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A Galerkin finite-element model of the shallow-water equations on
a limited domain is presented.

The evolutionary equations of continuity and momentum are coupled
at each time step using an extrapolated Crank—Nicolson method to
quasilinearize the nonlinear advective terms. The coupling allows time
steps to be used larger than those possible with an uncoupled model.

A linear one-dimensional stability analysis of the finite-element model
is presented. Three mass matrix schemes, the consistent mass (CM), the
lumped mass (LM) and a generalized mixed mass (GMM) scheme were
used for numerical tests and for comparing the accuracy of the finite-
element model both against a refined mesh solution and a highly accurate
nonlinear ADI finite difference model when the same test problem was
solved. The accuracy of the GMM mass matrix scheme was found to be
greater than that of both the LM and CM schemes.

Integral invariants of the shallow-water equations conserved almost
perfectly for long-term runs. Extensive comparisons with results of other
investigators using two different initial conditions for the shallow-water
equations showed the results with the GMM mass scheme to have fourth-
order accuracy in both amplitude and phase.

A compact storage scheme is provided in which advantage has been
taken of the sparsity of the global matrices.

Introduction

The shallow-water equations are used when tidal effects
and surface runoff are modelled; they can also be used in
numerical weather prediction to study large-scale waves in
the atmosphere and ocean. In this latter domain they are
often called the barotrophi¢ primitive equations and are
frequently used to test new numerical schemes.

Galerkin finite-element techniques have been applied
to the shallow-water equations by many writers (see refer-
ences 1 —13).

Here we are concerned with the solution of the evolu-
tionary shallow-water equations for a limited-arca domain
on a f-plane.
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A Galerkin finite-element method (FEM) is employed
for the space discretization using three-noded triangular
finite elements, while a time-extrapolated Crank—Nicolson
numerical time integration scheme is employed to quasi-
linearize the nonlinear advective terms.

We here describe three finite element models differing
in the treatment of the mass matrix. Special consideration
has been given to the accuracy of the various models, and
their accuracy is compared with that of a highly accurate
nonlinear ADI finite-difference method, as well as by
integrating the same models with double resolution in both
space dimensions.
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To obtain an estimate of the behaviour of the numerical
scheme a lincar stability analysis is performed on a similar
linearized model.

Results of short-term and long-term numerical test
calculations on a rectangular domain using a regular grid
are compared and discussed.

Finally conclusions are drawn, based on numerical
experience with this model, and suggestions made regarding
areas for further research.

Shallow-water equations

The primitive equations deseribing divergent barotropic
motion in an incompressible inviscid fluid with a free
surface are often called the shallow-water equations.

Using a Cartesian coordinate system with the x-axis
running from West to East and the y-axis from South to
North, the equations for the model can be written as
follows:
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here I, and D are the dimensions of a rectangular domain
ofaread = LD.

Here « and v are the velocity components in the x- and
y-directions respectively; ¢ = gh is the geopotential; /1 is
the depth of the fluid; g is the acceleration of gravity; and
{ is the Coriolis parameter, required when we consider a
fluid in a rotating frame of reference.

The Coriolis term f is given by:
of

ﬁ=5; (2

(Ic)

t=0

f=f+8(y —DJ2)

with fand B constants.

Boundary and initial conditions

The solution of equations (12) to (I1¢) requires a know-
ledge of the corresponding boundary and initial conditions.

Periodic boundary conditions are assumed in the
x-direction, while in the y-direction the boundary con-
dition is:

v(x,0,8)=v(x,D,1)=0 3)

With these boundary conditions and with the initial
condition:

w(x,»,0) = v(x,») €]
where w is the vector function:
w=(u,v, ¢)T (5)

and ¢(x, ¥) is an initial condition to be specified later, the
total cnergy:

LD

E= ‘A( ‘ (uz+v2+¢)?-dx dy 6)
J o g
00

is independent of time.
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Also the average value of the height, which is propor-
tional to the total mass:

L D

_ 1 .
h=:'l-J11dxd’ 7
1. y @)
00

is independent of time.

Test problem

The test problem used here for determining the initial
conditions is the initial height field condition No. 1 of
Grammeltvedt,!? viz.:

(9(0/2 —)’))

+ H, sech? (gﬁl’)) sin (g%v_) (8a)

The initial velocity fields were derived from the initial
height field using the geostrophic relationship:

I(x,y) = Hy+H, tanh

g\ ol g\ oh
u=—\—)— v=—)— ©)
7 oy £/ ox
The constants used were:
L =4400km g =10ms™?
D = 6000 km Hy=2000m (10)
f=10"%s"1! Hy=220m
B=15x10""s"!m ™! H,=133m

The space increments used were:
Ax = Ay =400km an

while the time increments varied between Ar = 900 s and
At=2700s.

Another initial height field condition, i.e. initial con-
dition I of Grammeltvedt ! viz.:

9D/2 —y))
2D
(9(0/2 —y))
D

(x,y)=Hy+H, tanh(

+H, sech?

