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ABSTRACT

An augmented Lagrangian multiplier-penalty method is applied for the first time to solving the problem
of enforcing simultaneous conservation of the nonlinear integral invariants of the shallow water equations
on a limited-area domain. The method approximates the nonlinearly constrained minimization problem by
solving a series of unconstrained minimization problems.

The computational efficiency and accuracy of the method is tested using two finite-difference solvers of
the nonlinear shallow water equations on a 8-plane. The method is also compared with a pure quadratic
penalty approach. The updating of the Lagrangian multipliers and the penalty parameters is done using
procedures suggested by Bertsekas. The method yielded satisfactory results in the conservation of the integral
constraints while the additional CPU time required did not exceed 15% of the total CPU time spent on the
numerical solution of the shallow water equations. The methods proved to be simple in their implementation
and they have a broad scope of applicability to other problems involving nonlinear constraints; for instance,

the variational nonlinear normal mode initialization.

1. Introduction

It has become evident through the work of Arak-
awa and Lamb (1981), Fjortoft (1953), Arakawa
(1966), Lilly (1965), Sadourny (1980, 1975), that the
maintenance, in the discrete representation, of the
integral constraints satisfied by invariants associated
with partial differential equations can help inhibit or
prevent nonlinear instability.

There also seems to be a general consensus in the
finite-difference literature that discretization schemes
which assure conservation of quadratic properties are
more stable than other possible discretization com-
binations. On the other hand, criticism of such for-
mulations centers on two issues:

1) Conservative discretization schemes do not nec-
essarily imply more accurate results.

2) How many, and which integral invariants should
be conserved in the discretized form [see Lee et al.
(1980)].

Kalnay-Rivas (1979) using the GLAS fourth-order
global atmospheric model showed that schemes that
do not formally conserve enstrophy in practice do so
with high accuracy if waves shorter than four times
the grid size are periodically removed before they
attain significant amplitudes. However this method
encounters problems in the case of a limited-area
domain (see Navon, 1981). Many modellers have
taken this approach similar to the one proposed by
Phillips (1959). Considerable effort has been dedi-
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cated to the design of spatial finite-difference schemes
for the shallow-water equations that retain the inte-
gral constraints of the continuous system. The meth-
ods currently available for achieving this can be di-
vided into two main categories:

On the one hand we have what are called a priori
schemes which utilize finite difference combinations
which can be shown to conserve the integral invari-
ants of interest for the time continuous case. These
d priori numerical schemes result, however, in rather
complicated finite-difference expressions which are
difficult to generalize to fluid dynamics problems of
interest. On the other hand the recently developed d
posteriori methods enforce the required discretized
quantities explicitly by modifying the forecast field
values after every so many time-steps following some
prescribed criterion.

In this second category we have the Sasaki (1976,
1977) and Sasaki et al. (1979, 1980) variational ap-
proach and the Bayliss and Isaacson (1975) method
which makes a given finite-difference scheme con-
servative with respect to any given quantity. The Bay-
liss-Isaacson technique was tested by Isaacson (1977)
as well as by Kalnay-Rivas et al. (1977). Navon
(1981) tested both a modified Sasaki variational ap-
proach and modified Bayliss-Isaacson technique,
both designed to enforce conservation of potential
enstrophy and total mass in two ADI finite-difference
approximations of the nonlinear shallow-water equa-
tions, Navon (1978), Navon and Riphagen (1979).
In the present research a new general a@ posteriori
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approach is proposed. This approach is derived from
viewing the enforcing of conservation of integral in-
variants as a nonlinearly constrained optimization
problem, with nonlinear equality constraints. These
constraints require that at each time step three dis-
cretized integral invariants of the shallow water equa-
tions, i.e. the mass, energy and enstrophy invariants
should be approximately equal to their initial values.

Both an augmented Lagrangian multiplier penalty
method and a pure quadratic penalty method are
employed. The multiplier methods were first devel-
oped by Powell (1969) and Hestenes (1969) and fur-
ther developed by Bertsekas (1973, 1975a, 1975b,
1975¢, 1976a, 1976b, 1980). These methods approx-
imate the nonlinearly constrained minimization
problem by solving a series of unconstrained mini-
mization problems. The augmented Lagrangian func-
tion approach was first studied by Arrow and Solow
(1958) and then by Fiacco and McCormick (1968).

2. The augmented Lagrangian multiplier method—
motivation and theory

a. The penalty function

When solving a general nonlinear programming
problem in which the constraints cannot be easily
eliminated, it is necessary to balance the aims of re-
ducing the objective function and staying inside or
close to the feasible region when we consider the prob-
lem:

minimize f(x)

subject to equality constraints e(x) = 0.

(1

This inevitably leads to the idea of a penalty function
which is a combination of the objective function f
and the constraints e(x), which enables the minimi-

zation of the objective function f whilst controlling .

constraint violations by penalizing them (Fletcher,
1981).

For equality constraints the earliest penalty func-
tion is due to Courant (1943) and takes the form

Lix, ) = 00 + 32 leGOR = 00 + S leGR.

This method tends to become numerically unstable
in the final stages of the computation as it involves
the product of a large number o, by a short vector
e(x;), a procedure that is subject to considerable
round-off errors.

