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ABSTRACT

Four-dimensional variational data assimilation (VDA) experiments have been carried out using the adiabatic
version of the NASA/Goddard Laboratory for Atmospheres semi-Lagrangian semi-implicit (SLSI) multilevel
general circulation model. The limited-memory quasi-Newton minimization technique was used to find the
minimum of the cost function. With model-generated observations, different first-guess initial conditions were
used to carry out the experiments. The experiments included randomly perturbed initial conditions, as well as
different weight matrices in the cost function.

The results show that 4D VDA works well with various initial conditions as control variables. Scaling the
gradient of the cost function proves to be an effective method of improving the convergence rate of the VDA
minimization process.

The impacts of the length of the assimilation interval and the time density of the observations on the conver-
gence rate of the minimization have also been investigated. An improved assimilation was obtained when
observations were available in selected segments of the assimilation window. Moreover, our 4D VDA experi-
ments with the SLSI model confirm the results obtained by Navon et al. and Li et al. concerning the impact of
the length of the assimilation window. The choice of an adequate time distribution of observations along with

an appropriate length of assimilation interval is an important issue that will be further investigated.

1. Introduction

The adjoint method has become widely used in var-
iational data assimilation (VDA) experiments and is
soon to be implemented operationally. The method has
been applied by Courtier (1985), Derber (1985),
Lewis and Derber (1985), Le Dimet and Talagrand
(1986), Thacker and Long (1988), and Courtier and
Talagrand (1990) to barotropic models. Recently it has
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been extended and applied to various three-dimen-
sional primitive equation models such as the National
Meteorological Center (NMC) spectral model, the Eur-
opean Centre for Medium-Range Weather Forecasts
(ECMWEF) spectral model, as well as to the National
Aeronautics and Space Administration/Goddard Lab-
oratory for Atmospheres (NASA/GLA) fourth-order
A-grid finite-difference model, by Navon et al. (1990,
1992), Thépaut and Courtier (1991), and Chao and
Chang (1992), respectively. Extensions to operational
models, including segments of the physical packages,
have recently been implemented successfully by Zou
et al. (1993). Thépaut et al. (1993) have conducted
VDA experiments with conventional observations and
have carried out a comparison with optimal interpola-
tion (OI), showing the advantage of 4D VDA. Ehren-
dorfer (1992) has compared VDA and Kalman filtering
for idealized cases and has shown VDA to be advan-
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tageous compared with Kalman filtering. The conclu-
sions from these studies are very encouraging and con-
stitute a major step toward operational application of
the adjoint method using real data.

Due to the iterative nature of the large-scale uncon-
strained minimization process required by the adjoint
method, which necessitates repeated integrations of the
model and its adjoint over the span of the assimilation
window, computational efficiency in integrating the
model is one of the crucial factors determining opera-
tional application. One approach to this problem is to
seek a temporal discretization scheme allowing the use
of large time steps without introducing computational
instability. Following the early work of Wiin-Nielsen
(1959) and Krishnamurti (1962), a vast amount of re-
search (Robert 1981, 1982; Bates and McDonald 1982;
McDonald and Bates 1987, 1989; Ritchie 1988; C6té
and Staniforth 1988; Staniforth and C6té 1991; Bates
et al. 1990; Bates et al. 1993) has been dedicated to the
semi-Lagrangian approach. Using semi-Lagrangian
semi-implicit schemes, one may obtain practically un-
conditional computational stability (Robert 1981,
1982) for the time integration. A semi-Lagrangian
scheme has been adopted for the moisture equation in
the new National Center for Atmospheric Research
Community Climate Model (CCM2), following the
work of Williamson and Rasch (1989) and Rasch and
Williamson (1990), and has been shown to contribute
to an improved climate model (Rasch and Williamson
1991). A semi-Lagrangian spectral general circulation
model (GCM) (Ritchie 1991) has been introduced for
operational use in Canada, and a modified version of it
has been adopted for operational use at ECMWF (Hor-
tal and Simmons 1991; Simmons 1991; Temperton
1991). It is therefore natural to attempt to take advan-
tage of the semi-Lagrangian semi-implicit scheme
when performing 4D variational data assimilation.

However, a number of problems need to be solved
in this area of research. An initial effort in this direction
was conducted by Li et al. (1991, 1993), who derived
the adjoint model for the semi-Lagrangian semi-im-
plicit (SLSI) two-time-level finite-difference shallow-
water equations model of Bates et al. (1990) (to be
referred to as the BSHB model hereafter). This model
used the direct solver of Moorthi and Higgins (1993).
It was concluded that the adjoint derivation can pro-
ceed, despite the fact that the interpolations seem to
involve algebraically discontinuous operations, as long
as special treatment is applied during the stage of de-
riving the tangent linear model. It was also shown by
conducting experiments of the ‘‘identical twin’’ type
that the computational efficiency of the semi-Lagran-
gian semi-implicit scheme can be preserved during the
process of minimization. Though the theoretical and
numerical experiments of Li et al. (1993) have shown
that the interpolation routines may limit the validity of
the 2D semi-Lagrangian tangent linear model for large
time steps, thus implying a constraint on either the
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maximum allowable time steps for model integration
or on the length of the assimilation window, the study
has demonstrated a potential advantage of semi-La-
grangian schemes for VDA using the adjoint technique.

Encouraged by the results obtained with the BSHB
global shallow-water model and its adjoint, we ex-
tended our efforts to VDA experiments with the 3D
adiabatic version of the NASA/GLA SLSI GCM de-
veloped by Bates et al. (1993), referred to as the BMH
model hereafter. This paper presents the development
of the 3D adjoint model and its application to a series
of 4D VDA experiments.

