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Abstract. During the last few years, conjugate-gradient methods have 
been found to be the best available tool for large-scale minimization of 
nonlinear functions occurring in geophysical applications. While vec- 
torization techniques have been applied to linear conjugate-gradient 
methods designed to solve symmetric linear systems of algebraic 
equations, arising mainly from discretization of elliptic partial differen- 
tial equations, due to their suitability for vector or parallel processing, 
no such effort was undertaken for the nonlinear conjugate-gradient 
method for large-scale unconstrained minimization. 

Computational results are presented here using a robust memory- 
less quasi-Newton-like conjugate-gradient algorithm by Shanno and 
Phua applied to a set of large-scale meteorological problems. These 
results point to the vectorization of the conjugate-gradient code inducing 
a significant speed-up in the function and gradient evaluation for the 
nonlinear conjugate-gradient method, resulting in a sizable reduction 
in the CPU time for minimizing nonlinear functions of 10 4 to 10 5 
variables. This is particularly true for many real-life problems where 
the gradient and function evaluation take the bulk of the computational 
effort. 

It is concluded that vector computers are advantageous for large- 
scale numerical optimization problems where local minima of nonlinear 
functions are to be found using the nonlinear conjugate-gradient 
method. 
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1. Introduction 

Among the major developments in recent years in the field of comput- 
ing, one should count the introduction of a variety of vector and parallel 
computers and the development of adequate algorithms designed to 
efficiently utilize their capabilities. Recently, and only in a relatively small 
measure, there has been a start toward algorithm development of numerical 
optimization problems, most of the research being directed toward parallel 
algorithms. 

By large-scale numerical optimization, we mean the minimization of 
functions where the number of variables is large, typically for meteorological 
problems of the order of 10 4 to  10 5 variables. As we are interested in 
large-scale optimization using nonlinear conjugate-gradient methods, which 
require only the storage of a few vectors, the main purpose of the present 
paper is to discuss and analyze the vectorization of a typical robust, modern 
nonlinear conjugate-gradient code and to point out the computational 
advantages, including the total speed-up in terms of CPU time. When using 
a vectorized conjugate-gradient code for the unconstrained minimization 
of a nonlinear function of the large-scale type, the objective function and 
its gradient become quite expensive to evaluate, suggesting an important 
role and significant gains using a vector computer. 

For the nonlinear conjugate-gradient method, which constitutes the 
topic of the present research paper, a thorough review of the available 
literature points to the fact that the totality of the research activity carried 
by a small number of researchers was directed toward efforts in paraltelizing 
the method; to our best knowledge, no effort was directed toward vectorizing 
the method. 

Parallelization of the nonlinear conjugate-gradient method can be 
introduced by approximating the successive gradients by finite differences 
of the function values calculated in parallel, and one can accelerate the 
linear searches by simultaneous function evaluations at preselected grid- 
points along the search direction. 

Several authors (Refs. 1-4) designed parallel versions of Powell's 
nongradient method (Ref. 5), generating conjugate search directions by 
minimization over geometrically parallel manifolds. This results in simul- 
taneous line searches, but computational experience up to date is too limited 
(see Ref. 6). 

The Hatfield Polytechnic Group has investigated the conjugate-gradient 
methods of Ref. 7, which generate conjugate-search directions without exact 
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linear searches (Refs. 7-12). Other work on parallel optimization is reported 
in Ref. 13. In Refs. 14 and 15, the authors used pseudo-conjugate directions 
for the solution of the nonlinear unconstrained optimization problem on a 
parallel computer using the nongradient method of Ref. 5. Other efforts in 
this direction involved Refs. 16-18, etc. 

No report appears to be available concerning the speeding up of the 
nonlinear conjugate-gradient method for large-scale optimization on vector 
computers. This issue is of crucial importance when we solve problems with 
expensive function/gradient evaluations, which appears to be the case for 
large-scale meteorological applications. 

It is important to develop very efficient unconstrained minimization 
algorithms, not only because the problem occurs in many instances on its 
own, but even more so because an unconstrained minimization problem 
must be solved in the inner loop of the solution of important constrained 
nonlinear problems. As mentioned in Ref. 12, vector computers may be 
advantageous in the case of large-scale unconstrained minimization. These 
large-scale minimization problems occur in applications in meteorology, 
computational chemistry, and structural optimization, to cite but a few of 
the application fields. 

The plan of our paper is as follows. In Section 2, we will describe the 
relevant large-scale meteorological problems where the constrained non- 
linear optimization (e.g., the augmented Lagrangian formulation) was 
applied. A large-scale unconstrained optimization problem must be invari- 
ably solved in the inner loop of the solution of the augmented Lagrangian 
constrained nonlinear minimization. The robust memoryless quasi-Newton- 
like conjugate-gradient solver due to Ref. 20, its structure, and its computa- 
tional complexity will be described in Section 3. 

