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ABSTRACT

A Sasaki variational approach is for the first time applied to enforce a posteriori conservation of
potential enstrophy and total mass in long-term integrations of two ADI finite-difference approximations
of the nonlinear shallow-water equations on a limited-area domain. The performance and accuracy of
the variational approach is compared with that of a modified Bayliss-Isaacson a posteriori technique,
also designed to enforce conservation of potential enstrophy and total mass, and with that of a periodic
application of a two-dimensional high-order Shapiro filter.

While both the variational and the Bayliss-Isaacson a posteriori techniques yielded very satisfactory
results after 20 days of numerical integration with regard to conservation of the integral constraints
of the shallow-water equations and the accuracy of the solution, the high-order filtering approach per-
formed in a less satisfactory way. This is attributed to the effects of the boundary conditions in the
limited-area shallow-water equations models.

The Bayliss-Isaacson technique was found to be more robust and less demanding of CPU time, while
the modified Sasaki variational technique is highly dependent on the updating procedure adopted for the
Lagrange multiplier. The filtering technique is the most economical in terms of CPU time, but it is
inadequate for limited-area domains with non-periodic boundary conditions and coarse meshes. In con-
clusion further research in this direction is suggested as these techniques provide viable alternatives
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Implementation of A Posteriori Methods for Enforcing Conservation of Potential

to the rather complex conserving schemes proposed by other investigators.

1. Introduction

It is now well known (Burridge, 1980) that in dis-
crete models of the shallow-water equations the
most intensive numerical instabilities occur because
the quadratic nonlinearity of the horizontal advec-
tion process generates aliasing errors. It has become
evident through the work of Fjortoft (1953), Ara-
kawa (1966), Lilly (1965) and Sadourny (1973, 1975)
that the maintenance in the discrete representation
of the integral constraints satisfied by invariants
associated with the continuous equations can help
to inhibit or prevent nonlinear instability.

Arakawa (1966), Sadourny (1975) and Kalnay-
Rivas (1976) have all shown that the conservation
of potential enstrophy in nondivergent barotropic
flows (such as flows represented by the shallow-
water equations) not only prevents nonlinear insta-
bility, but is essential if the dynamics and the energy
exchanges between the different scales of motion are
to be represented correctly.

If potential enstrophy is not conserved in a
shallow-water equations model a spurious computa-
tional cascade of energy to smaller scales brings
about a catastrophy (blow-up) after a finite time
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(Brissaud et al., 1973; Sadourny, 1973, 1975; Fair-
weather and Navon, 1980).

Sadourny (1975) and Fairweather and Navon
(1980) also have shown that formal conservation of
potential enstrophy is more important than formal
conservation of total energy, in that the models that
conserve potential enstrophy are inherently more
stable and maintain more realistic energy spectra.
Moreover, it turns out that a shallow-water equa-
tions model conserving mass and potential en-
strophy also conserves total energy very accurately
if total energy is not conserved formally in its dis-
cretized form (Sadourny, 1973; Burridge, 1980).

Considerable effort has been devoted to devising
and designing spatial finite-difference approxima-
tions of the shallow-water equations that retain the
integral constraints of the continuous system. Fol-
lowing Arakawa (1966), a generalized Arakawa
scheme for the shallow-water equations conserving
energy and enstrophy was given by Grammeltvedt
(1969), who also presented a detailed discussion of
the conservation properties of several finite-differ-
ence schemes. Sadourny (1973, 1975) presented a
potential-enstrophy conserving model for the shal-
low-water equations in a global cylindrical coordi-
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nate system. In a recent review on the numerical
modeling of conservation laws Sadourny (1980) pro-
posed a class of vorticity terms permitting numerical
conservation of energy and potential enstrophy in
isentropic coordinates. An optimum scheme com-
bining both energy and potential enstrophy numeri-
cal conservations for triangular (Arakawa C-grid)
meshes was reported by Kim (1978). Arakawa and
Lamb (1979) have devised a second-order space dif-
ference scheme for the shallow-water equations that
conserves both potential enstrophy and total energy
in the presence of bottom topography.

All these numerical schemes modeling the con-
servation laws result, however, in rather compli-
cated finite-difference forms that are difficult to gen-
eralize to fluid dynamics problem of interest. A
different approach is to enforce the required con-
servation relationships explicitly by modifying the
forecast fields values at each time step of the nu-
merical integration.

Sasaki (1975, 1976, 1977) proposed such a varia-
tional approach and applied it to conserve total
energy and total mass in one- and two-dimensional
shallow-water equations models on a rotating plane,
but he used an additional smoothing operation that
in effect was responsible for stabilizing his scheme.

Bayliss and Isaacson (1975), Isaacson and Turkel
(1976) and Isaacson (1977) presented a simple
method of making any finite-difference scheme con-
servative with respect to any quantity. In their ap-
proach the conservative constraints were linearized
about the predicted values by means of a gradient
method for modifying the predicted values at each
time-step of the numerical integration. Isaacson et
al. (1979a) and Isaacson et al. (1979b) have imple-
mented the same technique in terms of simultaneous
conservation constraints for the shallow-water equa-
tions over a sphere, taking into account orography
effects. Their approach has been tested by Kalnay-
Rivas et al. (1977) with enstrophy as the conserved
quantity. Kalnay-Rivas et al. (1977, 1979) found that
the use of an enstrophy conserving scheme can be
successfully replaced by using a fourth-order quad-
ratically conserving scheme on a global domain,
combined with the periodic application of 16th order
Shapiro filter removing wave shorter than four times
the grid size before they attain finite-amplitude.
Kalnay-Rivas et al. (1979) extended this result to for-
mally nonconservative schemes, also on a global
domain. A similar result was obtained by Navon and
Riphagen (1979) for a compact fourth-order scheme
in conservation-law form (Haltiner and Williams,
1980, p. 137).