2ﬁx

6m1x
x[0.7sin +0.6 sin (—L—)] (8b)

was also experimented with.
Initial condition (I) initially has energy in wave number

one in the x-direction, whereas initial condition (II) initially
contains energy in wave numbers onc and three in the
x-direction.

* Initial condition (1I) was employed by Gerrity et al.#3
with a fourth-order accurate space differencing scheme
and by Cullen® with a finite element scheme and thus
provides a basis for comparison.

Formulation of finite-element model

We approxinmate the shallow-water equations model (equa-
tions la—1c) by the Galerkin FEM. The rectangular domain
is subdivided into triangular clements forming a regular
grid. Lincar piccewise polynomial interpolation functions
were employed to save computing time and also for the



sake of simplicity. Over a given triangular element, each
variable was represented as a linear sum of the interpolation
functions, i.e.:

Uy = 23: ui () v; (12)

=

where 1;(r) represents the scalar nodal value of the variable
1 at the node j of the triangular element and v; is the basis
function (interpolation functlon) which can be defined by
the coordinates of the nodes.

The advection terms in the continuity equation (Ic) are
usually integrated by parts (using Green’s theorem) to shift
from derivatives of the variable to derivatives of the basis
function.

This permits the use of basis functions with lower-order
interelement continuity and often offers a convenient way
of introducing the natural boundary conditions that must
be satisfied on some portion of the boundary.

This integration gives:

<a_¢ V> . “ - < ‘?K>
a[ 3 i 1 o y (¢ll), ax
D / aV’ _
+f( . dx — Q@w), $> =0 (13)

where the notation:

M
(f(x,y), V’.)zz fJ f(x’y)[/idxdy

element

f f(x,3) V; dx dy (14)

global

defines the inner product when a function is multiplied by
the trial function. Taking info account the cyclic boundary
conditions in the x-direction and the boundary condition
on v, the component of velocity in the y-direction, the
second and fourth terms of equation (13) vanish.

The final expression for the continuity equation is:

)~ (6025~ (0.2 =0 as
ar’t o) o <(¢v)’ ay )

Following the Galerkin FEM, the momentum equations
(1a) and (1b) become:
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We assume that over an elemént the same basis functions
V apply for the 1, v, unknowns, i.e.:

3
u=Yy )V

i=1
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%)V (18)

<
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M
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i

where u;(2), v,-(t), ¢(¢) are the time-dependent nodal
values of the variables «, v, ¢ respectively.

Upon substituting these expressions into equations (15)
to (17) one obtains:
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=
=
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k—_aVi> =0 (21)

Time integration

The time-extrapolated Crank —Nicolson method was used to
integrate in time the system of ordinary differential equa-
tions resulting from the application of the Galerkin FEM to
the shallow-water equations model.

In this method, previously used by Douglas and
Dupont,!5 Wang er al.,2 Neuman1¢ and Hinsman,!2 an
average is taken at time levels N and N +1 of the expressions
involving space derivatives, while the nonlinear advective
terms are quasilinearized by estimating them at time level
N+ % using the following second-order approximation in
time:

llN+!'[2 =ll*=-3-llN % N-t +0(At2)
oV HU2 =px = 39N 15N -1 1 0(Ar2) (22)

g TVE =g = 2N — SoV ! +0(ar?)

The shallow-water equations system was coupled at cvery
time step, i.e. the solution of each equation after one
iteration at a given time step was used to solve the other
two equations for the same iteration for the same time step.

It was found experimentally that coupling the equations
makes it possible to extend the allowable time step, in
contrast to an uncoupled system.

The advantage of coupling the three equations at any
one time step would be that the equations would be more
accurate and consistent and larger time steps would be
possible.1?
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Upon introducing time discretization into the continuity
equation (19), which is the first to be solved at a given time
step, one obtains:

((¢ll+l ¢”)VI7 V)

At [<n+l * aV’> < aVl
—-— LAV, — )+ @ iy, ,—>]
5 ¢} kYivk ax J kK"K y
- u ViV, — v VV,— =0

2 ¢i 1k Vi ox ¢ k ay

(23)

By defining the matrices:

M=ﬂV,-V,-dA

and:
< * aV’ [ & a V’
K, =J ViViui — dA4 + ,UV’VI‘U" — d4 (24)
ox oy
A
the continuity equation can be written as:
At
M =) - Ki(gf "+ i) =0 (25)

Introducing time discretization in the same way into the
momentum equations (20) and (21), one obtains:
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and:
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Using the matrix definitions:

av; av;
K2 =fJ‘11kan— dA +J‘f'l)kaVi"_ dA
ox ’ oy

A

oV
1\21=J ¢k'—kVid:4 (28)
ox
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A
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the #z-momentum equation becomes:

M@ —uh +£t1\' @V ulh
J i 5 T2V J

(K" FLHKS) + AP, =0 (29)

where:

Klzll+l ff¢ll+l

while by defining:

oV
Ky = Uu"“V a—’l’dA+fkal’ —d
Ksy fquk G31)