A gradient check was conducted to ensure that the
model is correct and can be used to perform the exper-
iments. Impacts of various initial conditions and
weighting matrices in the cost function were examined,
as well as the effects of scaling the gradient. The 4D
VDA experiments performed well with random pertur-
bations. The results of the experiments also suggest
that, for some assimilation problems, performing the
minimization process with appropriate scaling of the
gradient of the cost function allows much improved
convergence rates of the minimization and a better
quality of the assimilation. Additionally, we investigate
in this paper the effects of different lengths of the as-
similation window and the time density of the obser-
vations on the convergence rate of the cost function.

This paper presents the first adjoint model developed
so far for a 3D semi-Lagrangian GCM, which consti-
tutes a test-bed for VDA with such models. The plan
of the paper is as follows. In section 2 we provide a
brief description of the BMH model. The tangent linear
model and its adjoint, as well as a verification check of
their correctness, are provided in sections 3 and 4, re-
spectively. In section 5, we present a series of 4D var-
iational data assimilation experiments and discuss var-
ious issues related to the length of the assimilation in-
terval and the time density of the observations. A
summary and conclusions are presented in section 6.

2. The BMH model

The BMH model is a two-time-level SLSI finite-dif-
ference GCM that uses a o coordinate in the vertical
and regular latitude—longitude coordinates in the hor-
izontal. The vertical discretization is based on a Lorenz
grid (Lorenz 1960), while the horizontal discretization
is based on a fully staggered C grid (Arakawa and
Lamb 1977). In this paper, the horizontal resolution
for the model is (A8, AN) = (4°, 5°) and there are
eight vertical layers. The time step for the integration
is chosen to be 30 min. For further details concerning
the discretized model, we refer to Bates et al. (1993).

3. The tangent linear model

To derive the adjoint model, we need first to linearize
the forward model in the vicinity of a basic state, which
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is on a model trajectory. This leads to the tangent linear
model. The notation used here follows Rabier and
Courtier (1992).

To verify the correctness of the tangent linear model,
we compared the output of each subroutine of the tan-
gent linear model with its counterpart in the original
forward model. To verify the full tangent linear model,

we employed a more quantitative method, described .

herein. A
The evolution of x is given by the integration of the
model M between times ¢, and £, as

x(5,) = M(#,, to)[x(%0)]

= M(1,, to)[%0(t0) + 8x(%)], (3.1)

whereas the first-order evolution of the perturbation
0x(t,) is the result of the integration of the tangent lin-
ear model R:

8x(4,) = R(t,, 10)0x(t0). (3.2)
We then compare the total perturbation
N[éx(to)] = M(tn, to)[Xo(to) + 6x(t0)]

= M(1,, to)[Xo(t0)]  (33)
‘with its linear component

L[6x(t0)] = R(ts, £o)&X(to). (34)
The difference between the two is denoted as
D[6x(%)] = N[6x(0)] — L[6x(%)]. (3.5)

To quantify this comparison, we choose a norm
whose square is defined by

1%l = x"Wx

in accordance with the norm used in the inner product
of the cost function for the data assimilation problem.
The relative difference between the tangent linear
model and the nonlinear forward model is then defined
as the ratio ||D|l/||L}]. We first examine different com-
ponents of ||D||/||L|| according to individual model vari-
ables contributions {u, v, T'/T, (Inp,)’].

- A 48-h model integration was carried out starting
from an ECMWF analysis. The output of this 48-h pre-
paratory integration was then used as the data source
to verify the tangent linear model. As in Rabier and

Courtier (1992), we chose the zonal average fields of

the 48-h preparatory integration as the basic-state initial
condition [Xo(#,)], while the departure of the zonal av-
erage fields multiplied by a variable parameter a serves
as the perturbation of the initial condition 6x(#,). The
amplitudes of the different components-of this pertur-
bation are very large when @ = 1: at the ¢ = 0.26 level,
the zonal wind perturbation reaches up to 38 m s *; at
the ¢ = 0.38 level, the meridional wind perturbation
attains 51 m s~!; that of the temperature at the lowest
o level is about 36 K; and the maximum perturbation
of surface pressure is —429 hPa, due to the orography
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TaBLE 1a. Correlation coefficients between N field and L field.

r
a u v T " (lnp,y
1.0 0.9389941 0.9088381 0.8985242 0.9556994
10 0.9986423 0.9943771 0.9970486 0.9993822
1072 . 0.9981816 0.9988431 0.9659738 0.9993876
1073 0.9999996 0.9999990 0.9999994 0.9999999
107* 1.0000000 0.9999999 1.0000000 1.0000000
1075 1.0000000 1.0000000 1.0000000 1.0000000

of the Tibetan Plateau. The tangent linear model check
with these strongly perturbed initial conditions can
shed light on possible errors. The period of integration
t, is taken to be 12 h.

Table 1a presents the correlation between the N field
and the L field for various values of the parameter ¢,
while Table 1b displays the relative error {|Df|/|[L].
From these tables we see that all correlation coefficients
between the nonlinear output fields N and the linear
output fields L for each of the variable fields exceed
90% and reach values near unity when « is less than
or equal to 0.1. As a decreases, the relative errors de-
crease to very small values. The correlation coefficients
reach to seven- to eight-digit accuracy ¢ close to unity,
and the relative error values are at 107* scale when a
is equal to 10~ or 10™°. These results provide a reli-
able indication about the correctness of the tangent lin-
ear model code.