It is also hampered by slow convergence and nu-
merical instabilities associated with ill-conditioning,
induced by very large values of the penalty parameter.
This is expressed mathematically by the condition
number of the Hessian matrix V2L approaching in-
finity.

M. NAVON AND R. pE VILLIERS

1229

b. Primal-dual method (Lagrange multipliers
method)

Here again we consider pb(1), associated with the
augmented Lagrangian

L(x, w) = f(x) + u"e(x)

such that (xp, ug) is the solution of the equations
L(x, u) = f, + u’e ),
Lyx,u) =e(x)=0.

(3

@
()

One can use a method of sequential minimization of
the Lagrangian function, where the vector wu, is up-
dated by

Uher = Uk + orei(Xe).

6)
This iteration may be viewed as a steepest descent
iteration aimed at finding an optimal solution of an
associated dual problem. This is the reason that this
algorithm is also called a primal-dual method. The
disadvantages of this method come first from the fact
that pb(1) must have a locally convex structure in
order for iteration (6) to be meaningful.

Second it is necessary to minimize the Lagrangian
function (3) a large number of times since the ascent
iteration (6) converges only moderately fast. In the
last few years the methods of multipliers were pro-
posed, in which the penalty idea is merged with the
primal-dual philosophy..

To illustrate these points we will consider the fol-

“lowing simple example (Gill et al., 1982): Minimize

the function

fx)=x) xeR @)
subject to the constraint x + 1 = 0. (8)
The unique solution is x* = —1 and u* = 3 where

u* is the Lagrange multiplier.
Thus an augmented Lagrangian (with Lagrange
multiplier only) is

L(x, u*) = x> — 3(x + 1). 9

However x* is not a local minimum of L(x, u*).
However if we add to (9) the penalty term ple(x)[?
then for all p > p (p = 6), x* is a local minimum of
the new augmented Lagrangian (combined penalty
and multiplier)

L(x, u*, p) = x* = 3(x+ 1) + —g (x+ 1% (10)

¢. The theoretical set-up
We consider the problem,
minimize F(x), x &€ R", (1%)

subject toe(x) =0 ore(x) =0,i=1,..., m. The
gradient vector of the constraints function e¢;(x) is
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denoted by the vector a;(x) and its Hessian will be
denoted G,(x).

Given a set of constraint functions [e(x), i = 1,

, m] the m X n matrix A(x), whose j-th row is

a;(x), is called the Jacobian matrix of the constraints.

If x* is the optimal point for the nonlinear equality
constraint problem, let Z(x*) denote a matrix whose
columns form a basis for the set of vectors orthogonal
to the rows of A* = A(x*).

Define then the Lagrangian function as

L(x, u) = F(x) + u’e(x). an
The Hessian with respect to x of the Lagrangian func-
tion is

W(x, u) = G(X) + 2 %G(x), (12)

i=1
where
G(x) = VfF(x) (13)

and is the Hessian matrix of F{(x).
The following conditions are necessary conditions

for x* to be optimal (i.e. a minimum) for the non-

linear equality constrained problem:

1) e(x*) =0 (14)
2) Z(x*)7g(x*) =0 or g(x*) =Ax*Tu*, (15)
where

g(x) = VH(x) (16)

is the gradient vector of F(x),

3) Z(x*)TW(x* u*)Z(x*) is positive semi-definite
while the sufficient conditions imply again 1) and
2) while they require that 3) be positive definite.

Z(x*)"W2Z(x*) is called the projected Hessian of the
Lagrangian function and x* is a minimum of the
Lagrangian function within the subspace of vectors
orthogonal to the active constant gradients.

This suggests the construction of the combined
penalty multiplier augmented Lagrangian by aug-
menting the Lagrangian function L with a quadratic
penalty term, i.e.

L(x, u, ) = F(x) + u’e(x) +5 e(x) e(x), (17)
which retains the stationarity properties of x* but
alters the Hessian in the subspace of vectors defined
by A(x*) (Gill et al., 1981b).

As the quadratic penalty term and its gradient van-
ish at x* if u = u*, then x* is a stationary point of
(17). The Hessian matrix of the penalty term in (17)
is

2 e(x)Gi(x) + A(x)TAx). (18)
il

But at x* where e(x*) = 0 we get that the Hessian
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of the quadratic penalty term reduces to A(x*)7A(x*)
which is a positive semi-definite matrix with strictly
posmve eigenvalues which correspond to eigenvectors
in the range of A(x*)".

Hence the adding of the positive quadratic penalty
term increases only the eigenvalues of W correspond-
ing to eigenvectors in the range-space of A(x*)” and
leaves the other eigenvalues unchanged. As Gill ez al.

-point out, it can thus be shown under mild conditions

that there exists a finite threshold penalty p = 1/r
such that for all p > p, x* is an unconstrained min-
imum of L(x, u*, r) for all p > p, and as Z(x) is a
matrix orthogonal to the rows of A(x) it holds that:

Z(x*)TV2 L(x*, u*, 1)Z(x*)

.= Z(x*)TW(x, u¥)Z(x*) (19)

which means that the addition of the penalty term

is not affecting the projected Hessian of the Lagran-
gian function at x*. Thus the effect of the penalty
term is that of a convexification effect.