In the present paper we have made an attempt to
show that it is possible to achieve stable long-term
integrations of the shallow-water equations using
the abovementioned techniques. To do so, we first
propose a modified Sasaki variational approach to
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enforce conservation of total mass and potential en-
strophy in long-term integrations of two ADI finite-
difference approximations for a two-dimensional
nonlinear shallow-water equations model. We then
compare the performance of the variational ap-
proach with that of a modified Bayliss-Isaacson tech-
nique also designed to enforce conservation of po-
tential enstrophy and total mass, and with the appli-
cation of a two-dimensional high-order Shapiro
filter. The two ADI finite-difference algorithms used
are the nonlinear ADI Gustafsson (1971) method
and the linear algorithm due to Fairweather and
Navon (1980). Both conserve total energy and mass
but do not conserve potential enstrophy, and both
have a critical blow-up time for long-term integra-
tions in the absence of dissipation (Fairweather and
Navon, 1980). As such they are suitable for testing
the two methods for enforcing potential enstrophy
conservation (see the Appendix).

In Section 2 we detail the variational design for
the two-dimensional nonlinear ADI shallow-water
equations models, while the numerical algorithm for
iteratively solving the resulting coupled nonlinear
Euler-Lagrange equations is presented in Section 3,
which also includes the discretized variational
formulation for enforcing conservation of potential
enstrophy and total mass.

In Section 4 the modified Bayliss-Isaacson con-
servative algorithm is described and its numerical
implementation detailed, while in Section S we apply
the two-dimensional high-order Shapiro filter.

In Section 6. we present the numerical results for
long-term runs for both ADI shallow-water equa-
tions models, based on a commonly used test prob-
lem. Accuracy tests for the two a posteriori tech-
niques and the two-dimensional high-order Shapiro
filter are provided, also.

A quantitative assessment of the results of the
proposed a posteriori numerical methods for enforc-
ing potential enstrophy and total mass conservation
on the discretized shallow-water equations is pre-
sented in Section 7.

In Appendix A the ADI shallow-water equations
numerical models are briefly presented (see also
Mitchell and Griffiths, 1980, pp. 253-254).

2. Formulation of the modified Sasaki variational
method for enforcing conservation of poten-
tial enstrophy and mass '

The potential enstrophy conservation law can be
written as

- % f JD (ﬂ _ou +f)2h“dxa’y. 1)

o \Ox ay
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The discrete finite-difference analog may be writ-
ten as

Ne Ny 7 9 3 2
Zu=3 3 (4o o ) aArby =25, @
=t k=1 \ Ox dy ik

where Z° is the value of Zg4 at time 7 = 0, i.e.,
. the initial potential enstrophy. '
In the variational design of the numerical method
we have adopted three basic principles due to Sasaki
(1976) and at this point shall mention the first two:

1) Conservation laws valid for the true solution
of the differential equations should also hold for the
finite-difference solution.

2) The solution (u, v, k) at a given time step is also
a stationary value that minimizes a weighted sum of
the variances of (4 — i7), (v — ?) and (A — h) inte-
grated over the entire domain.

Here (&, 9, h) are the predicted variables at the
nth time level as determined by use of one of the
two finite-difference ADI algorithms for solving the
shallow-water equations, while (u, v, i) are the
values adjusted by the variational method to enforce
and satisfy the required conservation laws.

Based on these two hypotheses a variational
formulation of the problem of enforcing potential
enstrophy conservation yields the functional

Ny Ny - -
J=3 Y [au—ay+ av - 0P+ Bh — h)’li

=1 k=1

Ne Ny T/ 0p Ou L
n 38 (G5 ) e

X AxAy — ZO] , (3

where for simplicity of notation we have omitted
the subscripts from uy., v;, h;. This functional will
have a stationary value if its first variation equals
zero, i.e.,

) 8J =0, 4

where 8 is the variational operator.

In (4) the summation is taken over all (j, k) mesh
points. & and 8 are weights determined following a
technique proposed by Sasaki (1976). The weight
& was taken to be unity.

We then applied Sasaki’s third principle which
states: The relative weight is so chosen as to make
the fractional adjustment of variables proportional
to the fractional magnitude of the truncation errors
in the predicted variables.

Following Sasaki (1976), 8 was chosen so that

B=g/H, ()

where H is the mean depth of the fluid (in our case
H = 2000 m).
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We now take A as the Lagrange multiplier, as-
sumed constant with respect to space but, in general,
varying in time. Taking the first variation of (3) with
respect to u, v, & and Ay we obtain
NI Nl/ ‘
8 =3 > [20du — i1)du

j=1 k=1

+ 2&(v — D)dv + 2B(h — h)Sh]
Ny N, .} ) 2
=1 k=1 L\ Ox dy ik ’ :

Nl‘ NII )
+ A D D [(h8K — K8h)h~2);:AxAy, (6)
where we have denoted by K

i=1 k=1
et f) .