To assess the impact of the length of the integration
period on the validity of the tangent linear model, we
carried out a check for different lengths, up to 120 h.
For convenience, we averaged the correlation coeffi-
cients of the four model variables and used the norm
defined in (3.6) for [|D|| and ||L|| to calculate the relative
error. The diagonal component values of the weighting
matrix used are W, = 1073 (s2m™2), W, = 1073
(S2 m_z), wT'/T =2 X 103|, and w(lnps)' =5 X 103|
(In"? hPa), respectively. We chose the values of the
parameter « as 1.0, representing a strong perturbation,
and as 0.1, representing the normal perturbation.

Figure 1a presents the correlation coefficients be-
tween the N fields and the L fields for various values
of the parameter a with respect to different lengths of

TABLE 1b. Relative error ||D|/J|L]| (%)-

: T

a . u v T (Inp,)’
1.0 34.85 42.09 4412 2877
107 522 10.63 7.63 344
107 6.05 4.81 - 26.40 "3.44
10 885X 1072 0.14 . 011 441 X 1072
107 277X 107 414X 1072 267%x 107 149 X 1072
10° 171X 1072 216x 1072 138X 102 134 X 1072
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FiG. 1. Correlation coefficient between (a) the N fields and the L
fields, and the relative error (b) |ID|/l|IL{| with respect to integration
periods. Curve 1 corresponds to a = 1, and curve 2 corresponds to
a = 0.1.

the integration period. Figure 1b displays the relative
error ||D||/]IL}] curves. Considering the @ = 0.1 curve
we deduce that the error of the tangent linear model
output is small when normal perturbations are used;
that is, the scales of the perturbations of wind, temper-
ature, and surface pressure are at 10°m s, 10° K, and
10" hPa, respectively. Even for integration periods of
up to 120 h, we find that the correlation coefficient
exceeds 95% and the relative error is 31.76%. These
numerical results show that the tangent linear model
well approximates the nonlinear forward model for up
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to 5 days when the initial perturbations are not too
strong. For strongly perturbed initial conditions (a
= 1), the validity of the tangent linear model decreases
as the length of the integration period is increased. With
these strong perturbations, the validity limit of the tan-
gent linear model is less than 1 day. In general, such
strong perturbations are not encountered in real oper-
ational problems, so we conclude that the tangent linear
model is a good approximation for the nonlinear for-
ward modeling process.

4. Adjoint model development

We chose the cost function J as follows:
R
1 obs
JX ()] =5 3 [X(8) = X))
r=0

X W)X () - X*(1)], (4.1)

where X (¢,) is the N {= M(3K + 1)] component vec-
tor containing values of [u, v, T'/T, (Inp,)’'], with
which the BMH model is initialized, over all grid points
and at all vertical levels at time ¢,; M is the number of
grid points at each vertical level; K is the number of
vertical levels; R is the number of time levels for the
analyzed fields in the assimilation window; ¢, is a cer-
tain observation time in the assimilation window;
X°(t,) is the N-component vector of analyzed values
of X over all grid points on all levels at time ¢,; and
W(z,) is an N X N diagonal weighting matrix, where
W,, W,, Wy 7, and W,,,,, are diagonal submatrices
consisting of weighting factors for each variable, re-
spectively. Their respective values (as used in gradient
check calculation) are W, = 107% (s’m™2), W,
= 10—3| (52 m_z), and WT//f = 101|, w(lnps)' = 1013
(In~? hPa).

Developing an adjoint model consists of linearizing
the forward model and constructing the adjoint opera-
tors from the tangent linear model. With the adjoint
model, one obtains the value of the gradient of the cost
function with respect to the initial conditions by inte-
grating the nonlinear model forward in time and its
adjoint backward in time. For a detailed derivation of
the adjoint model and the verification of its correctness,
see Navon et al. (1992). A complete discussion related
to the special problems of managing adjoint calcula-
tions for the grid interpolations in the semi-Lagrangian
model is presented in the paper of Li et al. (1993).
Since the BMH model consists of thousands of lines of
code, any minor coding error may cause the final gra-
dient of the cost function with respect to the control
variables to be erroneous. Therefore, it is advantageous
to verify the correctness of the linearization and adjoint
coding segment by segment. Each segment may consist
of either a subroutine or of several DO loops.

The correctness of the adjoint of each operator can
be checked by applying the following identity (Navon
et al. 1992): A
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(AQ)*T(AQ) = Q*T[A*T(AQ)], (4.2)

where Q represents the input of the original code and
A represents either a single DO loop or a subroutine
(see Navon et al. 1992). The left-hand side (lhs) in-
volves only the tangent linear code, while the right-
hand side (rhs) involves also the adjoint code (A*T).
If (4.2) holds, the adjoint code is correct when com-
pared with the tangent linear model. In practice the
identity (4.2) holds up only to machine accuracy. For
a Cray computer that has intrinsic double precision, the
lhs and the rhs of Eq. (4.2) should be equal up to the
11th significant digit.

Even after having successfully checked the adjoint
of each operator matrix and finally the whole model

according to the above identity, the adjoint model may

still be subject to fatal coding errors. These errors are
usually caused by linearization errors, which could not
be detected in the process verifying the linearization
code, partly due to the fact that the check itself is of an
approximate nature and partly due to the choice of the

. basic state and other model parameters. The verification
of the final gradient obtained through the integration of
the adjoint model backward in time serves as an overall
verification of the correctness of the adjoint model code
and proves to be an essential step, in our experience.
For a detailed derivation of the gradient check formula,
see Navon et al. ( 1992)

The gradient check is shown in Fig. 2a. The value
of the function ¢(a) equals unity to a high degree of
_accuracy when the parameter o varied from 1072 to
1071, and obeys the monotonically decreasing rule
when a decreases over 14 orders of magnitude.