3. The augmented Lagrangian multiplier method—
application

We start by defining a functional
Ny Ny
f=2 2 [&a(u— a)?
j=1 k=1
+ & — 02 + Bh — hYl,  (20)

where

N.Ax=L, N,Ay=D, 2n

and where Ax = Ay = h is the grid size, n designates
the time-level ¢, = nAt, where At is the time step and
L and D are the respective dimensions of the rect-
angular domain.

(a, v, h);’k are the predicted variables at the nth
time-step using a finite-difference algorithm for solv-
ing the shallow-water equations—while (i, v, h)}; are
the values adjusted by the nonlinear constrained op-
timization method so as to enforce the three conser-
vation-laws. 5

Here & and B are weights determined following
Sasaki (1976)’s principle that the relative weights are
so chosen as to make the fractional adjustment of
variables proportional to the fractional magnitude of

‘the truncation errors in the predicted variables. Here

we took .
B = g/H, (22)

H being the mean depth of the shallow fluid, and we
adopt the same three basic principles as Sasaki (1976).
We then define the following augmented Lagranglan
function L by

a=1,

L(x, u, r) = f(x) + uTe(x) + 2ir lex)?.  (23)
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While considering the problem
minimize f(x) (24)
subject to the equality constraints e(x) = 0,
where

x = (- - “Un.Nys Diic o cOaw,, By - 'thNy "

(25)
e(x) is a vector of three nonlinear quantities given by
E" — EO
e(x)= ¢ Z"— 270 (26)
H" — H°,
where
1 Ny Ny
E"=3 [A@? + 92) + gh’%AxAy, (27a)
i=1 k=1
o i H
1% % ax oy +f ]
Zr=-2 2 J AxAy, (27b)
2nal
Nx N,
H"= hAxAy (27¢)
j=1 k=1

Here E", Z" and H" are the values of the discrete
integral invariants of total energy, potential enstrophy
and mass at time 7, = nAt, while E®, Z° and H° are
the values of the same integral invariants at the initial
time ¢ = 0. In general if we have m equality con-
straints then the vector e(x) is given by

e(x) = (ex(x) - - - en(X)). (28)
The vector u is the m component multiplier vector
u =(u|, Uyy oo vy u,,,),

while r is the penalty parameter (which can be dif-
ferent for each constraint).

The basic idea of the multiplier method is to solve
the constrained minimization problem by performing
a sequence of unconstrained minimizations of the
following problem.

minimize L, (x, u)
XER?

- f69+ 2 ukeix) + 3 leIP.  (30)
i=1 Ty

This is based on the following proposition proved by
Bertsekas (1975¢, 1980):

a. Proposition [Bertsekas (1975)]

Fork=0, 1, ..., let x; be a global minimum of
the problem .
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minimize L, (X, ug)

subject to x € R", 31)

where {u,} is bounded and 0 < r,, < r, for all £,
and 7, — 0. Then every limit point of the sequence
{xx} is a global minimum of f subject to the equality
constraints e(x) = 0.

The method, described in detail in the next sec-
tions, consists of a sequence of unconstrained mini-
mizations of the Lagrangians L, (x, #). Given a mul-
tiplier vector u, and a penalty parameter r, we min-
imize L,(x, u) over R" and obtain a vector x,. The
variable u,, the vector of Lagrange multipliers and
the penalty parameters are held fixed during the min-
imization and then updated prior to the next uncon-
strained minimization. The algorithm is typically ter-
minated at a point x; where

vaer(xk’ “k)l = €x
or
lei(xk)l < 6;(’ i= 1’ LI

, m, (32)

where ¢, and €, are some small scalars.

As proved by Bertsekas (1975¢) the multiplier
method has the advantage over the penalty method
in that it does not require 7, to decrease to zero (i.e.,
to use very large values of r™!) in order to induce
convergence in the method of multipliers.

Thus, the difficulties associated with ill-condition-
ing are avoided. A second advantage of the method
of multipliers is that its rate of convergence is con-
siderably better than that of the penalty method (Bert-
sekas (1975c)).

b. Updating the multiplier vector u in the method of
multipliers

Given a multiplier vector u, and penalty param-
. , m) one minimizes L, (x, u) over
R" obtaining a vector x,. Then, following Bertsekas
(1982, 1975¢) we used two methods to update the
multiplier vector. The first is

Wer = Ui + 7% e(Xp). (33)

This method is derived from the fact that at the so-
lution x; of the problem

minimize L(x, u, r)
xERN

34
it holds that
- 1 -
g(x) — A(x)Tuy + S A(x)Te(xx) = 0.  (35)

Hence the new multiplier estimate (33). Since from
(35) we observe that the vector on the rhs of (33)
contains the coefficients in the expansion of g(x;) as
a linear combination of the rows of A(xy).

A second-order multiplier iteration (see Bertsekas
(1980) is given by
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Wers = W — [V, )1 'Vd,(u),  (36)

where
vd, (w) = e[x(ux, rol,

Vi, () = Al "
X AV L Ly [x(thie, rdue]} ' Alx(uue, 1)) (38)

(37)

The second method is a step-size rule proposed by
Bertsekas (1975) and used at every second uncon-
strained minimization iteration. Given u,; and ry; one
obtains x,; and e(x,) by unconstrained minimization
of the augmented Lagrangian and we set

(39)

Again Xy, and e(Xy+;) are obtained by the uncon-
strained minimization of the augmented Lagrangian.
However, we now set

Usier = Uy + raie(Xap).