The last term in (6) can be written in a simpler and
more useful form using algebraic commutation
formulas between finite-difference and variational
operators as derived explicitly by Sasaki (1969,
1970a, 1970b). This procedure shifts the derivative
operators from the variational quantities, i.e.,

2 YV, 8Ty = — 2 V 8T,.
i i

)

®

Eq. (8) is valid for the periodic variable x but not
for an arbitrary prescribed boundary value y. How-
ever, in our case (see the Appendix) we have the
y-direction boundary condition

v(x,0,t) = v(x,D,t) =0

(rigid-wall boundary condition) and for the # and
¢ variables it is possible to choose a finite-difference
form of the boundary condition that satisfies Eq. (8).
Then the last term in (6) can be written

NI Nll
Vang Y (h6K — K8h)h 2AxAy
i=1 k=1
X NI/
=N 2> RWV.0o—V,u+ 23V, 80—V, du)

i=1 k=1
9

and if the commutation formula in (8) is used, Eq.
(9) takes the form

L (V‘l.'U - Vyu +f)2h—26h]jkAxAy,

Ny Ny
1/é}‘E 2 2 [Zhh_z(_vrv.rv'sv + V,;-Vyl)'&ll

i=t k=1
+ V,V,u-6v - V,V,u-du)
— (Vev — Vyu + f)*h~28hlAxAy, (10)

where the discretized finite-difference operators V,,
and V, are defined as
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V.f = Do f = (f}+1,k "fj—l,k)/ZAX (11) 2&03_;;“) _ & [055_42-12 _ 20}%+1) + 05542-11;]
Vof = Doy f = (fimer — fiu—1)/28y h§p
Substituting expression (10) into (6) rearranging 2 — 2Ag [y, | — Gt
terms yield = 20U @ Ui+ k-1
§J = % % {Ra(u ~ @) — U+ uiRal,  (15b)
=1 k=t v MBS ol — ol
+ 2AzAsZh~Y(V, V0 — V,V, u)léu kT Tk W2 2Ax
+ [2&(v — D) + 2AzAsh~ YV, V,.u — V.V, )60 ~ uER — U y ]2 (150
+ RB(h — h) — NgAs?h=(V,v — V,u + [)120h} s 24y e
Ny N, (1) _ (D) w+1) _ r+1) 2
+ SAE{Z Z [(va _ Vyll +f)2 (12) ' [DH—I,k vj—l,k] _ [u],k+1 Uj k=1
=1 k=1 1% Ny 2Ax 2Ay ny
X ASZh—lljk - Zo}, 2‘j=1 k=1 h;’%-ﬂ) f
where X AxAy - Z,=0. (15d
Ax = Ay v (159
(As)® = AxAy | (13) ' If the difference between Z,, the initial total potential

-Since the variations of éu, v, 8k and 6\, are nonzero

arbitrary values, the coefficients of each variation
should vanish individually to satisfy the stationary
conditions. We then obtain a set of nonlinear
coupled partial differential equations which are the
Euler-Lagrange equations for u, v, £ and A\; for each
grid point (j, k):

20w — i) + g/R(AsP(V, Vo — V) = 0, (14a)

20(v —~ D) + (Ag/h)(ASs)A(V,V,u —~V,2u) = 0, (14b)
28(h — h)
= (Ng/2h®)(AsP (Voo ~ Vyu + f)2 =0, (l4¢)
Ny N,
%3 > UVer = Vyu + )Y As) ]
i=1 k=1
—Zy=10. (14d)

3. The numerical variational algorithm

a. lIterative solution of the discretized Euler-
Lagrange equations

As we have a system of coupled nonlinear par-
tial differential equations, the numerical solutions
u, v, h and Az may be obtained by using an iterative
technique.

We can write the discretized version of the Euler-
Lagrange equations (14a)-(14d) as

AN
L E (1) _ +1 +1)
2au YT Uity — 2uiY + upii)
ik
2\
— YA E ¢ on )
= 2duity — o [0k — V-1
ik

= 20+ + 8201], (152)

enstrophy, and the total potential enstrophy com-
puted from the forecasted variables (using one of
the two ADI solution algorithms) was less than a given
limit (10~ times Z, was used), the iterative process
was stopped. The initial guess at each time step is
the value calculated from either of the two ADI
forecasting programs, i.e.,

© — 7 0) — = ()
uP = dy, O =i, AR = hy.

(16)

For typical differences the error was reduced below
the limit in three to five iterations.

b. Determination of the Lagrange multiplier \g'

By substituting #**?, v+ and A4t from Egs.
(15a, b, c¢) into (15d), we obtain

1 Vo Wy
Fp)==3 3
2 =1 k=1
ol — o gl — +fk]2“my
v 2Ax 2Ay
h;;cﬂ’l)
~Zy=0. (A7

This gives a highly nonlinear equation for A;’, which
can be solved iteratively by a Newton iteration
FO)
F'IAF]
where F is given by Eq. (17). This way of determin-
ing Az turned out to be detrimental to the iterative
solution of the Euler-Lagrange equations, whose
stability proved to be critically dependent on the
magnitude of Ag.