The residual of ¢(a) [i.e., |¢(a) — 1]] was also
checked and is displayed in Fig. 2b. We found that the
residual approaches zero linearly. The check of the gra-
dient verifies that the adjoint model is correct and can
safely be used to perform 4D VDA experiments.

5. Four-dimensional variational data assimilation
experiments

a. Observations, initial conditions, cost function, and
scaling

We carried out a series of 4D VDA experiments to
verify the properties of the BMH model and its adjoint.
A 4D VDA experiment consists of integrating the non-
linear forward model starting from a first-guess initial
- condition and then integrating the adjoint model back-
ward in time. A forcing term is added whenever an
observation is encountered, to obtain the values of the
cost function and its gradient with respect to the control
variable vector, which in this case is the initial condi-
tion vector. Then through an iterative large-scale un-
constrained minimization’ process, the retrieved fields
of the initial condition that minimizes the cost function
(measuring the weighted lack of fit between model so-
lution and observations) are obtained. The large-scale
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FiG. 2. Variation of (a) the function ¢(a) and
(b) variation of the log|¢(a) — 1| with respect to loga.

unconstrained minimization algorithm used throughout
this paper is the limited-memory Broyden—Fletcher—
Goldfarb—Shanno (L-BFGS) algorithm of L1u and No-
cedal (1989).

1) OBSERVATIONS

To ensure a consistent initial condition, we inte-
grated the model for 48 h starting from the ECMWF
analysis of 0000 UTC 15 January 1979. The 48-h pre-
paratory integration was necessary to obtain a ‘‘real-
istic’’ initial condition devoid of large gravity wave
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oscillations. The model output at the end of this inte-
gration period was used as the ¢ = 0 ‘‘observations™
and the model output from another 3-h continuous in-
tegration was used to generate ¢t = 3 h observations.
The observations consisted of the complete fields of the
velocity components, temperature, and surface pres-
sure. The ¢ = 0 observations constitute the initial con-
ditions for the 4D VDA experiments. If one reduces the
preparatory integration time to 12 h, the output fields
will display locally sharp gradients, due to the lack of
initialization. For instance, the 500-hPa temperature
field displays a region of very strong gradients located
between south Asia and the Tibetan Plateau region.

2) FIRST-GUESS INITIAL CONDITIONS

We used three types of first-guess initial conditions
to carry out our 4D VDA experiments. The first was
obtained by multiplying the ¢ = O observation fields by
a constant coefficient A; for instance, A = 1.1. This
initial condition is called IC,.

The second was obtained by multiplying the ¢t = 0
observation fields by a randomly perturbed coefficient
vector B; that is,

Xinitial — Xobs(s) X B (5.1a)
B,=C +GCD;, i=1,2 ---,N, (5.1b)

where X is the N [=M (3K + 1)] component vec-
tor, containing values of [u, v, T'/T, (Inp,)’], with
which the BMH model is initialized, over all grid points
and at all vertical levels at time ¢,; M is the number of
grid points at each vertical level; K is the number of
vertical levels; D; is a random coefficient whose values
range from 0 to 1 with uniform distribution; C, and C,
are constant coefficients—for instance, C; = 0.75 and
C, = 0.5; X**(¢,) is the N-component vector of ana-
lyzed values of X over all grid points on all levels at
time #,. This initial condition is called ICs.

The third initial condition consists of the output
fields resulting from a 6-h integration carried out from
the ¢+ = O observation fields. This initial condition is
called IC..

3) WEIGHTING AND SCALING THE COST FUNCTION

The cost function J consists of a weighted least-
squares difference between the model forecast and the
observations, and is given by (4.1). The ¢, consists of
a 3-h interval. The observation fields are available at
the beginning and the end of the assimilation interval.

The weights in the cost function serve two purposes:
they reflect confidence in the quality of the observed
data and scale J to be a nondimensional quantity (see
Navon et al. 1992). In the 4D VDA experiments, two
types of weighting matrices are used. The first type of
weighting matrix is invariant with respect to the vertical
levels. It is calculated by the following formula:
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1

max, ;. |f £5k(to) — f E5u(t)1*’
where i, j represent the horizontal grid points and &
denotes the vertical levels; frepresents the fields of u,
v, T'/T, or (Inp,)’, respectively. For the model-gen-
erated observation fields, we choose t, =0handtz = 3
h. The second type of weighting matrix uses weights
that vary with vertical level. It is given by the following
formula:

W;. (5.2)

1
max, ; |f i (f0) — f 7 (1)

Let us discuss the difference between W;, and
W, (o). With the weighting matrix Wy,, each vari-
able uses the same constant weight Wy,. There are
regions of large departure (i.e., difference between the
initial conditions and the observations) at some ver-
tical levels, and the cost function structure will be im-
pacted mainly by these regions. It is reasonable to as-
sume that the large-scale unconstrained minimization
process will be weighted in favor of the larger depar-
ture values; that is, the minimization process will re-
sult in large adjustments occurring mainly at the levels
where large departures occur. The other levels will
presumably be less impacted during the large-scale
minimization process. For the W,(o) case, the
W, (o) weights will cause the departures at each ver-
tical level to exhibit nearly the same order of impor-
tance in the cost function. It is thus expected that dur-
ing the VDA minimization process all vertical levels
may experience almost equal adjustments irrespective
of the size of the departure values. However, it is clear
that larger departure values will experience smailer
adjustments than those obtained by using the Wi,
weighting matrix.