(40)

Wpiry = Upgry + 0s 1€(X2k41),
where

e(xzk+1)Te(X2k)
e(Xor+1)7€(X2) — lle(Xar)I*

Qopet = I'aken 41)

The initial multiplier vector w, is chosen arbitrarily
or on the basis of some linearized analysis (see Sasaki
(1976), Sasaki et al. (1979), Sasaki and Reddy (1980)).

¢. Updating of the penalty parameters

The main considerations for selecting an initial
penalty parameter sequence and updating it have
been clearly exposed by Bertsekas (1980) and Kort
and Bertsekas (1976). The initial penalty parameters
ri (a separate parameter is chosen for each equality
constraint) should be chosen so that they are not so
small that ill-conditioning resuits in the first uncon-
strained minimization. :

As for the updating process, a reasonable penalty
parameter adjustment scheme is to decrease the pen-
alty factors ry by a factor 8 < 1, only if the constraint
vector violation as measured by |e(x(u, r})| is not
decreased by a factor vy < 1 over the previous un-
constrained minimization (Bertsekas, 1975c; Bertse-
kas, 1976b; Rockafellar, 1973). The factor 8 < 1 is
chosen so that i do not decrease too fast (i.e., ry}
increase too fast) resulting in ill-conditioning but do
not decrease too slowly so that a poor convergence
rate is induced.

The final penalty parameter adjustment scheme
took the form:

S {Brk, if  lex(ug, ro)l > vle[x(ue_;, re-Dli
i lelx(u, rll < ylelx(ue_1, re-)ll.
(42)

By using separate penalty parameters for the different
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constraints we are already performing a certain scal-
ing of the constraints [Bertsekas (1976b)]. In our runs
we used 8 = (0.4)¢ and v = 0.25.

d. Inexact minimization of the augmented Lagran-
gian '

This method advocated by Bertsekas (1975c¢), Kort
(1975) and Buys (1972) is a modification of the basic
algorithm aimed at improving computational effi-
ciency. Instead of requiring unconstrained minimi-
zation of the augmented Lagrangian to be carried out
exactly, only moderate accuracy is demanded in the
initial minimizations, i.e., one terminates the uncon-
strained minimization at a point x; such that:

IV Lr(xes udll < e, - (43)

and then the accuracy is increased at later iterations
by using a preselected decreasing sequence {¢,} tend-
ing to zero. The convergence analysis relating to mul-
tiplier methods with inexact minimizations is given
in Bertsekas (1975¢) and Kort (1975). Our compu-
tational experience indicates that in our case we could
not achieve reasonable computational results without
this method.

Bertsekas (1975c, 1976) showed that by using the
stopping criterion

VL%, )l < melle(xll, (44)

with {n;} a decreasing sequence tending to zero, a
much better asymptotic rate of convergence is ob-
tained than by using (43) [see Kort (1975)]. The
asymptotic rate of convergence with (44) is identical
to the one associated with exact unconstrained op-
timization [see Kort (1975)]. A typical choice of the
sequence {7} used as stop rule parameter was in our
case 1, = (0.8). Note that n* = 0 corresponds to exact
minimization, which, in our case, means setting the
termination parameters of the unconstrained mini-
mization routine to 1078,

e. Scaling by transformation of variables and con-
Straints

1) ROUGH SCALING

One of the crucial issues in the success of the so-
lution of given nonlinear constrained optimization
problem is the issue of scaling. Scaling by variable
transformation converts the variables from units that
reflect the physical nature of the problem to units that
display desirable properties for the minimization pro-
cess (Gill er al., 1981a; Gill et al., 1981b). Due to the
different physical units used in our problem the in-
tegral invariants initially had enormously different
magnitudes which varied over a range factor of 10%.
In order to improve the performance of the optimi-
zation procedure, i.e. to transform the constrained
optimization problem into a better conditioned one,
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and thus one more amenable to solution, we scaled
the variables x;, and thus implicitly the constraints.
The first basic rule of scaling is that the scaled vari-
ables should be of similar magnitude and of order
unity in the region of interest. The same applies to
the nonlinear equality constraints in order to avoid
a situation where one constraint persistently domi-
nates the other constraints.

- We first determined typical scaling factors for the
horizontal length L the velocity V and the time T by
applying a dimensional analysis to the three integral
constraints of mass, total energy and total enstrophy
denoted by H, E and Z respectively. We obtained the
following relationships for the system of the three
equality constraints:

Hg = HL™

Es=LYVLy'E=EV™L"3

Zs=LL(LV YZ=LV?Z
T=LV!

where Hy, Es and Zs are the scaled values of the total
mass, total energy and enstrophy, respectively. Solv-
ing the system (20) we chose the values

L=55x10% V=2X10, T=26.5 (46)

The variables in the vector x were then scaled as fol-
lows:

» (43)

=k L™, i=1,..., N (47)
f=Tf, g=elV= i=1,....N,

In our case due to the fact that we do not allow large
constraint violations, we knew a realistic range of
values that a variable might assume during the min-
imization. After the scaling the initial values of the
total mass enstrophy and total energy were

H=0.020, Z=6.95 FE=0.586,

respectively.