Much better results were obtained when we first

determined the Lagrange multiplier for total energy
conservation \; using the Sasaki (1976) formula

e+ — )
ATV = Ny

; (18)
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As = 2&[(1/X) — 1]/H, (19)
where
X= (B3 3 @+ + G
i=1 k=1
X (4gAxAy) 112, (20)

where E° is the initial energy [using Eq. (9)].
This Ag, retaining its sign, was then scaled for
the potential enstrophy conservation Eq. (15d) and
modified, using trial and error, to improve the con-
vergence of the nonlinear iterative solution of the
Euler-Lagrange equations [(15a)-(15d)]. We started

with
AE = 1012

and then at time step n + 1

@n

(n+1)

A(En+l) — /\gl) .
(n)
Ay

(22)

c. The final variational algorithm

Another important integral of the shallow-water
equations is the total mass as given by Eq. (10).
In order to enforce the constraint of mass conserva-
tion we treated it separately from the potential
enstrophy constraint. To achieve mass. conserva-
tion, the heights forecast by the finite-difference ADI
models were first adjusted by using the formula

P - Nl‘ NII ~ N-l‘ Nu -
h;!k = thk - ( hJ"k - 2 2 hjpk)(NrNy)—l
=1 k=1 i=1 k=1
- N-" NV -~
= h;lk - ( h;lk - HO)(N.tNy)_l’
i=1 k=1
for each
j=1,2,...,N,
, (23)
k=1,2,...,N,
where H, is the value of
N, N,

S Y hy attime t =0,

i=1 k=1
The variational algorithm applied at a given time
step may then be summarized as follows:

1) Obtain (@, ¥, k) using either of the finite-differ-
ence ADI models of Section 2.

2) Adjust the height field & to ensure total mass
conservation.

3) Solve iteratively the Euler-Lagrange equations
to enforce potential enstrophy conservation up to a
predetermined accuracy limit.

4) Recheck total mass conservation and if the vari-
ation exceeds 10~*H, repeat mass adjustment (2) and
then repeat the iterative solution (3). Not more than
three repetitions of this procedure were necessary.
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To test the success of this technique, long-term inte-
grations should be conducted beyond the critical
time 7, (seée Sadourny, 1973, 1975), Fairweather and
Navon (1980), when a blow up occurs due to the
spurious computational cascade of energy to smalier
scales when potential enstrophy is not conserved.

d. A generalized variational functional

A generalized variational functional including the
simultaneous constraints of total mass, total energy
and potential enstrophy conservation takes the form

Ji = NET % [6(u — @) + & — B + B(h — )Ly,

j=1 k=1

N, N,
+ {2 Y S [h(u? + v?) + gh®l . AxAy —E°}
i=1 k=1 :
Ny N, Y
+)\E[_1. Z[i’z.—_ai-f-f}
, PR I dy ik

X hjk_leAy - Zo]

'+)\h}1§

i=1

g [hulAxAy — H%.  (25)
k=1

After some algebra (necessitated by taking the first
variation of J with respect to u, v, h, Ag, Az, and
\» and requiring the coefficients of each variation
to vanish individually in order to satisfy the sta-
tionary conditions), we obtain the following Euler
Lagrange equations for u, v, h, Az, Ag and A,:

2&(u — @) + NgAs*h (V. V,0 — V, )

+ AgAs?hu = 0, (26a)
2a(v — D) + AgAs*h~Y(V, V. .u — V,2v)
+ AsAs?hv = 0, (26b)

ZB(h — h) — VangAs?h™2(V,0 — Vou + fy
+ VoA gAsH(u? + v?) + AgAs?gh + N\ As2 =0, (26¢)

Ny N"
> 2 hylAs®* — Hy =0, (26d)
j=1 k=1
x Nu .
1S Y [h(u? + v?) + gh®luAs® — E, =0, (26e)
i=1 k=1
X Nu
¥ S S (Voo — Vyu + flah(As)?l
i=1 k=1 )
' - Z,=0. (26f)

The initial Lagrange multipliers Az, A5 and A;, should
be obtained from a linearized model using scaling
considerations similar to those of Sasaki (1970,
1976). However, this idea of simultaneously satis-
fying all the integer constraints of the shallow-water
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equations by the variational a posteriori method has
not yet been tested.

4. The Bayliss-Isaacson algorithm
a. The theoretical framework

Alvin Bayliss and Eugene Isaacson (1975) arrived
independently at the idea of modifying the predicted
values by using the constraints of vorticity, en-
strophy and energy (Isaacson, 1977). Their approach
linearizes the constraints about the predicted values
to make any finite-difference scheme conservative
with respect to any quantity. This method was tested
by Kalnay-Rivas et al. (1977) for a fourth-order ap-
proximation of the enstrophy constraint.

In what follows we shall first describe the theo-
retical framework of the Bayliss-Isaacson method,
then our modified version of it, and finally, the nu-
merical implementation of the latter.

Assume we have a mixed initial-boundary value
problem

u, = B(u) Q27

for the vector u, and that the solution u satisfies
certain integral invariants (conservation laws)

grw) =0, k=1,2,...,K. (28)

By discretizing the integral invariants and represent-
ing the integrals as sums, we obtain the approxi-
mating integral invariants

G[UK] =0, k=1,2,...,K, (29)

where U}, is a net function defined at the grid
points (x;, y;, t,) and U(x;, y;, t,) approximates
u(x;, y;, t,). At time ¢,,,, the difference operator
solving (for instance) the shallow-water equations
(i.e., solving for the vector u) has the form '

Wi+ 1) =C[Whn),Whn-1,...,Wh-s)]
= CW(n), 30)

where W(rn) is a net function at time r,. We now
wish to modify the scheme (30) in such a way that
it will produce a net function U(n + 1) that will
satisfy the discretized integral constraints (29), i.e.,
a corrective net function V(n + 1) is to be found
such that

Un+1)=CUn)+Vn+1
GJlUn+1)]=0, k=1,2,...,K

and such that some norm of the perturbation
V(n + 1) should be minimized:

min||V(n + 1)|. (32)

To determine V(n + 1) a simpler method than the
Sasaki variational approach is to solve (31)~(32) by
linearizing the discretized invariants G,(U(n + 1))

} . G1)
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about the predicted value CU(n). This can be writ-
ten as

G [U(n + 1)]= G [CU(n) + V(n + 1)]

~ G [CU(n)] + gradG,-V(n + 1)

G [CU(n)] + G

—4 n ——————————

y AU(n + D |ymsv=cum
XVin+1)=0, k=1,...,K. (33)

Now, ||V(n + 1| is minimized subject to the K
linear constraints (33).