Numerical tests (Ref. 21) show that limited-memory quasi-Newton-like 
conjugate-gradient methods with inexact line searches require substantially 
fewer function evaluations than the simple conjugate-gradient method where 
little additional storage is required. Numerical results concerning the vec- 
torization of the function/gradient evaluation part, which is problem depen- 
dent but which in real life is always the most computationally intensive 
part of it, wilt be presented in Section 4. 

Results concerning the performance of the conjugate-gradient code 
under scalar, automatic vectorization, and refined manual vectorization will 
be numerically and graphically presented and discussed in Section 5. The 
resulting speed-up of the conjugate-gradient method and the relative 
improvements in performance will be tabulated and summarized. Finally, 
the impact of the number of variables in the nonlinear function to be 
minimized on the speed-up performance of the vectorized nonlinear conju- 
gate-gradient code for a particular vector supercomputer (e.g., the CYBER 
205) will be discussed. 
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Section 6 will include a summary and concluding remarks with implica- 
tions for the vectorization of different nonlinear conjugate-gradient methods 
applied to large-scale and very large-scale unconstrained minimization. 

2. Large-Scale Meteorological Problems 

Here, we will introduce the two large-scale meteorological problems 
where nonlinear constrained minimization was applied. The inner loop of 
the constrained minimization (i.e., the augmented Lagrangian method) 
involved large-scale unconstrained minimization solved by the quasi- 
Newton memoryless conjugate-gradient method of Ref. 20, hereby referred 
to as CONMIN. 

2.1. Conservation of Integral Invariants of the Shallow-Water Equations 
(GUSTAF Problem). An augmented Lagrangian constrained minimization 
method is applied to enforce the conservation of the three integral invariants 
of the shallow-water equations model on a limited-area domain (see Refs. 
22-24). The three integral invariants are the total mass, the total energy, 
and the potential enstrophy. 

The augmented Lagrangian method approximates the nonlinear 
equality constrained minimization problem by solving a series of uncon- 
strained minimization problems (Ref. 25). In our case, we define the func- 
tional f by 

Nx N> 

~ n ~ n  2 ~ n - t l  2 ~ n ~n  2 f =  ~. • [a(Ujk--UA) + (Vjk--Vj,) -t-~(hjk-hjk ) ]; (1) 
j = l  k = l  

here, 

NxAx = L, NyAy = D, Ax = Ay = h; 

h is the grid size; n designates the time level t. = nAt; At is the time step; 
L and D are the respective dimensions of the rectangular domain over 
which the shallow-water equations are being solved (see Ref. 23). 

(aj  -°, "" , vjk hjk) are the predicted variables at the nth time step using a 
finite-difference algorithm (i.e., the nonlinear ADI method of Ref. 26 for 

tl n solving the nonlinear shallow-water equations system); (uj~, vjk, hjk) are 
the field values adjusted by the nonlinear constrained optimization method 
using the augmented-Lagrangian technique to enforce conservation of the 
three integral invariants of the shallow-water equations; ~ and/~ are weights 
determined by the principle (Ref. 27) that the relative weights are selected 
so as to make the fractional adjustment of variables proportional to the 
fractional magnitude of the truncation errors in the predicted variables. 



J O T A :  VOL. 66, NO.  1, J U L Y  1990 75 

We used 

8 = 1, fi = g /H ,  (2) 

where H is the mean depth of the shallow fluid. The augmented Lagrangian 
function L is defined by 

L(x, A, r) = f ( x )  + a re(x) + (1/2r)[e(x)[ 2, (3) 

and the minimization of (3) replaces the problem 

m in f (x ) ,  

s.t. e(x) =0,  e = ( e ~ , . . . ,  era), m<-n, (4) 

where e(x) are the equality constraints. Here, 

( U l l ~ . . .  ' ~n ~n - ,  ~n T ldNxN r, V l l , . .  ?.)NxN:~, h n , ° . . ,  hN~u~) ; (5) 

in our particular case, the equality constraint vector has three components 
given by 

E " - E ° -  I 
e ( x ) =  Z " - Z  ° , (6) 

H . _ H ° J 

where 

N x N v 

j = l  k= l  

N x N 

z ' = ~ 2  2 
j = l  k ~ l  

N Ny 

H" = E Y, hj"k AxAy. 
j = t  k= l  

~n ~n 2 [hjk(uj~ ) +(~7~)2+ -o 2 g(hjk) ]AxAy, 

~n ~n. . + ~n 2 [(OVjk/OX--aUjk/Ov £)/hjA Axay, 

(7a) 

(7b) 

(7c) 

Here, E ", Z n, H n are the discrete values of  the integral invariants of the 
total energy, the potential enstrophy (i.e., the discrete sum of  the square of  
the absolute vorticity), and the mass at time t~ = nAt; E °, Z °, H ° are the 
values of  the same integral invariants at the initial time t = 0; A is an 
m-component  Lagrange multiplier vector, 