By using separate penalty parameters for each con-
stant, which corresponds to a mere scaling of these
constraints, (Bertsekas, 1976) we can refine the scal-
ing.

(48)

2) THE HAARHOFF-BUYS-MOLENDORFF (1969)
SCALING PROCEDURE

This procedure is implemented after some rough
scaling of the object function, constraints and vari-
ables has been carried out beforehand.

The scaling factors by which unscaled values are
divided to obtain scaled values are determined as fol-
lows:

(i) The scaling factor for the object function is cho-
sen as the absolute value of the initial function value
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FSC = |Fix,, . .

(i) To scale the variables x; we require as a first
approximation typical coeflicients in the Taylor series
expansions of all x; to be of order unity after scaling.
Thus, if f*, ¢ and x* are the scaled values of F, the
constraints ¢; and x; the relation

oy Xn)l (49)

af*
— <1 50
pe (50)
implies that the scaling factor X.SC; for x; will satisfy
XSC; € FSC/ gg = (XSC),. (51
Similarly
8*F'2
XSC; < FSC / [E{I = (XSC),. (52)
If de;/0x; is not very small, the relation
e _ des
< —1
ox " ax: (53)
may be used leading to
de;| | %, | ™"
XS CI 8x,~ axiz (XSC1)3 i
ji=1...,m (54)

XSC,; is first taken to be
XSC; = min((XSC));, (XSCz, (XSCsy 4-1,..m) (55)

provided
BOT < XSC; < TOP,

where TOP and BOT are specified.

As the constraints e¢; are zero at the optimum,
(XSC)),; provides an estimate of the distance in which
de;/dx; changes by an amount equal to its magnitude.
(XSC)s; is omitted from (55) when the various de-
rivatives of ej are of same order of magnitude i.e.
when

(56)

de’ grade;
5; - Nl/zj ’ N= 3NxNys (57)
so that (XSC;); may be omitted when
dej grade;
ox?} 10N12] ” (58)

Also we will omit (XSC);; when the gradient of e,
increases while its derivatives with respect to x; de-
crease (in the unscaled case). This condition for omis-

sion is
de, <(|grade,.|)(BOT)
ION'2 J\TOP)] "

(9x,-

(59)
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(iii) The scaling factors ESG for the constraining -
“functions e; are found by requiring

(60)

lgrade;| = 1
after scaling so that

ae de, \1'2
eso=[(32) + (34 ]
oxi oxy.

291/2
[Xscz(aif) + ---.+XSC,2V(:%):| . (61)
1 N

(d) The final estimate of the XSC; is done as fol-
lows. For a given .repair time we can write the aug-
mented Lagrangian as

m 1 m
L=f(x)— 2 ules+ > 2 (&P (62)
j=1 Ye j=1
For a given unconstrained minimization iteration we
can assume u;, . . . , U,, and 1/2r, = B to be constants.

As an approximation we assume e; to be linear

functions of k; and .then

FL_&fF L (ae§)2
ax2 axsz +2B ,2, Ixs (63)
Then
[t & - ( 1 de, )2]“’2
XSCi = [Fscax, Z ESG dx; - (69

The first and second denvatxves of f and g with re-
spect to each x; are required in the calculations.

4. The numerical algorithms

In all the algorithms to be described one starts by
defining a set of relative error bounds for the discre-
tized integral constraints enforcing conservation -of
mass, total energy and potential enstrophy, i.e.,

E®™ - FO H® — HO
E° H°

< 0, < 0y
A
ZO
where the n superscript denotes the value of the dis-
cretized integral invariants at time ¢, = nAt, while the
0 superscript denotes the initial value of the same
discretized invariant at time ¢ = 0. Only when one
of the relations (65) is violated is the nonlinear con-
strained optimization algorithm activated.

and (65)

< 0z,

a. The quadratic penalty algorithm
The quadratic penalty method consists of sequen-
tial unconstrained minimization of the form

min L(x, r) = f(x) + — Ie(x)I2 (66)

XER"
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We use dlﬂ‘erent penalty factors for each constraint,
rf, rf and rZ, and we start the penalty parameters
sequence with initial penalty factors rf, r§ and r§.
There the algorithm proceeds as follows:

Step 1: Select penalty parameters rj > 0, i = 1,
.., mand a sequence {n,} with 5, = 0, {n,} — O.
Step 2: Solve the problem

miRn L(x, r) 67)
(stop when |V, L, || < {m}lle(x)), i.e. find x, solving
(67) by inexact unconstrained minimization.

Step 3: :

If le(x)| <€, i=1,...,n,stop. (68)

Otherwise go to 4.

Step 4: Update and select penalty parameters
ri+1 € (0, r) following formula (42). Sélect 7. = 0
(following a formula of the form 7, = (/)5, 0 < p <
1) and return to step 1.

b. The multiplier algorithm

In this method a multiplier term is added to the
Lagrangian in (67), i.e. the penalty function idea is
merged with the multiplier method, and we minimize
the following augmented Lagrangian

L% ) = ) + uge(x) + zi e (69)
Tk

The algorithm proceeds as follows.