P3 =f fllz+]VkV,'dA
A

V d4 etc. (30)

AN

The v-momentum equation becomes:

At
M(v}'“ n)+ 2 K (vn+l+vn)

(I\""rl +K3)+AtPy =0 (32)

In order to implement boundary conditions in the
Galerkin FEM we have here adopted an approach suggested
by Payne and Irons!® and mentioned by Huebner.17 This
approach consists of modifying the diagonal terms of the
global matrix associated with the nodal variables by multi-
plying them by a large number, say 106 (chosen with a
view to the significant number of digits possible with the
given computer and the size of the field variables), while
the corresponding term in the right-hand vector R in the
system of linear equations:

KX =R (33)

where X is the global matrix, is replaced by the specified
boundary nodal variable multiplied by the same large
factor times the corresponding diagonal term. This pro-
cedure is repeated until all prescribed boundary nodal
variables have been treated.

After these modifications have been made, it is possible
to proceed with the solution of the set of equations, using
the modified matrix X and the modified vector R.

For instance, if in the matrix K we wish to implement
the boundary condition:

X, =B,
Then the modification is:
_ 2 4 r _
kn\ kia kv | ]x1 R,
\\\ X2 R2
kn k2 K10 Ky | [x |7 |Bk,e10%
kvt ko IWN xv| |Rw
| _ . |

If the rth equation is then considered it can be observed



that the desired boundary condition has been imposed as:
kpXy thkox 4. +k, 100, + .. +kovxy
= 6rkrr 1 0 16

X, =8,
Since:
kyi <k, 10 i=1,2,...,N

The global (V x V) coefficient matrix generated by the
assembly process is very sparse, as the maximum number
of triangles incident on any one point is six. Therefore each
row in the global V x N matrix has at most seven entrics
and it is an advantage to store the global matrix in a com-
pact manner to save fast-core storage. An efficient scheme
was devised to compact the (V x M) matrix into an (V x 7)
matrix (see also Hinsman'2 and Navon and Miiller'?).

The method adopted in this paper for solving the system
of linear equations was the iterative one of Gauss—Seidel
which has the virtue of simplicity and requires only
diagonal dominance of the coefficient matrix.

i#r

Finite element method with the CM, LM and GMM
mass matrix schemes

In the previous section we saw that the application of the
Galerkin FEM to the shallow-water equations model reduced
the problem to solving a sct of matrix equations whose
term involving derivatives of time is the mass matrix Af
(equation (24)).

Using linear basis functions over triangular elements
and introducing the well known area coordinates2? one
can obtain exact integrations using the following formula
for area integrals?!;

alble!
f f LALSLS dxdy = ————— (34)
(@at+b+c+2)!
A
The mass-element (3 x 3) matrix is then:
2 1 1
=— 2 1 35

M= (35)

1 1 2

where A is the area of the element triangle.

The assembled mass matrix is called the consistent mass
matrix 1. A lumped-mass element matrix Af; is ofie in
which the mass of the elements is equally distributed at the
three corner nodes. By lumping the element mass matrix
before assembling the elements, a diagonal global mass
matrix A is obtained.

The convenience of employing a lumped-mass system
is that Af; is a diagonal matrix and its inverse is immediate.
Isihara?2 proposed a generalized mixed-mass (GMM)
scheme for a second-order hyperbolic wave equation.

He defines the GMM mass matrix as:

Mg =ad+(1 —a)MM;
where ais a parameter such that:
0<ax<|

The GMM scheme includes the CM scheme (a = 1) and the
LM scheme (e =0).

All three mass schemes were used in the numerical
experiments in which the accuracy of each scheme was

(36)
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compared with that of a highly accurate nonlinear ADI
finite difference model duc to Gustafsson?3 when the same
test problem was solved, as well as by integrating the same
models with double resolution in both space dimensions.

Lumped mass matrices - convergence and
accuracy considerations

The use of lumped or diagonal mass matrices has been first
adopted for its considerable computational convenicnce.
Key and Beisinger,** Hinton er al.45 among others have
experimented with different lumping schemes, which often
give improved results over those attainable with consistent
mass matrix formulations.*? Fried37 and Fried and Malkus3?
have shown such schemes for several finite elements and
demonstrated not only that convergence order is maintained,
but that the accuracy is often improved.

An important thecorem concerning the order of numerical
integration which does not affect the convergence rate when
using lumped mass matrices states that if p is the order of
polynomials used in the shape functions and m the order
of differentiation present in the variational functional, then
any integration exact to the order of 2(p —m) will not
affect the rate of convergence.

If thus an integration scheme which uses only nodal
points for sampling is devised and which possesses the
correct order of integration, then the lumping process will
not affect the convergence rate.

Fujii3! as well as Oden and Fost3® show that for non-
linear hyperbolic equations the use of the lumped mass
formulation results, for regular space grids, in an increase
of /3in the time-step allowed by stability criteria of
Courant—~Friedrichs—Levy (CFL), while the same rates of
convergence for the consistent mass formulation are also
obtained for the lumped mass formulation. Tong33 has
observed the added stability with lumping for hyperbolic
problems.