= ( < ,  • . . ,  A~)~; (8) 

r is a penalty parameter; g is the acceleration of gravity; and 1-<-j-< N~, 
1 -< k -< Ny, such that N~Ax = L, NyAy = L. 
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In our application, we follow the augmented Lagrangian algorithm 
(Refs. 28 and 25) for minimizing the augmented Lagrangian 

Lr~(x, ,~k)=f(x)+ ~t[e(x)+(1/2rk)le(x)l 2 (9) 

and updating the Lagrange multipliers and penalty parameters. Here, k is 
an index of the iterations sequence. For the inexact unconstrained minimiz- 
ation of the augmented Lagrangian function Lr~(x~, ,~k), we use a conjugate- 
gradient method which has the virtue of  requiring only a few vectors for 
memory storage; this suits us, since we are dealing with a large-scale 
minimization problem. The conjugate-gradient method will be described in 
ample detail in the next section. 

For this application, we used two grids. The first grid was a coarse grid 
with a space increment of 

Ax = Ay =400 km, At = 3600 sec, 

where At is the time step. This resulted in a 12x15 grid in the x and y 
directions respectively for a rectangular domain of L = 4400 km and D = 
6000 kin. The augmented Lagrangian function was a function of  x with 
12 × 15 x 3 = 540 variables; i.e., the unconstrained minimization was carried 
out on a nonlinear function of  540 variables. A second grid, using a refined 
mesh space increment of 

~x  = Ay =40 km, At =360 sec, 

was also tested. This results in 150 x 111 x 3 ~ 50,000 variables in the non- 
linear unconstrained minimization. 

2.2. Constrained Adjustment to Suppress Lamb Waves (AUGLAG 
Problem). In meteorological applications, one is often interested in sup- 
pressing external gravity waves by modifying the observed wind field in 
such a way that the vertical motions vanish at the lowest level of  a three- 
dimensional atmospheric model. An alternative way is to regard this adjust- 
ment as a variational adjustment of the horizontal wind fields in a pressure 
coordinate system (x, y, p), so that the pressure tendency dp/dt is zero 
everywhere; here, Ps is the surface pressure. 

The continuity equation in pressure coordinates is given by 

au/ax +av/ay +aw/ap = 0. (10) 

Integrating this equation from the top to the bottom of  the atmosphere 
and assuming the vertical velocity w = 0 at both endpoints, we obtain (see 
Ref. 29) 

fo ~" (au/ax +av/oy) dp = O. (11) 
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Using this equation as a constraint will ensure that 

dpjdt=O. (12) 

In other words, using the continuity equation as a strong constraint will 
enable us to suppress Lamb waves. 

The Lamb waves are high-speed acoustic-gravity waves which appear 
as solutions to the primitive equations in numerical weather prediction 
along with slow, physically relevant meteorological waves. As such, we are 
interested in suppressing the Lamb waves, which can be viewed as noise 
in a meteorological model and which, moreover, impose very stringent 
computational stability conditions on the allowable time step At. 

The functional tbr which the stationary value is to be found for this 
problem is 

f=fxfyfp[(u-~t)2+(v-v)]2dxdydp 

+ fx fy[h if'(Ou/Ox+Ov/Oy) dp] dxdy; (13) 

here, a and ~ are the analyzed horizontal wind components, u and v are 
the observed horizontal wind components; and A is the Lagrange multiplier. 

In a discrete augmented Lagrangian formulation, we obtain 

L = 2 2 2 [(uijk - t~k)= + ( V i j k  - ~jk)~]axayAp ijk 

+~h~[~ k -2Ax I vi'Y+"k--v"s-i'k~hp]AxAY2Ay ] 

o,F:E( I L  . (14) 

where C 0 are the penalty terms and h o are the Lagrange multipliers. 
Our model domain is rectangular in the horizontal sense; in the vertical 

sense, we have 10 discrete levels, resulting in this application in a function 
of  4 6 x 4 6 x 1 0 x 2  components ~42,320 variables. A coarser mesh case, 
where the mesh spacing was increased by a factor of 2 in the horizontal 
sense, resulted in a function of 23 x 23 x 10x 2 components ~10,000 vari- 
ables. The gradient of the discrete augmented Lagrangian function L with 
respect to the vector x, where x is given by 

x = ( u , , , . . . ,  UN~N>Np, V , , , . . . . ,  VN~,N,) ~, (15) 
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for the three-dimensional limited-area domain in x, y, p ( NxAx = L, NyA y = 
D, NpAp = H) is given by 

OL t . [ h~-I - hi+i'~ ~u i~k= 2(uUk-uijk)AxAyAp+~ -~X )±xAy~@ 

+ \ y / 

x A p ( C i - t d -  Ci+~'J'~ AxAy, (16) 
\ 2Ax ] 

aLI = 2(V~jk -- ~k)Ax~yAp + (A!,J.! S ;t!,j+~ AxAyAp 
-~v Ok \ 2A y ] 

(Ui+l,j,k--Ui-l,j,k l.)i,j+l,k--~i,j-l,k~ 

(Ci'j-1zC'a+I"]AxAy. (17) 
× Ap \ 2Ay ] 

The same inexact minimization of the augmented Lagrangian of Ref. 25 is 
applied using the same rules for updating the multipliers and penalties. The 
same conjugate-gradient unconstrained minimization method (CONMIN, 
Ref. 20) is used to minimize the augmented Lagrangian discrete functional. 