First select an initial vector of multipliers uy based
either on prior knowledge [see Sasaki (1976), Sasaki
et al. (1979)] or start with a zero vector in the absence

“of such knowledge. Select penalty scalars 7 > 0 and

a sequence {n;} with 5y = 0.
Step 1: Given a multiplier vector %, penalty pa-
rameters r} and »; find a vector x; satisfying

IV L, Xk, wll < {mic}llex)ll

by solving an inexact unconstrained minimization
problem.
Step 2:

If le;(x)| < €,

(70)

i=1,...,m . (71

Stop. Otherwise go to 3.
Step 3: Update the multiplier vector using either

Wy = U+ rcle(xe) (72)

or the alternative updating in (39)-(41).

Update and select penalty parameters ri,, € (0, 1)
following formula (42). Select 7, = O (following a
formula of the form 7, = ()X, 0 < / < 1, we chose /
= (.8) and return to Step 1.

For the unconstrained minimizations a simple
minimization routine EO4DBF of Numerical Algo-
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rithms Group, England (NAGLIB) was used which
minimizes a general function F{x) of N variables, i.e.
x is an N component vector. The methods employed
are the conjugate-gradient methods due to Fletcher
and Reeves (1964), Powell (1977) and Shanno (1978).

We modified the routine so as to incorporate the
following stopping criteria:

GNORM = ||V, L,(x, wll < {m}lexx)ll. (73)

Formulae to calculate the value of the function (the
augmented Lagrangian) and its first derivatives must
be supplied by the user. This minimization method
has the virtue of requiring relatively very few memory
storage locations; only a few multiples of N are re-
quired where N in our case is

N = 3NN, ~ 540. (74)

By contrast, Newton-like minimization procedures
require the Hessian matrix of second derivatives ne-
cessitating storage locations in multiples of M(N — 1)/
2. For our case this would have been prohibitive.

¢. A modified multiplier penalty method

As we observed very good conservation of the total
mass even in the absence of constrained optimization,
we decided to adjust the heights forecast by the finite
difference model at time steps where the relative error
bound

H® — H©
=

< 0y

is violated.
At such time-steps the heights forecast by the dis-
cretized model were adjusted by using the formula
Ne Ny
Te=h — (2 2 WY — HOYNN,) .

j=1 k=1

(75)

We then applied the same multiplier-penalty algo-
rithm as in (69)—(72), using only the total energy and
potential enstrophy conservation constraints, two
multipliers and two penalty factors. The same stop-

TABLE 1. Relative accuracy of the penalty and penalty-multiplier
constrained optimization methods using the GUSTAF model.

Z, (potential
enstrophy). Ej (total energy) (H mass)
Ratio between  Ratio between  Ratio between
final and final and final and

Time = 10 days initial values) initial values initial values

Combined penalty
multiplier method

quadratic method 1.00003 1.0006 0.99994
Penality alone 1.0001 1.001 1.00001
No constraint 1.001 1.12 1.002
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TABLE 2. Relative accuracy of the penalty and penalty-multiplier
constrained optimization methods using the GUSTAF method.

Z, (potential
enstrophy). Ey (total energy). {H mass).
Ratio between Ratio between Ratio between
final and final and final and
Time = 20 days initial values) initial values initial values
Penalty multiplier 1.0001 1.002 1.00001
Penalty alone 1.0005 1.009 0.9980
No constraint overflow overflow overflow

ping criteria as in Section 4b were used. We also tested
this approach with the quadratic penalty method. Our
numerical experiments were conducted using these
modified algorithms.

d. Numerical results of long-term integrations

In order to assess and compare the performance
of the augmented Lagrangian penalty—multiplier
method and the quadratic penalty method in enforc-
ing the conservation of the integral invariants of the
shallow water equations, we used the test problem
described by Grammeltvedt (1969) (initial height field
condition Number 1), see also Gustafsson (1971) and
Navon and Riphagen (1979), Navon (1981), i.e.

9D/2 —
h(x, ¥) = Ho + H, tanh[%]
[ 9D/2 - y)] . 2mx
+ H, sech [——————-—D I (76)

The initial velocity fields were derived from the initial
height field via the geostrophic relationship

u=—@f g v=EHS. o
The constants used were
L = 4400 km g=10ms™?
D = 6600 km Hjy = 2000 m
f=10"s"1 H,=220m
B=15X10"s!'m™ H,=133m. (78)

For long-term runs the space and time increments
used were

Ax = Ay =400 km, At¢t= 1800s. 79)

Long-term runs were conducted using three different
shallow water equations solvers GUSTAF, (Navon
1978), Navon (1979), ADIF and SHALL4 (Navon
and Riphagen, 1979). We concentrated our attention
only on the pure penalty algorithm and the modified
penalty-multiplier algorithm using external mass-ad-
justment corrections for GUSTAF only.
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TABLE 3. Number of line searches required by unconstrained
minimizer and number of cycles of the algorithm (number of un-
constrained minimizations carried out) for multiplier and penalty
methods.