Mock3% observed that in hyperbaolic problems it is the
direction rather than the magnitude of the lumping per-
turbation which is important and lumping is intimately
related to the stability of the methods we construct. He
also showed that lumping the mass matrix is achieved by
the addition of a differential operator which for smooth
splines is dissipative and strongly enhances the stability
properties of the discretization scheme. This is achieved
by broadening the domain of dependence of the discrete
solution, which, in view of the Courant--Friedrichs—Levy
criteria, is also in the direction of increasing the stability.

The same approach was used by Holtz.40 Schreyer3s
proposed a new approach to obtain consistent mass
matrices through the combined use of orthogonal base
functions and a mixed variational formulation.

Linear stability analysis

In order to gain some insight into the behaviour of our
finite-element numerical solution of the shallow-water
equations model we shall examine the FEM discretized
equations of a one-dimensional simple system with gravity
waves, ie.:

37

ot ox ox
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A linearized form of equations (37) obtained by applying
a perturbation technique, is:

au ou 99

—+U—+—=0

at ox  ox

(38)

0 ou  _ou

—+U—+¢—=

ot ox ox
where U is the constant basic flow speed and ¢ the mean
geopotential.

Using a regular one-dimensional finite-clement grid in

space, with linear basis functions, the expansions for ¢ and
u in terms of the basis functions can be made such that:

M
u= 3y u(t)Vy(x)
=1

(39)
M

=3 ¢()Vix)
j=1

where w;(¢) and ¢;(¢) arc the approximations to « and ¢
respectively at node j and time z, and V;(x) is the basis
function associated with node j.

The nodes are assumed to have been numbered con-
secutively, with nodej + 1 adjacent to node j in the positive
x-direction. Application of Galerkin’s method to the
system (38) by weighting with respect to the ith basis
function, yields:

Z f[¢'Vl +U¢, V+¢u,£V]dx 0
i=1 dr d
(40)

du, dv; V,
Z VV+Vu, V+¢, Vildx=0
dx

(41
Denoting the length of each element by Ax, the various
integrals are non-zero only forj=i—1,7iori+1,and
integrating we obtain:
l(% ‘4 d¢ +d¢i+1) N U¢i+1 —¢i—1
6\ dr dr ds 2Ax

Uiy U
+¢p ———=0 (42
¢ 24Ax “42)
1 (du,-_l+4gi,-+du,-+l) N Uu,-+l—ll,-f.|
6 \ dt dt dt 2Ax
+¢i+1_¢i—1=0 3)
2Ax

Introducing the extrapolated Crank—Nicolson time-differ-
encing scheme while the time derivatives are finite-differ-
enced over the time step Az, we have (taking into account
coupling between equations (42) and (43)):

n+1 n n+1 n 71 +1 7t
_1_[¢i—'l_¢i—l+.4¢i —¢i+¢i+1 ¢.+|]

6 At At At
[¢:’+*1‘ T i ¢$'_1]
2 2Ax 2Ax
b [(Bul,  — i) 3ul_ —
2[( P —uiy ) = Gui 1)]___0(44)
2 2Ax
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n+l n+l n n+1 n

1 Ui _y —u, U U Uiy, — U
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+4 + ]

6 At At At
1 1
+(_/[“:I++1 —uyl +U:'l+1 _“:'1—1]
2 2Ax 248x
1 1
L [¢?J‘, — ¢ Sl =9l ] o 45)
2 2Ax 2Ax
For « and ¢ we take Fourier components:
u=u® exp(iwr +ikx) (46)
¢ = ¢% exp(iwt + ikx) 47)

where % and ¢° are the amplitudes; k = 2#/L is the wave
number; L is the wave length; w = kc is the frequency and
¢ is the phase speed.

Inserting (46) and (47) into equations (44) and (45)
(and using the notation exp iwt = \), one obtains:

1
A (A —1)[exp(—ikAx) + 4 + exp(ikAx)] ¢°

U
+—— (A +1)[exp(ikAx) — exp(—ikAx)] ¢°
4Ax

+i(3 — A Y[exp(ikAx) — exp(~ikAx)]u® =0

4Ax
(48)

67()\ —D[exp(—ikAx) +4 +exp(ikAx)]u®

U
+—— (A +1)[exp(ikAx) — exp(—ikAx)]u®
4Ax

+ 4Tlx (A + l)[cxp(ikAx) — exp(_ikAx)]¢0 =0
(49)

Using basic trigonometric identities, equations (48) and
(49) can be simplified to take the form:

5()\ —1)[2 cos(kAx) + 4] ¢°

v (A +1)[2i sinkAx] ¢°
+ — + 1s1n X
4Ax

+i [((3—A"1) 2isinkAx]u®=0 (50)
4Ax

1

— (A= 1)[2 cos(kAx) + 4]u®

6At( ) (kAx) +4]
+ v (A +1)[2i sinkAx]u®
— 1SINKAX U
4Ax

1
+—— (A +1)[2i sinkAx]¢° =0 (51
4Ax

There are two equations in the two coefficients ¢° and ®,
which can be eliminated to obtain an expression for A
which is the eigenvalue of the amplification matrix. The
well known"Von Neumann necessary condition for stability
states that for all wave numbers the eigenvalues A; of the
amplification matrix must satisfy:

[N 1< 1+0(Ar)



By equating the determinant of the two equations to
zero,ie.:

1 ¢
— (A—D(cos(kAx)+2) ——@B—-ADisinkAx
3At( )(cos(kAx) +2) 2Ax( )
U
+—— (A+1)isinkAx
2Ax

1
—— (A +1)isinkAx
2Ax

i (A= D(cos(kAx)+2)

U
+——(A+1)isinkAx
2Ax

] (52)

a complex cubic equation for X — the eigenvalues of the
amplification matrix — is obtained as follows:

3 4Ax? 2 2.2
p\ oAr (cos(kAx) +2)° — U*sin*kAx

4Ax '
+ilU A (coskAx sinkAx +2 sinkAx)]
14

,[—8Ax? 5
+A e (cos(kAx) +2)

—2U%sin2kAx + 3¢ sinzkAx]
\ [4Ax2 (cos(kdx) + 2 — iU 4Ax
+ COS{RAX L)y —Ww —
9412 3At

x (coskAx sinkAx +2 sinkAx) — U%sin?kAx

+2¢ sin’kAx | — ¢ sin*kAx =0 (53)
This equation was solved numerically for the roots A
using & computer subroutine (CO 2A DF OF NAG library,
Vol. 1) and various values of the wavelength L ranging from

100km to 5000 km. The time step employed was At =
1800s, while the constants U and ¢ were:

U=30ms™? ¢=2x10"m?s2 (54)

The space interval was Ax =400 km. The results are
presented in Table 1. Here the solutions associated with
X; and A, are physical modes, while the solution associated
with A3 is a computational mode.

The results suggest a numerical behaviour similar to that
when the Adams—Bashforth time-differencing scheme is
used, i.e.:

Un+l = U(n) +At(—g-f(") _%f(n—l)) (55)
when the equation:

dU

T f(U,1) (56)

is solved. If we take f=iwU, equation (56) describes the
oscillation equation (see Mesinger and Arakawa24) and its
eigenvalues are:
Mi=1+ipt
Mol=ip+...

-

27
P = WAl =kcAt = f cAt (58)

Except for wavelengths less than L = 600 km, the scheme
is stable.
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A similar analysis was conducted for the lumped-mass
scheme. The equations for ¢° and #° corresponding to
equations (48) and (49) are:

U
(A—1¢%+ e (A + D [exp(ikAx) — exp(—ikAx)] ¢°
X

+ 2 (3 —N"YH[exp(ikAx) — exp(—ikAx)]ul =
4Ax
(59)

U
(A—Du®+ 4? (A + D) [exp(ikAx — exp(—ikAx)]u®
x

1
+—— (A +1)[exp(ikAx) — exp(—ikAx)]¢° =0
4Ax
(60)
The resulting complex cubic equation for A = exp (icw?) is:

2

X [4A,v
ar?

2 .2 4Ax
—U*sinkAx + — iU sinkAx
At
oA 2

Ax -
+ }\2[ Ve —2U%sinfkAx + 3¢ sinzkAx]

4Ax2 s s 4Ax
+A 3 —U*sin"kAx — ——iUsinkAx
At At

+ 2$sinzkAx] — ¢sin’kAx =0 (61)

The results obtained for various wavelengths L when the
same constants were used as for the consistent mass
scheme linear analysis, and the same computer subroutine
was used to solve numerically for the roots of A, are sum-
marized in Table 2.

The results of a similar analysis of the generalized mixed
mass scheme (equation (36)) with the same constants and
a=0.5 are summarized in Table 3.

Accuracy tests

The three mass matrix schemes CM, LM and GMM were
used for comparing the accuracy of the Galerkin FEM with
that of a highly accurate nonlinear ADI finite difference
method due to Gustafsson.23

Table 1 Variation of eigenvalues of amplification matrix as
function of wavelength (L) for consistent mass method

L (km) )\1 }‘z }‘3
100 1.156 1.066 0.1784
200 1.085 1.030 0.1373
300 1.019 1.006 0.06872
400 1.006 1.002 0.03953
500 1.002 1.001 0.02046
600 1.001 1.000 0.01772
700 1.001 1.000 0.01303
800 1.000 1.000 0.009983
900 1.000 1.000 0.007890
1000 1.000 1.000 0.006392
1200 1.000 1.000 0.004440
1500 1.000 1.000 0.002842
2000 1.000 1.000 0.001599
3000 1.000 1.000 0.7106 x 1073
4000 1.000 1.000 0.2997 x107?
5000 1.000 1.000 0.2558 x 1073
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Table 2 Variation of eigenvalues of amplification matrix as
function of wavelength (L) for lumped mass method

L (km) A, A, A,
100 1.0046 1.0013 0.034722
200 1.0318 1.0098 0.087540
300 1.0118 1.0034 0.054936
400 1.0045 1.0013 0.034722
500 1.0020 1.0005 0.023413
600 1.0010 1.0003 0.016715
700 1.0005 1.0001 0.012484
800 1.0003 1.0000 0.96601 x 102
900 1.0002 1.0000 0.76878 x 10°?