3. Conjugate-Gradient Method 

In our applications, we have decided to use the memoryless quasi- 
Newton conjugate-gradient method due to Ref. 30 and proposed in Ref. 
20. This was found to be robust and performing for meteorological applica- 
tions (see Ref. 19), when compared with other conjugate-gradient methods 
such as Fletcher-Reeves, Polak-Ribiere, and the method of Ref. 33 (IMSL 
Mathematical Software Library), and when compared with the E04DGF 
software (Ref. 34) and the methods of Refs. 35-36. The last two methods 
are also memoryless or limited memory quasi-Newton-like conjugate- 
gradient methods. 

The CONMIN routine proposed in Ref. 20 finds the local minimizer 
of a nonlinear function f (x)  of n variables, where 

X = ( X l ,  . . . , Xn) , 1"/-- 1, (18) 

can be any real numbers. This subroutine incorporates two nonlinear 
optimization methods (i.e., a memoryless quasi-Newton-like conjugate- 
gradient algorithm and a BFGS quasi-Newton algorithm), with the choice 
of the method being left to the user. 
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The conjugate-gradient algorithm option in CONMIN (Ref. 37) is the 
restarted memorytess variable-metric algorithm documented in Refs. 30-31. 
This method requires approximately 7n single/double precision words of 
working space to be provided by the user. 

The full quasi-Newton option in CONMIN is the BFGS algorithm 
with initial scaling, documented in Ref. 32. This method requires approxi- 
mately n 2 / 2 + l l n / 2  [i.e., O(n2)] double-precision words of working 
storage. 

For solving large-scale nonlinear optimization problems, memory con- 
siderations generally mandate using the conjugate-gradient algorithm; i.e., 
we used only the memorytess quasi-Newton-like conjugate-gradient option 
of CONMIN, requiring an O ( n )  working storage (7 vectors of length n). 

The CONMIN subroutine was modified so as to maximize the vectoriz- 
ation of its code on the CYBER 205 vector supercomputer. As will be shown 
in the next section, the performance of this conjugate-gradient code can be 
improved significantly by careful implementation on supercomputers when 
solving large-scale nonlinear optimization problems. 

4.1. Description of the Shanno-Phua Conjugate Gradient Method 
(Ref. 20). 

Step 1. Initialization. Choose xo, e, H o = I ;  set k=0 ;  compute 

fk : f (xk) ,  (19a) 

gk = g(xk) ,  (19b) 

Sk = --gk, (19C) 

s2gk = -g ' [gk .  (19d) 

Step 2. Linear Search Procedure. In this step, we perform the inexact 
linear search procedure, proposed in Ref. 31, with some modifications. As 
shown in Refs. 30 and 31, inexact linear searches are preferable to exact 
searches, particularly for the memoryless quasi-Newton method with Beale 
restarts. The basic linear search uses Davidon's cubic interpolation to find 
a steplength ak which satisfies the following two conditions: 

f (Xk  + C~kSk) < f(Xk) + 0.0001 akS 2gk, (20) 
T + Iskg(xk  akSk)S2gk] <0.9. (21) 

Step 3. Test for Convergence. Set 

Xk+l = Xk + akSk, (22a) 

fk+l = f(xk+,), (22b) 

gk+t = g(xk+~), (22C) 

Pk = Xk+l -- Xk, (22d) 

Yk = gk+~ -- gk. (22e) 
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If 

IIg~÷~l[ ~ ~ max(l ,  Ilxk+,ll), 

then stop. Else, proceed to Step 4. In our case, the gradient is obtained by 
numerical differentiation, as is evident from the fact that we use a finite- 
difference discretization. 

Step 4. Beale Restart According to Powell's Criterion. If the criterion 
suggested in Ref. 33 holds, then perform the restart procedure of Ref. 37, 
described in this step. Otherwise, proceed to Step 5. The restart criteria of 
Ref. 33 are the following: 

(a) the iteration k is a multiple of n; (23a) 
(b) lgr÷lgd>-llgk+~tl 2. (23b) 

If  either one of  the above two conditions holds, then compute the new 
search direction Sk÷t by 

( l+yyrykP[gk+l  YY[gk+l t 
Sk+l = Ygk+l -- P leg P [y k P [y------~ j Pk + - -  

where 
T T 

Y =pkYk/YkYk. 