Scaling is a crucial issue in the success of nonlinear
unconstrained optimization, and there is a rich litera-
ture pertaining to nonlinear programming problems
(see Navon and de Villiers 1983; Navon and Legler
1987). A recent contribution to this area is a precon-
ditioning algorithm for large-scale minimization
tested with a certain degree of success by Zupanski
(1993). Adequate scaling factors are a simple but
crude way to do preconditioning, since ultimately we
need to know the Hessian matrix of the cost function’
to efficiently deal with small-scale features. Knowing
the spectrum of the Hessian of the cost function allows
us to use sophisticated preconditioning aimed at re-
ducing the condition number of the Hessian and more
importantly—by means of preconditioning tech-
niques such as incomplete factorization and polyno-
mial preconditioning—to modify the spectrum of ei-
genvalues of the Hessian in such a way as to obtain
several clusters of the eigenvalues. Iterative methods
of optimization such as conjugate-gradient-like meth-
ods perceive each cluster as a single eigenvalue, and
therefore their rate of convergence is greatly improved

W, (o) = (5.3)
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by preconditioning. Also, any reduction in the con-
dition number of the Hessian improves the rate of con-
vergence that is asymptotically proportional to the
condition number (see Axelsson and Barker 1984).
We carried out 4D VDA experiments with and without
scaling of the cost function and its gradient. The nu-
merical results reveal that a proper scaling can mark-
edly improve the convergence rate of the VDA min-
imization process.

b. Four-dimensional VDA experiments without
scaling the gradient of the cost function

First, we carried out 4D VDA experiments with the
three aforementioned initial conditions. No scaling of
the cost function and its gradient was implemented in
these experiments.

For the IC, initial condition case, the coefficient used
was A = 1.1. For the IC; randomly perturbed initial
condition case, the coefficients in (5.1) are C; = 0.9
and C, = 0.2, respectively.

For the third initial condition experiment IC., the
effects of using both weighting matrices Wy, and W,
in the cost function were tested separately. Since the
results for both cases were found to be very similar, we
restrict ourselves to presenting results only for the case
with the Wy, weighting matrix. All the other 4D VDA
expenments presented in this paper use the W, weight-
ing matrix.

The numerical results obtained with the 4D VDA
show that the cost function decreases steeply during the
first few iterations of the unconstrained minimization
process and finally converges to a value about 20%-
30% (for the IC, and IC; cases) or 70% (for the 1Cc
case) of its initial value (Fig. 3). The logarithm of the
gradient of the cost function-decreases gradually by
about two orders of magnitude (Fig. 4). The cost func-
tion could not be further reduced, even in the case
where a very small departure from the initial condition
(A = 1.01, IC, case) is used as observations. The rea-
son the cost function cannot be further reduced is that
the minimization process in those cases appears to be
effective in minimizing the lack of fit of the tempera-
ture and the surface pressure fields but less so in min-
imizing the lack of fit of the wind fields (Fig. 3); that
is, the wind field components in the cost function were
reduced much less than either the temperature or the
surface pressure field components in all 4D VDA ex-
periments that did not include scaling of the cost func-
tion and its gradient.

" By analyzing the gradient of the cost function (Fig.
5), we see clearly that the lengths of the 4 and v com-
ponents of the gradient are much shorter than the other
two field- components—that is, the temperature and
surface pressure fields. We thus conclude that an ade-
quate scaling of the gradient is necessary for obtaining
a good retrieval. .
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FiG. 3. Variation of each normalized component of the cost func-
tion as well as the total cost function versus the number of minimi-
zation iterations: (2) IC;y initial condition—C, = 0.9, C, = 0.2; (b)
IC, initial condition.

From the difference fields between the retrieved ini-
tial fields at the completion of the minimization process
and the observations (Fig. 6), it is evident that the wind
fields undergo only a small adjustment while the tem-
perature and the surface pressure fields experience ap-
preciable adjustments.

Comparing the results of the IC, and the IC; cases,
we found that they are rather similar. Four-dimensional
VDA worked well with randomly perturbed initial con-
ditions (Fig. 6), while the rate of convergence of the.
minimization was not seriously affected.
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Since the values of different control variables in the
model have different scales, a proper weighting matrix
in the cost function is necessary to balance the small-
scale variables. Without it, the VDA minimization re-
sults with respect to small-scale variables will yield
worse results. We carried out a 4D VDA experiment
using the IC;p initial condition without any weight in
the cost function (i.e., we set W = I') and found (Fig.
7) that the small-scale components, T'’/T and (Inp;)’,
of the cost function cannot be reduced to a satisfactory
level; therefore, the total cost function cannot be re-
duced to a satisfactory value.

LI ET AL.