1000 1.0001 1.0000 0.62590 x 10°?
1200 1.0000 1.0000 0.43755 x 1072
1500 1.0000 1.0000 0.28154 x 1072
2000 1.0000 1.0000 0.15903 x 10°?
3000 1.0000 1.0000 0.708926 x 107
4000 1.0000 1.0000 0.399186 x 1073
5000 1.0000 1.0000 027732 x 1072

Table 3 Variation of eigenvalues of amplification matrix as
function of wavelength {L) for GMM method

L (km) A, A, A,
100 1.1737 1.0827 0.18880
200 1.4015 1.2654 0.25432
300 1.1858 1.0846 0.19199
400 1.0799 1.0281 0.13341
500 1.0362 1.0112 0.09305
600 1.0180 1.0053 0.06718
700 1.0008 1.0028 0.05032
800 1.0057 1.0016 0.03895
900 1.0036 1.0010 0.03098
1000 1.0022 1.0006 0.02520
1200 1.0011 1.0003 0.01759
1500 1.0004 1.0001 0.01130
2000 1.0001 1.0000 0.6375 x 1072
3000 1.0000 1.0000 0.2838 x 10°?
4000 1.0000 1.0000 0.1597 x10°?
5000 1.0000 1.0000 0.1109 x 10°?

In order to obtain the difference between the true
solution and the approximate solution, it was assumed
that the true solution of the shallow-water equations
model was represented by w3, where w is the vector
equation given by equation (5) and QN3 is a quasi-Newton
method of solution for the nonlinear ADI finite-difference
method 19,23

Representing the Galerkin FEM solution by wg the
error is given by:

€G T WG T WQN3 (62)
and the relative error by:
legll/Ihwonsll (63)

where the norm {] {] is defined as follows.
Define a Hilbert space H by considering all vector
functions satisfying:
Wig = Wi N +k Yio~ vi.f\'y =0
The inner product of two vectors a, 8 and the norm is
defined by:

Ne (Ny=1
(o, f) = Ax Ay Z{ Y 9Bk
i1 K=
T
+3(ojoBjo + ajn, Biv,) ©5)
lladl? = (@, @)
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where:
NyAx=L NpAy =D (66)

and L and D are given by equation (10).

The test problem of equation (8) was now solved, using
the coupled Galerkin FEM with the three different mass-
matrix schemes and with Ax = Ay =400 km and a time-
step Ar = 30 min. The comparative results summarized in
Table 4 were then obtained by employing the QN3 non-
linear ADI Gustafsson method with identical data, and
integrating for 2 days.

It is evident from the results that the run (LM) —i.e.
that in which the masses were lumped - is less accurate
than the CM scheme. The accuracy of the generalized mixed
mass (GM>M) scheme with & = 0.5 is, however, greater than
that of both the LM and CM schemes. For the sake of
comparison, the accuracy is also shown of the result
obtained by using the nonlincar ADI finite-difference
method with one nonlinear iteration per time-step (QNEX1]
and with the LU decomposition of the Jacobian matrix J
updated every 12 time-steps.23.25

Another set of accuracy tests was conducted by inte-
grating the same finite element models with double resolu-
tion in both space dimensions (Ax = Ay =200 km) and a
time-step ¢ = 15 min, and assuming the refined grid FEM
solution to be the true solution. Representing the coarse
mesh Galerkin FEM solution by Ws and the Galerkin FEM
refined mesh solution by We, the error is given by:

€6 ° h,G - ”I[:G (67)

with the norm defined by equation (65).
The comparative results summarized in Table 5 were
then obtained after a 2 days’ numerical integration.

Accuracy merits of the GMM scheme — tentative
explanation

Although error analyses for thg GMM method applied to
hyperbolic partial differential equations exist22:29:30 they
are ail of the form

llerror || < C (W% + Ar?) (68)

where Cis a constant independent of /1 and At, not known
a priori, and do not directly suggest an explanation of the
fact that the GMM scheme is most accurate.