Set Pt = sk, y, = Yk, and go to Step 2. 

YP[gk+l 
p r y  k Yk, (24) 

(25) 

Step 5. New Search Direction by the Two-Step Memoryless BFGS 
Formula. This is a nonrestart step in which we compute the new search 
direction by using the two-step memoryless BFGS scheme as suggested in 
Ref. 30. That is, we compute Sk+l by 

T / T ^ A 
~". --Pk gk+l ^ Yk Hkyk pTkgk+l yTHkgk+l~ 

S k + l  ~- --/"/kgk+ 1 - ] " ~  Hyk -- t 1 -~ - -  (26) 
PkYk P[Yk P[Yk P[Yk "}Pk" 

Here,/2/is an approximation to the inverse Hessian, and the vectors I2Ikgk+~ 
and I~kYk are defined by 

" =PfY____A pT gk+l +(pT gk+l Ytgg+l~ 
Hkgk+l YTYt gk+l YTYt y~ \ ~ Y t  Y~y-----~]P" (27) 

7: 7: (2 p, Yg YO'g~ "" Pt Yt Pt Yk , r 
HkYk=yTy--'---~tYkyfy-----~tYt± pry,  yr----~yt,]P" \ - 7 - -  (28) 

In this method Hk÷t, the approximation to the inverse Hessian, is a matrix 
obtained by updating the identity matrix with a limited number of quasi- 
Newton corrections. The storage of an (n x n) matrix is avoided by storing 
only the vectors that define the rank-two corrections. Consequently, Ref. 
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30 calls the method the memoryless quasi-Newton method. See also Ref. 
38 as well as Refs. 35 and 36. 

As suggested in Ref. 39, the search vector Sk+l is scaled by 

S*k+~ = ( 2 ( A + , - - A ) / g r , ) & + , .  (29) 

Go to Step 2. 

3.2. Storage Requirements for CONMIN. From the description of the 
CONMIN algorithm (see also Ref. 20), it is evident that the implementation 
of this algorithm requires the storage of the following vectors: 

x = current estimate of the minimum; 
g = gradient evaluated at the current point; 
s = current search direction; 

x*=  new estimate of the minimum; 
g*=  gradient evaluated at x = x*; 
sr = Beale restart search direction; 
yr = Beale restart vector. 

Notice that no extra storage is required to store the vector y, since this 
vector can be stored into the vector x* after the vector x is replaced by x*. 
Consequently the CONMIN subroutine requires 7n single/double precision 
real words of storage, in addition to the storage of various auxiliary scalar 
products. 

3.3. Computational Complexity of the CONMIN Subroutine. Our 
practical experience (see also Section 4) showed that this conjugate-gradient 
algorithm required p function and gradient evaluations per iteration, with 
2-<p <-3. The computational effort of function and gradient evaluation is 
problem dependent, but as a rule becomes the most expensive part of the 
conjugate-gradient algorithm as the number of variables increases, i.e., for 
large-scale unconstrained minimization. 

As shown in Ref. 40, the basic formula for CPU time consumption in 
an optimization code is 

T = t i n i+  tgng + tin~ = t i ( n i +  nng) + tin~; (30) 

here, t i and tg are the times required per function and gradient calls, 
respectively; t~ is the average overhead execution time per iteration; n i is 
the number of function evaluations; ng is the number of gradient evaluations; 
tg = ntf; and n~ is the number of iterations. 

The computational complexity of our test problems will be further 
discussed in the next section. 

We shall now attempt to analyze the computational complexity of 
CONMIN in terms of the number of operations (multiplications and addi- 
tions) required per iteration. For the above description, we notice that a 
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Table 1. 

S t e p  Multiplications Additions 

2 pn pn 

3 n 2n 

4 7n 7n 

5 19n 16n 

complete cycle of  an iteration in C O N M I N  involves the execution of  Steps 
2-5. The number of  operations required to perform each of  these steps can 
be summarized in Table 1. Since 2 <-p-< 3, due to the particular line-search 
method used (Ref. 20), CONMIN requires at most 3n multiplications and 
additions to perform Step 2. There are two distinct types of iterations in 
CONMIN,  namely a restart iteration and a normal (nonrestart) iteration. 

Each restart iteration involves the execution of steps 2-5, whereas a 
normal iteration consists of Steps 2, 3, 5. In summary, we have Table 2. In 
other words, the amount of operations required in performing a restart 
iteration of  C O N M I N  is at most 10n multiplications and additions, whereas 
20n additions and 22n multiplications are required to perform a normal 
iteration. 

One may wish to find out how frequently a restart iteration is performed 
in comparison to a normal iteration. The runs of the CO N MIN  subroutine 
were closely investigated when it was applied to solve our problems. We 
found that in general a restart was being made every two or three iterations. 
It was extremely rare for a given direction to be used for more than ten 
iterations. 