973

¢. Four-dimensional VDA experiments with scaling
of the cost function and its gradient

According to Gill et al. (1981), one distinguishes
between four methods of scaling: by variable (which
converts the variables from units that reflect the phys-
ical feature of the problem to units that display desir-
able properties for the minimization problem), con-
straint, gradient, and Hessian. Normally, scaling by
variable is used because it is simple and saves com-
putation time. For the problem at hand, however, the
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relative magnitudes of the gradient field components of not be reduced to a satisfactory value during the re-
the cost function differ from each other by at least two  trieval process. We therefore carried out some 4D VDA
orders of magnitude. This problem manifests itself in experiments using a gradient scaling and found that this
the fact that some components of the cost function can- gave much better results.
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Scaling the gradient adjusts the components to be
about the same order of magnitude. This requires a
change in the scaling coefficients based on the value of

each variable component of the cost function gradient

at each step of the minimization.
In our gradient scaling experiments, we used a rough
method. Before carrying out each step of the minimi-

zation calculation, we implemented on each variable

the following linear transformation:
X=1Y, (5.4)

where the diagonal matrix L consists of diagonal sub-
matrices [L,, L, Ly /7, Loy, ] and the gradient of the
cost function with respect to the new. variables Y is

VJY = LV.IX, . (5.5)
and we have
Y = L7'X. (5.6)

The matrix L should be chosen so as to reduce the
difference of each variable component vector length in
VJy. We chose a gradient scaling coefficient that is L,
= 301, L, = 10l (IC, case) or 301 (IC; and IC,. cases),
Ly 7 =1, and L,y = l. Using this method, we re-
peated the aforementioned 4D VDA experiments with
different initial conditions and found that the results
exhibited a remarkable improvement as far as the rate
of convergence of the minimization is concerned.

The results of the 4D VDA experiment with gradient

scaling turned out to be markedly better than those ob- -

‘tained without gradient scaling in terms of convergence
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rate; that is, the cost function and its components were
reduced to much lower values, especially the wind ve-
locity field component (see Fig. 8, compared to Fig.
3). For the IC. case, whereas the cost function could
be reduced only to 70.1% of its initial value without
gradient scaling, it was now reduced to 29.6% of its
initial value. This result reveals that the 4D VDA model
may deal with different complex problems as long as
an appropriate scaling procedure of the cost function
and its gradient is included. The adjusted wind com-

w >
L
e
- /’/
,
/‘/

o
N o

,/ .-

—’“’

1 1

1.8 T T T T e T Ty
9‘
: 9
' 4
A
sy 4
(B
Y B
s L
S 7R S 1
3 I 1
- L .
§ oM\ AN i
- 3 o
¢ A’}L\ " ]
=l
sl N AN .
- : k\‘ \
3 _’\ e % 4
o ' e \
o T . N \
°
H
]
€
IS
o
z

r ~ % p
2 b ~. . B
M .
\ 1 \ RN
F2 * BN
O\ LN N
1 L \ X ’\’ -u-\jv7 -
O my—
L% \"wx—/"‘/h/\“\, \'\r\, R
A e T
PR SR LS S P T e Y ST AV DY Ry w i o BT
8 5 19 15 20 25 39 35 ag 45
Number of Iterations
1) T T T T T T T T T T T T T T
ll _‘
F
1.8 % -
i
s
Ty 1
s/ \
.9 ¥ \ E
'R 2
- 5 A E
s n “\\;\‘
3 .e—‘ SN -
-~ EIERN Sl TN
ERY \ TR )
- S,
E 2 L—T »\’ «\;\\\‘ f\\ a
3 < e
2 _\ ~._ % ‘\\\x"\.' H /-\\ ]
2 1 \ AN \ Y b
8 s —\ *\< ~. 3 7/ L -
N /
N X / \
= RN N o N\
s shk YJK A -
E - Y D AV
H 3 N W\ \
= i \ -y o \Q\ )
\ -
4 1 r \/ RN T
\ R VARRNE N
e
r X ) . ")\,\_f
abk \ f AR ..~ NS
£ b! -~ —~
~N N -
F LR L N
P AP R S AU AV S S AUV U R RO SO DA
. @ 5 1@ 15 28 25 38 35 42

Number of Iteratiions

Fic. 8. Variation of each normalized component of the cost func-
tion as well as the total cost function with the number of iterations.
Scaling of the gradient of the cost function is performed: (a) IC;
initial condition—C; = 0.9, C, = 0.2; (b) IC, initial condition.
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ponents of the gradient of cost function are also
strengthened (Fig. 9, compared to Fig. 5).

Figure 10 presents the differences between the re-
trieval fields (at the final iteration step of the minimi-
zation process) and the observation fields of the zonal
wind at 500 hPa. Comparing each retrieval field (fig-
ures omitted ) with the case where no gradient scaling
was applied (Fig. 6), we find that the gradient scaling
allows us to obtain improved retrieval fields.

From the above results, we conclude that the mini-
mization process performs much better for all the vari-
able fields when scaling of the gradient of the cost func-
tion is used. The gradient scaling experiment resulted
in a successful implementation of the 4D VDA for
model-generated data.

d. Applicability of VDA to different initial conditions

To check the applicability of this 4D VDA scaling
procedure to different types of initial conditions, we
designed an experiment in which a more intensely ran-
domized perturbation of the initial conditions was used.
We chose C; = 0.75, C;, = 0.5 in (5.1), and L, = 30l.

From the differences between the initial conditions
and the observations (Fig. 11), we conclude that these
perturbation fields are stronger and more complex.
Through the minimization process with gradient scal-
ing, these intensely random perturbations were reduced
to a much lower level and a successful retrieval was
obtained (Fig. 12), with a remarkable reduction in all
components of the cost function (Fig. 13). We also
carried out a 4D VDA experiment using this initial con-
dition without gradient scaling and found the results to
be much worse than those with gradient scaling.