Since any vector V has a unique representation
in the form

K
Vin +1) = > o gradG, + P,

k=1

(34

where P is a vector orthogonal to the K gradients,
it follows that any solution of the K simultaneous
linear equations is also of that form. If the Gramian
matrix (gradG,-gradG,) is nonsingular, by substi-
tuting the expression (34) for V(n + 1) into (33), the
K scalar coefficients o, are determined by solving
the K linear equations (33), i.e.,

K
G, [CU(n)] + gradGy- (S a, gradG,) = 0,

r=1
k=1,...,K, (35)
we have used the orthogonality conditions
gradG,-P = 0. (36)

Note that the arbitrary vector P must be zero, if
V(n + 1) is to have minimum norm.

If we deal with a single integral constraint—say
the enstrophy constraint— and assume the correction

V(n + 1) =(U', V") 37
is added to the predicted values of the velocity field
U, V, then using (31) we get

G oG

(U',V'>=a(——,—) ,
aU vV oy

(?ﬁ) .Ur+(_‘9£) Y
oU /o oV /op

_ = G(U,, Vo) — G(U, V) (39)

and « can now be determined from (39) as
. _ GW Vo) - G0, V)

aG |2 aG

U v

where G(U, V) denotes a consistent approximation

of the mean-square vorticity, and G(U,, V,) is the
initial (time 7 = 0) mean-square vorticity.

(38)

(40)

2 b
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b. Discretized Bayliss-Isaacson algorithm for At a given grid location we get
enforcing conservation of potential enstrophy

. . R . Gyn — Vit1,j Vit1,j
The approximating functional for potential en- “ii — 2 Z Ax
strophy conservation is

Uy — ULy 2
oU 2 - Wt
E 2 (—‘ e +f) (hii))'AxAy. (41) 24y +fj) () Axdy. (42)
'y i
’ The derivatives 8G'/dU |;, G'/0V |; and 8G'/9h |;;
are
(2) _
oG’ - 1 [U?+1,j+1 — V41 _ Ul — UT, +fj+1:|Ax
oU |y hises 2Ax 2Ay
' (b)
1 Vg1 — VFg - Py~ uls-
- [ 41,5 12Ax 1j-1 UL ZA’; -2 +fj_1]Ax, @3)
i,j-1 "
©
G’ ‘ _ 1 [U?,j — v, _ U qi41 — Ug,51 +f,-]Ay
aV |y hil  2Ax 2Ay
U [ofe; — vF;  ulirjer — Ul
- - 74 F
h[ 2Ax 24y f’]Ay @9
(d) .
Vin,y — Uiy, Ulgey — UDj 2
- + fi ] AxA
oG’ ( 2Ax 2Ay f]) i
it - . (45)
)
a is determined from o
a = G (U‘], VO) - G (U7 V) , ' . (46)
‘BG 2 aG | aG |?
oU 2% oh
which in our case takes the form
(v‘i)+1,j - vl _ U — uli, +f,~)2AxAy
_ ‘ 2Ax 2Ay
a=l2 2 1o,
1 J 1}
(l’?ﬂ,;‘ — Vi Ubser T Ui +f-)2AxAy
2Ax 2Ay ’
- Z E n
i .j 1j
. 1 2 sS 2
1y s { (@) - -(b)] Axt + [ (©) - ~(d)J Ay?
i J hl J+1 hi,.i-l i j hi—l,j hi+lJ
l:vznﬂ,j — vl _ Uljer — UL +f.]4Ax2Ay2
2Ax 2Ay ’ @7

+
22 (it

The stages of the numerical algorithm were the
following. To achieve mass conservation, adjust the (i) calculate (8G'/aU);;, (8G'/8V);;, (8G'/0h);;;
heights h;; forecast by the ADI models, i.e., use (ii) calculate o following (46);
Eq. (23). Then . (iii) calculate the corrections u’;, vi;, hj; usmg
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(BG’ ) , (GG' )
al——--,1,, y=al—"m],
oU /;; oV /i

(),
al—1 ;
oh };

(iv) calculate the new potential enstrophy using
the corrected fields, i.e.,
GWU+U, V+V', h+h). (49)

(v) Use the new corrected fields U* = U + U',
V* =V + V', h* = h + h’ as starting values for the
new time-step calculation.

i

'
U;j

il

his (48)

The Bayliss-Isaacson algorithm for enforcing en-
strophy conservation follows closely the algorithm
for enforcing conservation of potential enstrophy
using

(ﬁ. e f)f.AxAy (50)

i3 3
and Eq. (40). Finally, the corrected enstrophy is
given by

Geret = GU + U, V+V) (51)
which should then be equal to the initial enstrophy
G(U,, V,).

5. The method of periodic high-order filtering
Kalnay-Rivas et al. (1977, 1979), using the GLAS

fourth-order global atmospheric model, showed that -

a formally nonconservative scheme, combined with
the application of a two-dimensional 16th order
Shapiro applied at every time step of the numerical
integration, will conserve potential enstrophy by
eliminating waves shorter than four times the grid
size before they attain significant amplitudes.