4. Vectorization Techniques 

In this section, we describe the various steps taken to speed up the 
performance of the quasi-Newton conjugate-gradient algorithm for the 
CYBER 205 vector computer. Because of its memory-to-memory architec- 
ture, the CYBER 205 has a longer vector start-up time than, say, a register-to- 
register supercomputer such as a CRAY X-MP. Hence, in order to achieve 

Table 2. 

I terat ion Multiplications Additions 

Restart (8+p)n (8+p)n 
Normal (20+p)n (18+p)n 
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top performance, it becomes necessary to increase the vector length on the 
CYBER 205 to fairly long vectors. For the CYBER 205, the half-performance 
length is about 100, whereas on the CRAY X-MP it is around 10 elements. 
The half-performance length can be defined as the vector length needed to 
achieve one-half the asymptotic peak vector operation rate. 

The conjugate-gradient algorithm involves two principal sections of 
code that consume most of the CPU time: (a) function and gradient 
evaluation; (b) actual minimization step, including the linear search. 

We included routines from BLAS-2 and BLAS-3 in order to vectorize 
the vector inner products as well as using machine call Q8-SDOT. 

As we shall see later, the ratio of the CPU times spent in (a) and (b) 
will vary from problem to problem, depending on several factors such as 
the complexity of the objective function, the number of independent vari- 
ables, and the total number of degrees of freedom in the problem, among 
others. 

As was evident from the results, the vectorization of the problem- 
independent parts of the minimization routine results in promising benefits 
only for large problems (a speed-up factor of 7 for the largest problem), 
whereas only a factor of 3 was obtained for the medium-size problems. For 
small problems, due to the slower start-up time of the CYBER-205, no 
benefit is to be expected. This could be different on a CRAY supercomputer. 

As a first step, the minimization routine CONMIN was restructured 
so that all DO-loops could be vectorized. The bulk of the DO-loops in this 
routine perform inner product and summation operations. On the CYBER 
205, the aforementioned tasks are initiated by a certain type of machine 
instructions called vector macros. Although both of these computations are 
reduction operations, they are vectorizable because of their hardware 
implementation. 

The floating-point add and multiply units on the CYBER 205 have 
feedback connections for accumulative add or multiply operations. Addi- 
tionally, the result from any of the functional units can be routed directly 
to the input of other units wihout stopping in some intermediate registers 
or referencing of memory. This process, known as short stopping, gives an 
effective stream rate of one result per cycle. The timing information for 
summation and inner product is as follows: 

Q8-SSUM, 96 + N cycles, 
Q8-SDOT, 107 + N cycles. 

After the initial vector start-up time of 96 and 107 cycles, respectively, a 
new result becomes available after each cycle. Hence, the larger N, the 
lesser the impact of the start-up time on the final performance of the two 
operations. 
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Having vectorized the minimization routine, the next task is to vectorize 
the often computationally intensive FUNCT routine, which calculates 
the cost function and its corresponding gradients for subsequent use in 
CONMIN. The number of function and gradient evaluations within each 
iteration in CONMIN is dependent on the rate of convergence, the stepsize, 
and the number of restarts. 

We have applied the conjugate-gradient method to two separate 
meteorological problems. However, for the sake of brevity, we will describe 
the vectorization techniques and detail the modifications for the Lamb wave 
problem only. The Lamb wave problem is a multi-dimensional boundary- 
value problem, and as a result the minimization is done only in the interior 
of the domain. This necessitates collapsing of the two-dimensional and 
three-dimensional arrays into one-dimensional arrays to achieve top perfor- 
mance on the CYBER 205. The computation of the cost function and the 
gradients can be vectorized over all three dimensions by collapsing the DO 
loops in the three spatial directions into a one-dimensional DO loop and 
making use of the control bit vectors. Such collapsing is done very efficiently 
in a bit-addressable computer such as the CYBER 205, with help of WHERE 
statements that enable us to mask the results along the boundary grid points 
by initializing those addresses to zero bits with Q8VMKO calls. Also, the 
largest loop range was made the innermost loop in those loops where 
collapsing was not possible due to the iterative nature of the computations. 

5. Discussion of Numerical Results 

By running the conjugate-gradient large-scale minimization, it became 
evident that the bulk of the CPU time was spent in the function and gradient 
evaluation procedures. This is particularly true for the scalar versions of 
the minimization code for the two large-scale problems tested in this study. 
As such, our vectorization effort was mainly directed toward the performance 
improvement of the function and gradient evaluation routines, while the 
rest of the code was vectorized by an automatic vectorizer procedure 
(VAST2) as well as by using adequate BLAS routines for linear algebra. 