To illustrate that the 4D VDA minimization can be
stopped before the cost function achieves its asymptotic
rate of decrease, we integrated the nonlinear forward
model from the initial observations, the first-guess ini-
tial conditions and the retrieved initial conditions, stop-
ping after 10, 20, 30, and 40 minimization iterations.
Figure 14 presents the time integrations of the surface
pressure at a given grid point. We note that even after
10 iterations, when the cost function has decreased to
only about 26% of its initial value, most of the infor-
mation has been retrieved. After 20 iterations, the dif-
ference between the observations and retrievals be-
comes very small. Only small differences in the am-
plitude can be discerned, with almost no phase
discrepancy. After 40 iterations, the time variation is
similar to the curve resulting from integration from the
observations. Thus, the 4D VDA minimizes most large-
amplitude perturbations in the first 10-20 iterations,
while in subsequent iterations only small-scale small-
amplitude features are being assimilated.

To ensure that variational data assimilation with the
present model can be carried out for a large period of
synoptic significance (e.g., 24 h), a 4D VDA experi-
ment with a 24-h assimilation window was performed.
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FiG. 9. Variation of each component of the gradient of the cost
function (| VJ;|/| VJ|) with the number of iterations, including scal-
ing the gradient of the cost function: (a) IC; initial condition—C,
= 0.9, C, = 0.2; (b) IC. initial condition.

Apart from the length of the assimilation window, all
the parameters are identical to the VDA experiment
performed with the 3-h window of assimilation.
Figure 15 displays the variation of each normalized
component of the cost function as well as the total nor-
malized cost function for the 24-h period of assimila-
tion with the number of iterations. Compared with Fig.
13 (which corresponds to a 3-h window of assimila-
tion), we note only a worsening in the convergence
rate of the minimization for the horizontal wind com-
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F1G. 10. Difference between the retrieval zonal wind field after 42 minimization iterations and the corre-
sponding observation field at 500 hPa. Using IC; initial condition, C; = 0.9, C, = 0. 2 Scaling of the gradient

of the cost function is performed. The contour interval is 0.5 m s

ponents, while ‘the temperature and surface pressure
components of the cost function display a better con-
vergence rate. The total cost function remains almost
unchanged. The total cost function as well as its com-
ponents display a steep rate of decrease during the first
minimization iterations for the 24-h assimilation win-
dow. A similar feature is observed for the retrieval
fields for both the 24- and 3-h cases.

e. Impact of the length of assimilation interval

Li et al. (1993) carried out a set of VDA experiments
with the BSHB shallow-water model to investigate the
impact of varying the léngth of the assimilation win-
dow. Their results suggest that as the length of the win-
dow increases, the number of minimization iterations
will increase for the same prescribed convergence cri-
terion. They concluded that the effort expended in min-
imizing the cost function over the window of assimi-
lation goes mainly to balancing small-scale motions.
These results are consistent with those obtained by
Thépaut and Courtier (1991 ) and Navon et al. (1992).

To see whether their conclusion is also valid for the
present 3D SLSI 'model, we carried out a number of
similar 4D VDA experiments to check the impact of
the length of assimilation interval on the rate of con-
vergence of the cost function minimization.

We used the IC. initial condition and assimilation
intervals of lengths 1, 3, and 6 h. The model-generated
observations were. available at every time step in the
whole assimilation window. A scaling of the cost func-
tion and its gradient was included in these experiments
with L, = 300

Figure 16 displays the evolution of the normalized
cost function (J/J,) with respect to the number of it-
erations. We found our results to be consistent with

-1

those of Li et al. (1993) and Navon et al. (1992): as
the length of the assimilation interval window in-
creases, the convergence rate of the minimization de-
creases. The minimization for the 1-h window resulted
in much lower values than those obtained with the 3-
and 6-h windows, for the same number of iterations.
Normalized cost functions were employed throughout.

f- Impact of the time distribution of the observations
on the convergence rate

In the above experiments, the observanons were
available at every time step in the window of assimri-

. lation. One may assume that if the time density of ob-

servations increases, the convergence rate will also in-
crease. To check this idea, we carried out a number of
4D VDA experiments in which observations were
available either in selected segments or in the whole of
the assimilation window.

The length of the window was chosen to be 6 h and
we included the gradient scaling. Apart from the be-
ginning (¢ = t,) and the end of the assimilation interval,
observations were available at every time step in the
segments between 0 and 0 h (i.e., no additional obser-
vations), 0 and 1 h, 0 and 3 h, and, finally, 0 and 6 h
(which included the whole window of assimilation).
The initial condition was taken to be the IC. condition.
. Figure 17 displays the evolution of the normalized
cost function (J/Jy), with the number of iterations for
the experiments, where observations were available in
different selected segments of the window of assimi-
lation, namely, between 0 and 0, 0 and 1, 0 and 3, and
0 and 6 h.

We see that, compared to the case where no addi-
tional observations were included (the 0~0-h case), the
convergence rate clearly does increase in the case
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FiG. 11. Difference between the initial condition field and the corresponding observation field at 500 hPa,
using the ICy initial condition: C, = 0.75, C, = 0.5. (a) Zonal wind, contour interval is 1 ms™'. (b)
Temperature, contour interval is 1 K. (c) Surface pressure, contour interval is 4 hPa.
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FiG. 12. Difference between the retrieval field after 42 minimization iterations and the corresponding
observation field at 500 hPa, using the 1C; initial condition: C; = 0.75, C; = 0.5. Including scaling of the
gradient of the cost function. (a) Zonal wind, contour interval is 1 m s~'. (b) Temperature, contour interval
is 1 K. (c) Surface pressure, contour interval is 4 hPa.
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FiG. 13. Variation of each normalized component of the cost func-
tion as well as the total cost function versus the number of iterations,
using IC; initial condition: C; = 0.75, C, = 0.5, including scaling of
the gradient of the cost function.

where additional observations were added for the seg-
ment between 0 and 1 h. However, it decreases in the
experiments where additional observations were avail-
able between 0—3 and 0-6 h (the whole window of
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Fic. 14. Time variations of the surface pressure at a chosen grid
point from initial observations (marked by 0), the initial guess
(marked by 1), and the retrieval after 10 minimization iterations
(marked by 2), 20 minimization iterations (marked by 3), 30 min-
imization iterations (marked by 4), and 40 minimization iterations
(marked by 5), respectively.