Table 4 Error between approximate and true solution for different
finite-element methods

Relative error | €gli/Ilwagnsll, t = 2 days,

Method At = 1800s, resolution Ax = Ay =400 km
CM 45 x107*
LM 52 x10™*
GMM (o =0.5) 1.1 x10™°
QNEX1 (M = 12) 4.1 x10™

Table 5 Error between approximate and true solution for different
finite-element methods

Relative error Il €gll/Ilwgnall, t = 2 days,
At =900s, resolution of fine mesh

Method Ax = Ay =200km
CcM 3.7 x10™*
LM 46 x10°¢
GMM (o = 0.5) 08 x107*




A tentative explanation is to be found in a survey paper
by Morton.#! Remarking about the significance of the role
of the mass matrix in assessment of accuracy, Morton
points out that for regular linear elements, the coefficients
of the mass matrix (%_, %, %) correspond to an operator
(1+82/6) acting on U; where:

83 U= Upsy —2U + Uj_4 (69)

The operator (1 + §2/6) is often inverted by iteration, and
gives a Numerov-type scheme which is fourth-order accurate
in space. The approximation:

(1 + %)_l (1 - 5—6’2‘-) +0(i%)

which is characteristic of fourth-order compact difference
schemes is equivalent to a ‘half-lumped’ mass matrix
(Morton®!), This connects the GMM mass scheme with
the fourth-order compact implicit schemes*®*7 and
explains its higher accuracy.

It is worthwhile to note at this point that Ishihara22,29,30
finds that the CM mass scheme gives the upper bound and
the LM mass scheme gives the lower bound for the exact
values of the solution. The numerical results obtained by
Ishihara with & = 0.5 for the GMM scheme give approxima-
tions located between the CM and LM scheme results.
Donea et al.38 solving an advection diffusion problem
proposed a two-stage explicit technique which resembles
the GMM scheme. In their approach a lumped mass matrix
is used to derive a first approximation of the time-
derivatives:

(70)

i~

]
(T'I)l A—Iii
where Mj; is the lumped mass matrix and {F }are global
load nodes accounting for convection, diffusion and
boundary contributions.
Then a second approximation is sought by using the
consistent mass matrix Mj;:

Fy— 3 My(Tp
j#i
M;;

The final values of the time derivatives are computed as
a weighted average of the above approximations:

{TY=7{T} +(1 =T} (73)

Donea er 4l.38 found by a one-dimensional analysis of the
numerical phase speeds and using numerical experimenta-
tion, that the optimum value of y is 0.5,

(71)

(T, = (72)

Results

Many tests were run with the three different FEM mass
schemes and various time steps. A guideline for the success
of the model was the conservation of the two integral
invariants of the shallow-water equations model, viz. the
total energy and the average height.

We expected an approximate linear stability criterion
of the form:

At
c— <0.707
Ax

due to the Courant—Friedrichs—Levy (CFL) criterion,

Simulation of shallow-water equations maodel: [. M. Navon

where ¢ is the phase speed of the fastest gravity waves and
Ax the minimum Ax in the finite-element grid:

c=+gh=+2-10> ms™!}
and:
Ax =400 km

the maximum allowable time step is 30 min.

The coupled Galerkin FEM using the CM mass scheme
and a time step of 40 min became unstable after 48 h but
when a time step of 35 min was used, yielded stable integra-
tions for up to 5 days.

Figure 1 shows the initial height field contours drawn
at 50 m intervals for initial condition (I).

Figures 2—4 show the height field after 2, 6 and 10 days
of simulation respectively, using the CM mass scheme
with a time-step of At =2100sec.

The coupled Galerkin FEM using the LM scheme with
a 50-min time step became unstable after 31 h but yielded
stable long-term integrations when the time step was
reduced to 45 min,

Figures 57 show the height field after 1.5,3 and 5
days of simulation respectively, using the LM mass matrix
scheme with initial condition (I) and a time step of ¢ =45
min. The coupled Galerkin FEM with the GMM mass scheme
gave long-term stable integrations only when a time step of
30 min was employed.

The height field after 2 and 5 days of simulation (respec-
tively) using the GMM mass matrix scheme is shown in
Figures 8 and 9 respectively. A time step of Ar = 30 min
was used.

A test was also conducted by running an uncoupled
version of the Galerkin FEM. The uncoupled model re-
mained stable with a 15-min time step, but became unstable
after 24 h when a 20-min time step was used.

In all cases the onset of instability was marked by a
sudden increase in the total energy, and the solutions ‘blew
up’ regardless of the iteration technigue.

All the figures in this paper display isoline contour plots
of the height field, with a contour interval of 50 m.

Another set of numerical experiments was conducted,
using this time the initial height field condition (II) of
Grammeltvedt (equation (8b)) and only for the GMM mass
scheme,

M

Figure 1 Initial height field contours (every 50 m)}. Ax = Ay =
400 km; Himean = 2000 m; Eyqy = 6.2504 x 10%°, CM scheme
initial condition (IC) 1
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Figure 2 Height field contours after 2 days. Ax = Ay = 400 km;
At = 1800 sec; Hpean = 1998.38m; £,5¢ = 6.2413 x 10%;
CM scheme IC 1

:___//%/&

1800

Figure 5 Height field contours after 36 h. Ax = Ay = 400 km;
At = 2700 sec; Hean = 1998.78 m; £t = 6.2404 x 10%°;

LM scheme; IC1

N

L 1 1 1 3 1 : 1 Il 2 1 1 1 ] 1

Figure 3 Height field contours after 6 days. Ax = Ay = 400 km;
At = 1800sec; Hinean = 1998.32m; E o = 6.2463 x 10%;
CM scheme IC 1