However, the case of a limited area as considered
here (see the Appendix) proves to be totally differ-
ent. Whereas we have periodic boundary conditions
in the x direction, in the y direction we have zero
boundary conditions which present a problem for
the application of the Shapiro high-order filter as
they can cause amplification of long-wave spurious
components (Shapiro, 1970). Although this effect
can be eliminated by a tedious procedure, another
problem arises. As we approach the y boundary we
have to reduce the order of the Shapiro filter as it
requires points outside the limited area domain,
about which we have no information (Shapiro,
1977, p. 35). .

As a compromise we used a refined mesh (Ax
= Ay = 200) by more than doubling the number of
mesh points in each coordinate direction (31 x 23).
Then we applied the full 16th order Shapiro filter
in the x direction (17 points) while in the y direction,
for points situated eight grid-points or less from
either boundary, 9-, 7-, 5- and 3-point operators were
used as appropriate (see Shapiro, 1977). This, of
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course, is bound to decrease the selectivity of the
Shapiro filter and to affect longer wavelengths in
the boundary regions of the domain, which are more
strongly smoothed in-as much as lower-order filter
operators are used near the boundaries. In long-term
integrations this effect contaminates the whole
limited area domain.

6. Numerical results of long-term integrations
a. The test problem

To compare the modified Sasaki variational
method with the modified Bayliss-Isaacson method
for enforcing potential enstrophy conservation, the
test problem of Gustafsson (1971) was used, viz.,
the initial height field condition No. 1 used by
Grammeltvedt (1969), i.e.,

D2 - y)
h(x,y) = Hy + H, tanh[——zﬁ—z—}
+ H, sechz[g(—l)ﬁ-:—}z] sin[-z—zi] . (52)

The initial velocity fields were derived from the
initial height field via the geostrophic relationship

- h
U= (_ﬁ)ﬁ'i V= (5):”_ L)
S /9y f/ox
The constants used were
L = 4400 km g = 10 ms™2
D = 6000 km H, = 2000 m (54)
Ff=10"s"1 H,=220m
B=15X10"s'"m? Hy,=133m

For the long runs conducted here, the space and
time increments used were

Ax = Ay = 500 km, Az = 3600 s. (59)

The long-term runs were conducted for periods
of over 20 days with no dissipation added to the
two ADI models ADIF and GUSTAF. That both the
modified variational technique and the Bayliss-
Isaacson modified technique are successful, will be
evidenced by the perfect conservation of the mass
and potential enstrophy invariants and by the non-
appearance of a blow up at the critical time T, which
was of the order of 12—-14 days (Fairweather and
Navon, 1980). For the high-order filtering method
the space and time increments used were Ax = Ay
= 200 km, At = 3600 s.

b. Results of the a posteriori techniques with the
ADIF model

The starting values of the integral invariants of
total mass, energy, enstrophy and potential en-
strophy (in arbitrary units) were
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H, = 2000: E, = 6.10304E + 20
Zy = 1.37643E + 2
Zy =4.13503E + 8

(56)

After 20 days (using the ADIF model) we obtained
the results given in Table 1. Similar results were
obtained using the GUSTAF nonlinear ADI model
(see Gustafsson, 1971; Navon, 1978).

c. Discussion of the numerical results

Up to five iterations were required to solve the
nonlinear Euler-Lagrange equations [(15a)—(15b)]
and up to three external mass adjustment corrections
were allowed for at each time step of the numerical
integration. The variational technique enforcing
conservation of potential enstrophy and total mass
prevented the numerical integration from blowing
up and the numerically integrated results are quite
satisfactory. '

The modified Bayliss-Isaacson a posteriori
method performed better than the variational
method in conserving the potential enstrophy, while
the results for energy and mass conservation were
similar—and conserved up to an error of 1%.

The high-order two-dimensional Shapiro filter
gave errors of up to 10% when applied at each time
step and errors of about 5% when applied periodi-
cally (every three time steps). The reason for these
deceptive results is due entirely to the limited-area
domain and its boundary conditions as discussed
in Section 5.

d. Numerical stability

Both the modified variational method and the
modified Bayliss-Isaacson method were integrated
up to 20 days using a 60 min time step. Both methods
behaved stably in conjunction with the ADI models
employed for solving the shallow-water equations
and there was no sign of impending numerical in-
stability. The same applies to the high-order two-
dimensional Shapiro filter.
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e. Efficiency

The measure of efficiency used was the additional
CPU time per time step required by either the vari-
ational method or the modified Bayliss-Isaacson
method for enforcing conservation of total mass and
potential enstrophy. It was found that the modified
Bayliss-Isaacson method required roughly a third of
the CPU time per time step as compared with 'the
modified Sasaki variational method. The reason for
this was that in the variational method the corrected
fields and the A, Lagrange multiplier required itera-
tive procedures that were relatively costly in CPU
time per time step.

The Shapiro two-dimensional high-order filter was
the less demanding on CPU time, but because of
the amplitude and phase errors due to limited-area
boundary effects, this advantage cannot be exploited
in our case.

f. Accuracy tests

In order to provide a basis for comparison be-
tween the different a priori methods, in the absence
of an analytic solution to the full nonlinear shallow-
water equations, we assume that the exact solution
of this mixed initial boundary-value problem Wy is
the solution of ADIF (A16) computed with a fine-
mesh discretization, viz., Ax = Ay = 50 km and Az
= 450 s. (using the same method to enforce the dis-
crete integral constraints).