As a starting point of this effort, we began with automatic vectorization. 
Further improvement in the speed-up due to vectorization was achieved by 
using manual vectorization, hereby referred to as supervectorization. We 
found out that, in both problems, the improvement due to automatic 
vectorization was only marginal; only after performing manual vectorization 
was an impressive speed-up achieved. The manual vectorization included 
loop-collapsing, in-line machine calls, and eliminating or reordering code 
so as to allow for optimal vectorization. 
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Table 3. Speed-up ratios for the AUGLAG minimization problem. 

Quantity Mesh Funct Minimiz Total 

(a) Scalar to super vector ratio 46 x46 64.8 3.35 21.00 
(a) Scalar to super vector ratio 23 x 23 31.9 2.97 15.03 
(b) Scalar to auto vector ratio 46 x 46 126 3.35 1.86 
(b) Scalar to auto vector ratio 23 x 23 1.72 2.91 1.80 

(a) Speed-up ratio (ratio of corresponding CPU timings) between scalar code and manual 
refined vectorization performed after the code was initially vectorized by the automatic 
vectorizer procedure VAST2. The manual vectorization is referred to as supervectorization 
since it achieves a high percentage of vectorization (~90%). 
Speed-up ratio (ratio of  corresponding CPU timings) between scalar code and code 
vectorized by the automatic vectorizer procedure VAST2. 

(b) 

In the first problem (AUGLAG), using a 46 x 46 mesh, the speed-up 
due to vectorization was a factor of almost 65 in the function and gradient 
evaluation routine. Since all the DO loops in the conjugate-gradient 
minimization routine (CONMIN) were already vectorized by the automatic 
vectorizing compiler, no further speed-up could be achieved for that routine. 
The net speed-up for the first minimization problem was an impressive 
factor of 21, as shown in Table 3. 

For the coarser mesh version of AUGLAG (23 x 23 mesh), the improve- 
ment was relatively smaller. This is due to the fact that the CYBER 205 
has a slower vector start-up time compared to the CRAY computers (see 
Fig. 1) and the performance efficiency of the CYBER 205 has a strong 
dependence on the vector length. 

On the other hand, for the second problem treated in this study 
(GUSTAF), the speed-up due to vectorization was a factor of about 7 for 
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Architecture, Programming, and Algorithms, Taylor and Francis, 1981). 
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Table 4. Speed-up ratios for the GUSTAF minimization problem. 

Quantity Mesh Funct Minimiz Total 

(a) Scalar to super vector ratio 111 × 150 6.7t 7.03 6.73 
(a) Scalar to super vector ratio 12 x 15 1.90 1.05 1.71 
(b) Scalar to auto vector ratio 111 x 150 1.20 7.03 1.25 
(b) Scalar to auto vector ratio 12x 15 1.11 1.00 1.1 

See Table 3 for Explanations (a) and (b). 

the fine mesh case ( l l l  x150  mesh). This clearly reflects the problem- 

dependen t  na ture  of the computa t iona l  cost for the func t ion  and  gradient  

evaluat ion  routines.  The total  speed-up for the second prob lem was also a 

factor of 7. For  a very coarse mesh version of G U S T A F  (12 x 15 mesh),  the 

speed-up due to vector izat ion was only by a factor of less than  2, again 
reflecting on the longer  breakeven  point  for vector computa t ions  on the 

C Y B E R  205 supercomputer .  These results are also detai led in Table  4. 

A more detai led b reakdown  of the computa t iona l  cost and  over- 

heads associated with the min imiza t ion  of the conjugate-gradient  rout ine  

C O N M I N  and  the func t ion  and  gradient  evaluat ions  are i l lustrated in 

Tables 5-8. The relative percentages of C P U  time spent  in the various parts 

of the min imiza t ion  program (namely,  the min imiza t ion  rout ine itself and  

the func t ion  and  gradient  evaluat ion  rout ines)  are depicted in Figs. 2-5. 

Table 5. Timing details for the AUGLAG minimization problem (46× 46 mesh) 
for various levels of vectorization (CPU times in sec). 

Vectorization level 

Hand- Automatic 
Quantity vectorized vectorization Scalar 

(c) Time spent in FUNCT 0.0334 1.2316 2.1649 
(c) Time spent on FUNCT calls 0.1003 3.6949 6.4945 
(d) Time spent in CONMIN (total) 0.3491 3.9436 7.3278 
(e) Time spent in minimization 0.2487 0.2488 0.8333 

(c) FUNCT is the subroutine where the function and gradient evaluations are performed. 
(d) Total time spent in the conjugate-gradient unconstrained minimization subroutine 

CONMIN, which includes time spent in the subroutine FUNCT and in calls to subroutine 
FUNCT. 

(e) Time spent in the conjugate-gradient unconstrained minimization subroutine CONMIN, 
excluding, however, time spent in function and gradient evaluation and/or calls to 
subroutine FUNCT. 
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Timing details for the  A U G L A G  min imiza t ion  p rob lem (23 x 23 mesh)  
for  var ious levels of  vector izat ion ( C P U  times in sec). 