Multiplier method Penalty
method
Penalty  Stop

constant  rule Min- Min- .

decrease param- imum Line imum Line
Run rate eter cycle search cycle search
GUSTAF  (0.4) (0.8) 2 24 3 22
GUSTAF (0.4 (0.4) 3 32 3 35
GUSTAF (0.25  (0.8) 4 37 4 28
GUSTAF  (0.25)  (0.4)% 4 38 4 30

e. Discussion of the numerical results

Each of the unconstrained minimizations using the
subroutine EO4DBF used no more than 26 functions
calls to converge and the full process of nonlinear
constrained optimization for a given time-step con-
verged after using four values of the descending se-
quence {7} (cycles). On the average a constraint vi-
olation occurred once every 10 time steps and only
then did we use the constrained optimization algo-
rithms. We found that considerable care has to be
exercised in the choice of the initial multiplier vector
u, as well as in the choice of the initial penalty se-
quence. For the choice of the initial multipliers prior
knowledge obtained by linearized analysis as sug-
gested by Sasaki (1976), Sasaki et al. (1979) was used
along with a first guess of (0, 0, 0) = ;. In the choice
-of the initial penalty parameters we used the following
suggestions of Bertsekas (1980):
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1) The initial parameters r} should not be too
small to the point of inducing ill-conditioning in the
first unconstrained minimization.

2) One should not increase the parameters ri too
fast to the point of inducing ill-conditioning in the
unconstrained minimizations too early.

Our initial values of rj were

r§=1.107", r§=2.5.10"2 (80)

ie., (r§)™' = 10, (r§)~' = 40. We found, as expected,

that the augmented Lagrangian penalty-multiplier

method performed better than the pure penalty,
method.

After 10 days (using the GUSTAF model) we ob-
tained the results given in Table 1. Similar results
were obtained using the ADIF and SHALL4 models.

Similar results obtained after 20 days are shown
in Table 2. Note that a finite time blow-up occurred
at day 14 when the conservation of integral invariants
was not enforced..

Table 3 shows the number of cycles of the algo-
rithm (i.e., the number of unconstrained minimiza-
tions carried out) for a typical time step and the total
number of line searchers required by the uncon-
strained minimizer using as shallow-water equations
solver the program GUSTAF.

J- Numerical stability

Both the multiplier method and the quadratic pen-
alty method were employed in integrations up to 20
days using a 30 min time-step. The multiplier method
using the parameters enumerated before, behaved
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FIG. 1. Time variation of total mass, total energy and potential enstrophy as functions of
their initial values with combined penalty multiplier constrained optimization using the GUS-
TAF model. The inflection points correspond to adjustment times.
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FiG. 2. Time variation of total mass, total energy and potential enstrophy as functions
of their initial values using the quadratic penalty method. (GUSTAF model).

stably in conjunction with the three ADI models em-
ployed for solving the shallow water equations and
there was no sign of impending numerical instability.

It is well known that for long-term integrations of
the shallow water equations (more than 10 days) a
finite-time “blow-up” is encountered if enstrophy is
not exactly conserved (see Sadourny, 1975), Fair-
weather and Navon, 1980, Sasaki and Reddy, 1980).
The advantage of the enforcement of the constraints
to satisfy among others enstrophy conservation, is to
extend the forecast period considerably beyond the
critical “blow-up” time 7, which is roughly given as

T. ~ Z5'*C(8), @81

10.12

where Z, is the initial enstrophy and C(A) is a mesh
dependent constant which increases with increasing
mesh resolution (see Fairweather and Navon, 1980).
The adjustments of the enforcement of integral con-
straints alters the spatial pattern very little and as
pointed by Sasaki and Reddy (1980) visual inspection
shows that improvement has occurred despite a slight
increase in the rms norm error. In our case if enstro-
phy is not conserved the finite time “blow-up’ occurs
around the critical time 7, ~ 14 days.

The quadratic penalty method, however, was, in
some cases, prone to numerical instability traceable
to ill-conditioning due to a fast increase of the penalty
parameters. In some cases the quadratic penalty
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FI1G. 3. As in Fig. 2 but as functions of their initial values with combined penalty multiplier.
Mass conservation is used as a constraint. (GUSTAF model).
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FiG. 4. As in Fig. 2 but as functions of their initial values with combined
penalty multiplier constrained optimization. (ADIF model).

method required a smaller number of line searches
and also a smaller number of corrections between
different time-steps. In Figs. 1-10 we display the be-
haviour of the integral invariants versus time, using
the penalty and the multiplier methods. An almost
perfect conservation of potential enstrophy (Z) is
obtained.

g. Accuracy tests

In order to provide a basis for comparison between
the multiplier method of enforcing nonlinear con-
straints on the one hand and between the quadratic
penalty on the other hand, we use the same method

as in Navon (1981), i.e. we assume the exact solution
wg, of the shallow-water equations solver, say GUS-
TAF, is the solution of GUSTAF computed with a
fine-mesh discretization, viz. Ax = Ay = 200 km and
At = 900 s (using the same method to enforce the
discrete integral constraints).

In order to assess the influence of the nonlinear
constrained optimization multiplier technique on the
accuracy, we also computed the accuracy without any
enforcement of constraints. In both cases we used the
Gustafsson (1971) relative error norm (se¢ Navon,
1981). The results are given in Table 4. The conser-
vation enforcement of the integral constraints affects
the relative error only slightly, but makes it possible

10.12
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FIG. 5. As in Fig. 2 but as functions of their initial values
with quadratic penalty method (ADIF model).
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FIG. 6. As in Fig. 2 but as functions of their initial values with combined
penalty multiplier method. Mass conservation is used as a constraint.

for the schemes to avoid computational instability
(see Sasaki and Reddy, 1980, p. 160) and finite-time
“blow-up” as we experienced at time 7, = 14 days
when enstrophy conservation was not enforced.

h. Computational efficiency

The CPU time requested on the CDC 750 re-
quested for a single time step with the GUSTAF shal-
low-water equations solver was 0.22 s per full time-
step.

