levels near the surface where the
vortex was well defined. On the other hand, at higher
levels (for example, at 200 mb) the differences between
the three analyses were less marked (not shown), since
the bulk of the new observations that went into FR
were only available at lower levels.

It was noticed that the differences in the forecast
fields for the three analyses were consistently smaller
than the differences between the respective initial states,
particularly with respect to important synoptic features.
Given the limited integration domain of the model,
the “sweeping out™ of forecast differences due to the
advection of identical boundary information into the
domain from the inflow region is only to be expected
(Errico and Baumhefner 1987; Vuckicevic and Errico
1990), leading to the diminishing of the differences
between the three forecasts. Plus, the initial state reflects
the period when the onset vortex was most intense,
subsequent to which the storm weakened in all three
integrations, thus diminishing the differences between
the three forecasts. For these reasons, our assessment
of the forecast impact has been limited to the first 24 h.

A comparison of the 12-h forecasts at the 700-mb
level indicates (Figs. 6a~c) that the fine-mesh analysis,
albeit somewhat noisier, continues to have the most
intense vortex, while the ECMWF forecast has the
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much smaller than those at the initial time. Although

the wind field is shown at only one level

parisons were noted at other levels,
8a-c and 9a-c, the aforementioned trends continue to

weakest. As noted earlier, however, the differences are
that is, the 1000-mb level in this model, the cyclone is
the EC forecast (Figs. 7a-c). In the next 12 h, forecasts
are valid at 1200 UTC 18 June, and shown in Figs.
prevail, with the forecast from the high-resolution
analysis being the most intense as well as the noisiest.
The ECMWEF verification analysis valid at this time is

once again s
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TABLE 1. Root-mean-square vector errors (m s ')
for 24-h forecasts over the entire domain.

ECMWF FGGE IIb Blended
1000 mb 6.8 5.9 6.0
700 mb 5.9 5.1 4.9
200 mb 8.1 7.8

17

overwhelm the primary circulation around the cyclone
in the FR forecast (not shown ), indicating the approach
of near-blowup conditions in the model. Table 1 shows
the root-mean-square (rms) vector errors for the three
forecasts valid at 1200 UTC 18 June over the entire
model domain. The verification is done against the
observations at those levels via bilinear interpolation
to observation points. Despite the fact that the differ-
ences in the rms errors among the three forecasts are
small, the forecast from the variationally blended initial
state verifies better than the other two. The positive
impact is that the blended analysis becomes more ev-
ident when the verification domain is confined to the
onset-vortex region, as shown Table 2. The EC forecast
is clearly the worst of the three when it comes to sta-
tistical verification, whereas the FR forecast has the
worst synoptic evaluation. Although these changes are
within the variability of the forecasts of this particular
model, when random perturbations of similar ampli-
tude are added, the consistent, positive impact of the
blended initial state does not seem to be an accident.
To test this, experiments were performed by adding
random, small-amplitude perturbations to the initial
conditions and integrating the model forward. When
small-amplitude random perturbations, containing rms
differences in the range of 1-1.5 m s™', were added to
the wind-field initial state, the forecasts were consis-
tently and considerably worse than any of the three
forecasts shown in this study, confirming the earlier
assertion that the improvements afforded by the vari-
ational technique, albeit small, were no fluke.

Since one of the positive attributes of the variation-
ally blended fields is its smoothness, we examined how
smoothly the model integration starts up with the
blended analyses compared with the other two analyses.
To this end, we inferred the presence of external in-
ertia~gravity noise by plotting the time history of the
vertical motion field at 1000 mb, the lower boundary
of the model. The time-series of 1000-mb rms omega,

TABLE 2. Root-mean-square vector errors
around onset vortex for 24-h forecasts.

ECMWF FGGE IIb Blended
1000 mb 5.4 5.3 4.2
700 mb 4.7 3.7 3.2
200 mb 6.9 6.4 6.1
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FIG. 12. Root-mean-square vertical velocity (mb s™') at 1000 mb
for the fine-resolution experiment (dashed line), the ECMWF ex-
periment (solid line), and the blended experiment (dash~dot line).

shown in Fig. 12, indicates that both the EC and BL
initial states have a smooth evolution after about 3 h,
while the high-resolution FR analysis continues to ex-
hibit noisy evolution through the first 16 h. To examine
if the noise in the initial conditions affects the spinup
period, the time series of the domain-averaged rainfall

Domain Averaged Rainfall Rate for the Three Experiments
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FIG. 13. Domain-averaged rainfall rate (mm s~*) for the fine-res-
olution experiment (solid line), the ECMWF experiment (small-
dash line), and the blended experiment (dash—dot line).
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rate for the three experiments is plotted in Fig. 13. It
is clear that the EC forecast, which also has the weakest
representation of the onset vortex in the initial state,
produces the least amount of rain in the first 24 h,
whereas FR and BL forecasts show much increased
precipitation activity. It is interesting to note that the
BL integration, though it starts out with lower precip-
itation activity than the FR forecast in the first 12 h,
leads to greater precipitation rates in the next 12 h.
This is an indication of the positive feedback of the
rotational modes on precipitation and of a lesser degree
of gravity-wave activity in the BL forecasts.

The results presented in this study have shown that
the variational blending technique, which is based on
a quasi-Newton, memoryless CG minimization algo-
rithm, is readily adaptable to the problem of analysis
and initialization of primitive equation models, par-
ticularly when presented with analyses of different res-
olution, data density, and reliability. The ability of the
variational CG method to achieve a reasonable com-
promise between the ECMWEF level IIIb global analysis
and the much-finer FGGE level IIb analysis has been
demonstrated, along with its continued impact in the
subsequent forecast stage. The variational low-pass fil-
ter built into the cost function via the diffusion (La-
placian ) terms has succeeded in suppressing small-scale
inconsistencies in the flow patterns. This study has fo-
cused on a single application of the CG technique for
analysis and initialization. It would be desirable to
gauge the success of the method in other synoptic sit-
uations using data from other field experiments. Also,
for future applications to large-scale minimization
problems in meteorology, the CG method should be
evaluated for its efficacy and accuracy, along with
truncated-Newton methods of Nash and Nocedal
(1989) and the BFGS limited-memory method (Liu
and Nocedal 1989; Zou et al. 1991), both of which
show considerable promise. The sensitivity of the final
analysis to the specification of the individual weights
for the various constraints in the cost function merits
further investigation, too, together with the contribu-
tion of the various terms, along the lines of Hall et al.
(1982). The problem of variational blending could also
be posed as a four-dimensional data-assimilation
problem with the same cost functional and data gen-
erated by integrating the model using the FR analysis
as the initial condition. That would necessitate the der-
ivation of the adjoint model of the present forecast
model.
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