As in Gustafsson (1971) the relative error in an
approximate solution, W ,p, is measured in the norm
Il||, defined by the inner product

N, N, -
(a, B) = AxAy 3 {3 ofiBi

=1 k=1
+ Ya(afoBio + ofn Bin,)}

» 57

ledl* = (o, @)

where a and B are grid functions, satisfying the
boundary conditions given in (A6)—(A7). The rela-
tive errors in the approximation determined by the
linear ADI method ADIF, using the three a priori

TABLE 1. Relative accuracy of different a posteriori techniques using the ADIF model.

Z, :
(potential Zy L E, H
Time Method enstrophy) (enstrophy) (total energy) (mass)
Ratio between final Ratio between final Ratio between final Ratio between final
t = 20 days and initial values and initial values and initial values and initial values

Variational 0.983 0.995 1.007 0.999

Modified Bayliss-Isaacson 0.994 0.993 1.007 0.999
High-order Shapiro filtering

(at every time-step) 1.125 1.117 0.905 0.997
High-order Shapiro filtering

(every three time-steps) 1.067 1.054 0.952 0.997
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TABLE 2. Relative errors of the various a posteriori methods.

Method for enforcing

integral constraints At = 3600 s
Variational 3.1 x 1073
Modified Bayliss-Isaacson 2.9 x 1073
High-order Shapiro filter

(applied at every time-step) 1.3 x 1072
High-order Shapiro filter
(applied every three time-steps) 53 x 1072

methods namely the variational method, the Bayliss-
Isaacson method and the two-dimensional Shapiro
high-order periodic filtering method are shown in
Table 2. Here

Enxp = Wyp — Wiy (58)

and the relative error between the approximate and
the exact solution is

. 1B
relative error = ,
| Wex|
At = 450 s, = 20 days. 59)

The results point to a slightly better accuracy for
the Bayliss-Isaacson method.

7. Summary and conclusions

Three methods were tested, all intended to en-
force conservation of total mass and potential en-
strophy in long-term integrations of two ADI finite-
difference approximations of the nonlinear shallow-
water equations model.

The first technique was a modified Sasaki varia-
tional method which resulted in a set of coupled
nonlinear partial differential Euler-Lagrange equa-
tions, which were solved by an iterative method.
The main issue proved to be the updating of the
Lagrange multiplier Az;. Although a working pro-
cedure was found to perform well enough, more
sophisticated mathematical methods should be em-
ployed if it is intended to refine the method.

These methods relate mathematically to solving

nonlinearly constrained optimization problems, and
some very efficient FORTRAN programs have been
described by Purcell (1977), based on techniques due
to Powell (1969), Hestenes (1969) and Bertsekas (1975).

It was found that for the 20 days’ integrations
not only were potential enstrophy and mass con-
served, but total energy was also conserved well
enough. The modified Sasaki variational method re-
quired a number of iterations at each time step, both
for solving the Euler-Lagrange equations and for im-
posing the constraint of conservation of total mass.
The writer feels that this method could be greatly
improved when coupled with a refined technique
for updating A; between time steps.
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2200

1 It A 1 1 A 1 1 1 A 1

FiG. 1. The initial distribution of the height field depicted by
isopleths drawn at 50 m intervals. The channel walls are shown
as solid horizontal lines, the cyclic boundaries as vertical lines.
The domain is covered by 13 grid points in horizontal {(east—west)
and 10 points in the vertical (north—south).

Use of the generalized variational functional of
Section 4d would probably result in satisfactory re-
sults being obtained by applying the adjustments
less frequently (every few time steps) and then the
method could compete in efficiency with the Bayliss-
Isaacson method.

The second technique, due to Bayliss and Isaac-
son, proved to be very robust and less demanding
of CPU time. The results obtained after 20 days
compared well with those obtained with the modi-
fied Sasaki variational technique, and in some in-
stances were better. Moreover, the implementation
of this method required less computer coding, and

<)

= )

2100

1 . i 1 1 | 1 i A I 1 - |

2200

F1G. 2. The 20-day forecast by height field using the ADIF
model with the variational enforcing of potential enstrophy and
mass conservation, isoplethed at intervals of 50 m.
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Fi1G. 3. The 20-day forecast of height field using the ADIF
model with the Bayliss-Isaacson method of enforcing potential
enstrophy and mass conservation isoplethed at intervals of 50 m.

in view of our experience with it, we would recom-
mend its use for explicitly enforcing the required
conservation relationships. The Bayliss-Isaacson
technique produced smoother patterns after 20 days
of integration than the modified Sasaki variational
-technique (see Figs. 1-3).

It should be noted that the Bayliss-Isaacson tech-
nique was originally formulated in terms of simul-
taneous conservation constraints, rather than suc-
cessive as implemented in this paper. This could
account for the fact that the conservation of inte-
gral constraints is not perfect.

The third technique, that is, the periodic applica-
tion of the Shapiro (16th) high-order filter does not
achieve the same degree of accuracy as the other
two a posteriori techniques. This is due to the fact
that we are applying the filter to a limited area
domain. However, when applied periodically, on a
refined mesh this method regains some accuracy.
When applied to a global domain this method is
more efficient than the other a posteriori methods.

More research should be worthwhile pursuing
with the aim of evolving a refined updating method
for the Lagrange multiplier Az in the Sasaki vari-
ational technique.