An augmented Lagrangian adjustment required
0.14 s to converge to the prescribed accuracy limits.

As the adjustment is done in the average only every

to-12

15 time steps, the additional time required by the
implementation of the augmented Lagrangian method
never exceeded 10% of the total integration CPU
time.

i. Application of the method of Augmented Lagran-
gians to variational nonlinear normal mode ini-
tialization

In the variational formulation of the nonlinear
normal mode initialization (Daley, 1978; Tribbia,
1982) we wish to minimize a functional of the form:

I-= f (Yo — Vo, + (9o — dPwldd, (82)

10.08 +
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TIME N MOURS { x 10*°')

FiG. 7. Long-term (20 days) time variation of total mass, total energy and potential enstrophy
as functions of their initial values with combined penalty multiplier method. (GUSTAF model).
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= Ay = 200 km used. (GUSTAF method).
where w,, w, are weight functions, v the velocity, ¢ G
the geopotential, vo, ¢, are the observed values while J =1+ 2 Z a;lvie) — vi(0)]
v. and ¢, indicate values after constrained initializa- S
tion. The functional (82) is minimized subject to the 1 2
+ —_— Sf — § 3
constraint that the final state c lies on the slow main- 2r % ? [yi(e) = viOF, (83

fold (i.e., that v., ¢, be balanced).

Daley (1978) used Lagrange multipliers for the
constrained initialization which led to a system of
Euler-Lagrange equations which was solved itera-
tively.

It is proposed here to solve the constrained mini-
mization problem using an augmented Lagrangian
multiplier method with a combined penalty-multi-
plier approach, i.e. a functional of the form

10.42

where aj are the Lagrange multipliers and « j are com-
plex free-mode expansion coefficients (see Daley,
1978) and the second term is a quadratic penalty term
and apply the augmented Lagrangian algorithm.

5. Summary and conclusions

A general approach for solving nonlinearly con-
strained optimization problems using both a com-

10.08 |-

10.04 |-

CONSERVATION (X 10™%")
%

9-92

2

9.88 I N L 1
0.00 2.40 4.80 7.20 9.60

2 1 " " -
12.00 14.40 16.80 19.20 21.60 2400

TIME N HOuRS (x10%%")

FIG. 9. As in Fig. 8 but as functions of their initial values with combined penalty multiplier

method. Fine-mesh discretization Ax =

Ay = 200 km used. (ADIF method).
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bined penalty multiplier method perfected by Bert-
sekas (1980) and a penalty method has been tested.
This method generalizes the Sasaki variational ap-
proach, which in our context can be viewed as a pure
multiplier method and is known to converge only
moderately fast, and then only when the problem has
a locally convex structure (Bertsekas 1976). It does
not require any linearization in order to obtain and
update the Lagrange multipliers and has a very good
rate of convergence. Problems treated by Barker ez
al. (1977), Haltiner er al. (1975) and Haltiner and
Barker (1976) as well as the problem of variational
nonlinear normal mode initialization, (Daley, 1978;
Phillips, 1981), seem to be prime candidates for test-
ing this new general method. In the past the method
has been successfully applied to optimal control prob-
lems with terminal state constraints, by Nakayama
et al. (1975), amongst others, and is now used almost
exclusively in optimal control problems involving
state constraints (Bertsekas, 1980; Mond 1982).
Compared with the modified Sasaki and Bayliss-

TABLE 4. Relative errors of the multiplier and penalty

methods for GUSTAF.
No
Shallow- Multiplier Penalty constraint
water method method being
equations At = 1800 s, At = 1800, enforced
solver ¢ = 1073 ¢ = 1073 At = 1800 s
GUSTAF (QN3)
After | day 1.518 X 1073 1.517 x 1073 1.510 X 1073
After 2 days 2.571 X 1073 2,579 X 107 1.509 X 1073
After 10 days  2.294 X 10~ 2.310 X 107> 2.102 X 1073
After 20 days  3.751 X 107> 4.218 X 1073 blow-up at
14 days

Isaacson methods (see Navon, 1981) the multiplier
method is more efficient in that it is applied only at
every 15 time steps on the average, and in that it has
a very fast convergence rate. The implementation of
this method requires less computer coding, and it has
a broad scope of applicability. The method can be
recommended for long time integrations of the shal-
low water equations on limited-area domains as well
as for problems where nonlinear constraints have to
be imposed. It should be mentioned that the Bayliss—
Isaacson method is also quite efficient since it requires
the solution of a small system of equations at each
point. (See Isaacson et al., 1979.)

The method of augmented Lagrangian is however
the most general framework not only for enforcing
conservation of integral invariants but also for solving
most of the partial differential equations appearing
in the numerical weather prediction context by for-
mulating them as the problem of minimization of a
functional. For more insight the interested reader is
referred to the book by Fortin and Glowinski (1981).
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