Number of Iterations

F1G. 15. Variation of each normalized component of the cost func-
tion as well as the total cost function versus the number of iterations,
using IC; initial condition. Cy = 0.75, C; = 0.5. Including scaling of
the gradient of the cost function. The assimilation window is 24 h.

assimilation). The convergence rate in the experiment
where observations are available for the entire window
of assimilation (0—6 h) is larger than that for the cor-
responding 0—3-h case. The retrieval initial condition
fields also show the same features (figures omitted).
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FiG. 16. Variation of the normalized cost function (J/J,) versus
the number of iterations. The lengths of the assimilation intervals are
1, 3, and 6 h, respectively, using IC. initial condition.



1.80 T T T T T T T T v T v T T B
. ]
.95 & b
|
F\d ]
.90 i\ 1
C ‘.\.}\ ]
es N S 3
r \ ~ — -4
E o N, % _
) E i AN \ 1
Al Y - =
ooy \\\3\ ]
N ~o ]
.75 F 1\ % ™~ ]
Eoo " 1
o \7\ \ \\\ ]
" . v,
e b 3 N 3
C . ‘a\\ ~
r \' kS o ]
N R
65 U~ \,\ e e
C ~y \\. e N 3
- Seo ~——— e S mao 1
60 r el T &~ ~ ey
. - ~re \\'\‘\ :
C -l e
C e \,\6 7
- e T~
55 | S o~
E ]
58 |- : o ]
£ ~ 1
I > ]
.45 1 1 A 1 1 1 I i 1 1 1 1 I
]

2 4 6 8 19 12 14

Nunber of Iterations

. Fi6. 17. Variation of the normalized ‘cost function (J/Jy) versus
the number of iterations for a window of assimilation whose length
is 6 h. Observations are added at each time step in the assimilation
window for the segments between 0 and O h, 0 and 1 h, 0 and 3 h,
and O and 6 h, respectively, using IC initial condition.

These results suggest that the convergence rate of VDA
minimization cannot increase simply as the time den-
sity of observations increases. There appears to exist a
preferential way of adding observations into the assim-
ilation window that can lead to a faster convergence
rate.

6. Summary and conclusions

This paper presents the development of the adjoint
of the adiabatic version of the 3D NASA/GLA semi-
Lagrangian semi-implicit GCM developed by Bates et
al. (1993), together with the result of several 4D VDA
experiments using the adjoint. These experiments in-
volved various types of first-guess initial conditions
and weight matrices, as well as tests with or without
scaling of the cost function and its gradient. This is to
the best of our knowledge the first adjoint model de-
veloped for a 3D semi-Lagrangian GCM.

The tangent linear model and its adjoint for the BMH
model were derived, and their correctness was verified.
The 4D VDA experiments with model-generated ob-
servations performed well, as judged by the satisfactory
quality of the retrievals obtained even with intensely
randomized perturbations. Two different types of
weight matrices were tested in the cost function, one
invariant with respect to vertical level, the other using
weights varying with level. We found the impact of
changing the weight matrix in the cost function to be
rather insignificant.
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. Our experiments also reveal that scaling of the cost
function and its gradient is very effective in improving
the convergence rate of the minimization process.

An initial condition with randomized perturbations
was used to test the performance of the 4D VDA. We
found that a satisfactory retrieval was obtained with a
fast convergence rate of the minimization process.

Comparing the results obtained by stopping the it-
eration procedure at various stages of the minimization,
we see that the variational data assimilation adjusts
most of the large amplitude perturbations in the first
10-20 iterations. During the subsequent iterations,
only small-scale small-amplitude features are being as-
similated: This yields information as to when the min-
imization procedure could be stopped economically
without affecting the overall quality of the retrieval.
This can have a crucial impact on computational effi-
ciency and hence on operational implementation.

Another set of experiments was carried out to inves-
tigate the effects of varying the length of the assimi-
lation window. Our results confirm those of Navon et
al. (1992) and Li et al. (1993).

Finally, a-set of experiments was carried out to check
the effects of the time density of the observations on
the convergence rate of the minimization process. The
experiments were designed with additional observa-
tions available in either a segment or the whole of the
assimilation window. The results suggest that the con-
vergence rate of VDA minimization does not simply
increase as the number of observations increases in a
segment of the window. Rather, we conclude that by
adding observations only into preferential segments of
the window one can obtain a faster convergence rate.
Choosing an appropriate time distribution of observa-
tions in the VDA process turns out to be an important
issue in 4D VDA applications. This deserves further
research, as does the issue of choosing proper time
weighting of the observations in the assimilation window.

The availability of the adjoint model of the SLSI
GCM provides an important tool for further research in
variational data assimilation with real observations. The
preliminary numerical results reported here. demonstrate
the feasibility of using a semi-Lagrangian GCM with
large time steps for efficiently carrying out 4D VDA.
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