Vectorization level 

Hand- Automatic 
Quantity vectorized vectorization Scalar 

(c) Time spent in FUNCT 0.0131 0.2428 0.4178 
(c) Time spent on FUNCT calls 0.0395 0.7291 1.2533 
(d) Time spent in CONMIN (total) 0.0942 0.7849 1.4158 
(e) Time spent in minimization 0.0547 0.0558 0.1625 

See Table 5 for Explanations (c), (d), (e). 

Table 7. Timing details for  the  G U S T A F  min imiza t ion  p rob lem (111 x 150 mesh)  
for  var ious levels of  vector izat ion ( C P U  t imes in sec). 

Vectorization level 

Hand- Automatic 
Quantity vectorized vectorization Scalar 

(c) Time spent in FUNCT 0.08362 0.46648 0.56127 
(d) Time spent in CONMIN (total) 0.08699 0.46985 0.58508 
(e) Time spent in minimization 0.00337 0.00337 0.02371 

See Table 5 for Explanations (c), (d), (e). 

Table  8. Timing details  for the  G U S T A F  min imiza t ion  p rob lem (12 x 15 mesh)  for 
var ious  levels of  vector izat ion (CPU times in sec). 

Vectorization level 

Hand- Automatic 
Quantity vectorized vectorization Scalar 

(c) Time spent in FUNCT 0.00281 0.00481 0.00535 
(d) Time spent in CONMIN (total) 0.00361 0.00564 0.00619 
(e) Time spent in minimization 0.00080 0.00083 0.00084 

See Table 5 for Explanations (c), (d), (e). 
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These figures show the relative percentages for the scalar code, the 
automatic vectorization code, and the super (manual) vectorization code, 
given as percentages of the total CPU time spent in the minimization code. 
For the first problem (AUGLAG), a reversal of the relative percentage of 
CPU time spent in the function and gradient evaluation routines versus the 
time spent in CONMIN, the conjugate-gradient minimization code, is 
noticed. This fact is even more evident in the fine mesh case (46 × 46 mesh) 
which involves minimization over a much longer vector (46 × 46 x 10 × 2 
40,000 variables). 

In contrast, for the second problem (GUSTAF), the function and 
gradient evaluation routine dominates by far the computational cost. This 
is noticed for all three versions of the code (scalar, auto, supervector) and 
for both short and long vectors. Despite this fact, a speed-up factor of 7 
was achieved due to hand vectorization for the entire minimization code. 

6. Summary and Conclusions 

Vectorization of the nonlinear conjugate-gradient method applied to 
large-scale unconstrained minimization problems on a CYBER 205 super- 
computer has been presented in the present research. Using the timing 
routines of the CYBER 205 (SPY), it became evident that, for the large-scale 
meteorological minimization problems, the gradient and function evaluation 
routines dominate the CPU time spent in minimization. By performing 
automatic and then hand vectorization, we succeeded in achieving a sizable 
reduction in the CPU time required for finding the local minimum of 
nonlinear functions of 104 to 105 variables. This confirms the hypothesis 
(Ref. 12) that vector computers are advantageous in the case of large-scale 
unconstrained minimization. 

With the application of optimal control methods in meteorology (see 
Ref. 41) for 4-D data assimilation, large-scale minimization in meteorology 
becomes a current and frequent problem, and the present approach points 
to the use of vector supercomputers in speeding up the solution of such 
problems. The speed-up is to some extent computer dependent, and the 
results are more impressive for large-scale problems where the number of 
variables is of the order of 104 , The conjugate-gradient algorithm used in 
the present study is an optimized version of CONMIN (Ref. 20) and forms 
the basis of the modern quasi-Newton-like limited-memory conjugate- 
gradient methods such as the variable storage method of Refs. 35 and 36 
and the E04DGF algorithm of the NAG library (Ref. 34) due to Ref. 38. 
This method has been found to be extremely robust in a variety of applica- 
tions in meteorology (Ref. 19), oceanography (Ref. 42), and molecular 
dynamics in chemistry (Ref. 43). 
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Further research should concentrate on other applications of vectoriz- 
ation of  large-scale unconstrained minimization problems using the non- 
linear conjugate-gradient method such as in chemistry, structural optimiz- 
ation, and network optimization. While efforts are being pursued in the 
direction of parallelization of  the nonlinear conjugate-gradient method, the 
present study points out the benefits of computational economy and speed- 
up that can be achieved for large-scale unconstrained minimization using 
vector supercomputers. In the future, we would like to extend this effort to 
take advantage of the multiprocessing capabilities of the newly introduced 
ETA ~° Supercomputer and exploit the inherent parallelism of the nonlinear 
conjugate-gradient algorithm. 
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