To sum up, the approach of enforcing conserva-
tion of total mass and potential enstrophy appears
to be a valid alternative to the design of complex
finite-difference conserving schemes, and the first
two methods discussed above can be recommended
for long-time integrations of the shallow-water equa-
tions on limited area domains, while the filtering
method is the most efficient on global or doubly
periodic domains.
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APPENDIX .
The Numerical Shallow-Water Equations Models

1. The Fairweather-Navon (1980) linear ADI
model (ADIF)

The shallow-water equations can be written
(Houghton, Kasahara and Washington, 1966) as

8 o ) »
W AW X o+ Bw) X+ cw

ot ot dy , (A1)
Osst,OsysD,zao‘

where L and D are the dimensions of a rectangular
domain of area A = L-D; w is a vector function

w=(u, v, &) , (A2)

u and v are the velocity components in the x and
y directions, respectively, while

¢ = 2Vgh, (A3)

where A is the depth of the fluid and g is the accelera-
tion due to gravity. .
In (A1) A, B and C are matrices given by

w0 ¢ v 0 0
A= 0 u 0 , B= 10 v ¢72| ,
K 0 ¢2 v
C0 f 0 |
c=1]-f00], (A4)
i 0 0 0
where f is the Coriolis term given by
f=F+Bk - D), (AS)

with f and 8 constants.
Periodic boundary conditions are assumed in the
x direction

(A6)
whereas in the y direction the boundary condition is
v(x,0,) =v(x,D,t) =0. (A7)

With these boundary conditions and with the initial
condition

wx,y, ) =wx +L,y, 1),

wix,y, 0) = o(x, y), (A8)

the total energy
1 L D
E-s j J (u? + v + GHA)g(4g)dxdy (A9)
0 Jo

is independent of time. Also, the average value of
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the height of the free surface, proportional to the
total mass, is conserved, i.e.,

L (D
h=A"1 J j hdxdy (A10)

o Jo

is independent of time.

Then the Fairweather-Navon (1980) linear ADI
algorithm (ADIF) is set as follows: Let N, and N,
be positive integers and set

Ax = LIN,, Ay =DIN,. (A11)

We shall denote by w, an approximation to w(jAx,
kAy, nAt), where At is the time step. The basic
difference operations used in the algorithm are

wix)28x

Dy ,wh = (Wl — wie)/Ax ’

Do, Wi = (Wl —
(A12)

D_,w} = (Wl — wi)/Ax

with similar definitions for Dy,, D, and D_,, re-
spectively. We also define the operators Pj. and
Q% by

% = VaAt{A(Wji) Doy + CS&’]] AD)
;lk = 1/2AI[B(ka)Dk + C(Z) .
where _
0 0 0
Ch= [~/ 0 0| ,
L 0 0 0
0 £ O
c= {00 0f , (A14)
[0 0 0

and where, due to the boundary conditions imposed
in the y direction,

Dy, for k=1,2,...,N,—-1
D,= {D,,, for k=20 (A15)
D_,, for k=N,.

The Fairweather-Navon (1980) linear ADI algorithm
for the shallow-water equations is then given by

1 —_ Pn (n+1)* . n
( Wik Vie ] , (A16)
(I — Qj )w(n+1) —_ 2w(n+1) — ank
with
Vi = + Qi)wk, (A17)
and where
P?{ = ‘/irAt[A(t‘v}k-)DoI + Ci«”]} . (AI)
W = V2At[B(W))D, + C2]
and
wh. = 1423 - 1, fi =]
Wi 208w — with) or n ] . (A19)
w(O) — w(O) + [P;l?) + Q;I(‘)_)]W(O)

and where w{{*"" is an auxiliary solution. Note
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that owing to (19) we have to solve only sequences
of systems of linear equations.

Also, owing to the assumption of periodic bound-
ary conditions in the x direction, the resulting co-
efficient matrices arising from the application of the
Fairweather-Navon linear algorithm along hori-
zontal rows, are either block or scalar cyclic tri-
diagonal (see Navon, 1979; Fairweather and Navon,
1980). If we denote by Q the absolute vorticity, i.e.,

Q=¢+1, (A20)
where
ov ou
&= X —(‘)_y— ) (A21)

then a third invariant of the shallow-water equations,
viz., the potential enstrophy, given by

o[ [ (&peo

was found not to be conserved by the finite-differ-
ence version of the linear ADI algorithm (Fair-
weather and Navon, 1980).

(A22)

2. The nonlinear Gustafsson (1971) ADI algorithm
(GUSTAF)

Using the same notation, the Gustafsson (1971)
nonlinear ADI difference scheme is defined by

[T~ PG 2Iwit = (1 + Qilwip, (A23a)
[I _— (n+1)]wn+1 — [I + P(n+l/2)]wn+ll2 (A23b)

where w{}*'? is an intermediary variable. These
equations do not apply to the v component fork =
and k = N,; for those values we use the conditions _

viy = n=0,1,... (A24)

From Eqs. (23a) and (23b) it is evident that for each
time step of the scheme, a sequence of systems of -
nonlinear equations have to be solved. Gustafsson
(1971) used both a simple iteration technique and a
quasi-Newton method for solving the resulting non-
linear equations. For a detailed computer program
implementing the Gustafsson algorithm see Navon
(1978).

As was found by Fairweather and Navon (1980),
the discretized finite-difference version of Gus-
tafsson’s algorithm conserves total mass and total
energy but again does not conserve potential en-
strophy. As such it is subject to a blow up after a
finite time 7. if no dissipation is included in the
model (Fairweather and Navon, 1980); Gustafsson,
1971).

UJ”;NH = 07
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