1800

Figure 6 Height field contours after 3 days. Ax = Ay =400 km;
At = 2700 sec; Hean = 1998.35m; Eqq = 6.2416 x 10%;

LM scheme; IC 1

1800

1800

. ) 1 1 1 1 1 I 1 1 1 1 1 1 1
Figure 4 Height field contours after 10 days. Ax = Ay = 400 km;

At =1800sec; Hyean = 1999.05m; £, = 6.2529 x 10%%;

CM scheme; IC 1
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2100

[ 1 1 1 [

Figure 7 Height field contours after 5 days. Ax = Ay = 400km;
At = 2700 sec; Hyean = 2001.43m; £ = 6.2535 x 10%%;

LM scheme; IC1
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Figure 8 Height field contours after 2 days. Ax = Ay = 400 km;
At =1800sec; Hpean = 1998.15m; E4qy = 6.2426 x 10%°;
GMM scheme; IC 1

T

1 1 1 ] 1 1 1 ] 1 I 1 ] 1 1 ] 1

Figure 9 Height field contours after 6 days. Ax = Ay =400 km;
At = 1800sec; Hpean = 1997.43m; Eio¢ = 6.2375 x 10%°;
GMM scheme; IC 1

1800

2200

1 1 1 1 1 1 1 1 1 1 1 1 1 Il 1

Figure 10 Initial height field contours (every 50m}. Ax = Ay =.
400km; Hmean = 2000m; Eqoq = 6.2613 x 10%°.1C 2
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Figure 10 shows the initial height field contours drawn
at 50 m intervals for initial condition (I1).

We then compared our results with the results of Gerrity
et al.3? after 2 days, and also with the results obtained by
Cullen.® Table 6 gives the extreme amplitude values of the
height field in each trough and ridge at the midpoint of the
channel after 2 days for different methods, including a
fourth-order compact method due to Navon e al*S

Table 7 gives the corresponding positions as a fraction
of the distancc along the channel of the corresponding
extreme values of troughs and ridges for the different
methods. Figure 11 shows the height ficld after 2 days of
integration using the GMM mass matrix scheme in conjunc-
tion with initial condition (II) with a time step of Ar =
1800 scc. The results obtained show that the FEM inte-
grations using the GMM mass matrix scheme match the
Gerrity results with a spatial resolution A x = 100 km as far
as the amplitudes and the detailed positions of the troughs
and ridges are concerned.

A good correspondence with the Cullen® two-stage
Galerkin FEM and the compact fourth-order ADI method
is observed.

Conclusions

A method for solving the nonlincar shallow-water equations
using finite elements has been applied to a limited-area
domain.

For the particular data used for comparison, it was
experimentally found that the most accurate method was
the coupled Galerkin FEM employing a gencralized mixed
mass (GMM) for the time (imass) matrix.

Table 6 Amplitudes (after 2 days) in decametres

Amplitude of troughs and ridges

Method in middle of channel

FEM with

GMM mass matrix scheme
{Ax = Ay = 400 km)

Finite element {Ax =Ay =
400 km) using the two-stage
Galerkin method {Cullin®)

Finite difference (Ax = 100 km)
(Gerrity et al.43)

Compact fourth-order ADI
method (Ax = Ay =200 km)
(Navon and Riphagen®®) 208

210 204 207 192 197 187

204 205 193 197 186

208 204 206 192 197 189

204 207 193 198 189

Table 7 Phases after 2 days

Method Phases

FEM with

GMM mass matrix scheme
{Ax = Ay =400 km)
Finite element (Ax = Ay
=400 km) using the
two-stage Galerkin
method (CulienS} 0.225 0.419 0.475 0.668 0.775 0968
Finite difference {(ax =
Ay = 100km}
(Gerrity et a/.%3)
Compact fourth-order
ADI method (Ax = Ay
=200 km) (Navon and
Riphagen?6) 0.225 0.373 0.497 0.716 0.854 1.000

0.221 0410 0500 0.689 0.812 0986

0.235 0.399 0.499 0.730 0.857 1.000
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N s

1800

Figure 11 Height field contours after 2 days. Ax = Ay =400km,
At = 1800sec. Hyean = 1999.98 m; £t = 6.2564 x 10%%;
GMM scheme; IC 2

When the same Galerkin FEM was used with the LM
scheme, the time step could be increased by damping the
short gravity waves, and the procedure proved to be highly
economic in computer time. No other numerical smoothing
or damping was included in the model.

When accuracy was tested by comparison with a highly
accurate nonlinear ADI scheme, the viability of this simple
model was demonstrated, a good degree of accuracy being
achieved although simple linear basis functions were used
on three noded triangles. The computer time was further
reduced by use of a compact storage scheme for sparse
matrices.!?

The accuracy could be improved if the method suggested
by Cullen® were employed, in finite-element approximation
of the products.

A final comment by the author is that the coefficient «
in the GMM scheme should be further optimized and its
connection with rational Padé approximants further
investigated.2?
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