
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 66, No. 1, JULY 1990

Vectorization of Conjugate-Gradient Methods
for Large-Scale Minimization in Meteorology'

Io M. NAVON, 2 P. K. H. PHUA, 3 AND M. R A M A M U R T H Y 4

Communicated by M. Avriel

Abstract. During the last few years, conjugate-gradient methods have
been found to be the best available tool for large-scale minimization of
nonlinear functions occurring in geophysical applications. While vec-
torization techniques have been applied to linear conjugate-gradient
methods designed to solve symmetric linear systems of algebraic
equations, arising mainly from discretization of elliptic partial differen-
tial equations, due to their suitability for vector or parallel processing,
no such effort was undertaken for the nonlinear conjugate-gradient
method for large-scale unconstrained minimization.

Computational results are presented here using a robust memory-
less quasi-Newton-like conjugate-gradient algorithm by Shanno and
Phua applied to a set of large-scale meteorological problems. These
results point to the vectorization of the conjugate-gradient code inducing
a significant speed-up in the function and gradient evaluation for the
nonlinear conjugate-gradient method, resulting in a sizable reduction
in the CPU time for minimizing nonlinear functions of 10 4 to 10 5
variables. This is particularly true for many real-life problems where
the gradient and function evaluation take the bulk of the computational
effort.

It is concluded that vector computers are advantageous for large-
scale numerical optimization problems where local minima of nonlinear
functions are to be found using the nonlinear conjugate-gradient
method.

1 This research was supported by the Florida State University Supercomputer Computations
Research Institute, which is partially funded by the US Department of Energy through
Contract No. DE-FC05-85ER250000.

z Associate Professor, Department of Mathematics and Faculty Associate, Supercomputer
Computations Research Institute, Florida State University, Tallahassee, Florida.

3 Associate Professor, Department of Information Systems and Computer Science, National
University of Singapore, Kent Ridge, Singapore.

4Assistant Professor, Department of Atmospheric Sciences, University of Illinois, Urbana-
Champaign, Illinois.

7t
0022-3239/90/0700-0071506,00/0 © 1990 Plenum Publishing Corporation

72 JOTA: VOL. 66, NO. 1, JULY 1990

Key Words. Conjugate-gradient methods, large-scale minimization,
vectorization, direct minimization, meteorological problems.

1. Introduction

Among the major developments in recent years in the field of comput-
ing, one should count the introduction of a variety of vector and parallel
computers and the development of adequate algorithms designed to
efficiently utilize their capabilities. Recently, and only in a relatively small
measure, there has been a start toward algorithm development of numerical
optimization problems, most of the research being directed toward parallel
algorithms.

By large-scale numerical optimization, we mean the minimization of
functions where the number of variables is large, typically for meteorological
problems of the order of 10 4 to 10 5 variables. As we are interested in
large-scale optimization using nonlinear conjugate-gradient methods, which
require only the storage of a few vectors, the main purpose of the present
paper is to discuss and analyze the vectorization of a typical robust, modern
nonlinear conjugate-gradient code and to point out the computational
advantages, including the total speed-up in terms of CPU time. When using
a vectorized conjugate-gradient code for the unconstrained minimization
of a nonlinear function of the large-scale type, the objective function and
its gradient become quite expensive to evaluate, suggesting an important
role and significant gains using a vector computer.

For the nonlinear conjugate-gradient method, which constitutes the
topic of the present research paper, a thorough review of the available
literature points to the fact that the totality of the research activity carried
by a small number of researchers was directed toward efforts in paraltelizing
the method; to our best knowledge, no effort was directed toward vectorizing
the method.

Parallelization of the nonlinear conjugate-gradient method can be
introduced by approximating the successive gradients by finite differences
of the function values calculated in parallel, and one can accelerate the
linear searches by simultaneous function evaluations at preselected grid-
points along the search direction.

Several authors (Refs. 1-4) designed parallel versions of Powell's
nongradient method (Ref. 5), generating conjugate search directions by
minimization over geometrically parallel manifolds. This results in simul-
taneous line searches, but computational experience up to date is too limited
(see Ref. 6).

The Hatfield Polytechnic Group has investigated the conjugate-gradient
methods of Ref. 7, which generate conjugate-search directions without exact

JOTA: VOL. 66, NO, 1, JULY t990 73

linear searches (Refs. 7-12). Other work on parallel optimization is reported
in Ref. 13. In Refs. 14 and 15, the authors used pseudo-conjugate directions
for the solution of the nonlinear unconstrained optimization problem on a
parallel computer using the nongradient method of Ref. 5. Other efforts in
this direction involved Refs. 16-18, etc.

No report appears to be available concerning the speeding up of the
nonlinear conjugate-gradient method for large-scale optimization on vector
computers. This issue is of crucial importance when we solve problems with
expensive function/gradient evaluations, which appears to be the case for
large-scale meteorological applications.

It is important to develop very efficient unconstrained minimization
algorithms, not only because the problem occurs in many instances on its
own, but even more so because an unconstrained minimization problem
must be solved in the inner loop of the solution of important constrained
nonlinear problems. As mentioned in Ref. 12, vector computers may be
advantageous in the case of large-scale unconstrained minimization. These
large-scale minimization problems occur in applications in meteorology,
computational chemistry, and structural optimization, to cite but a few of
the application fields.

The plan of our paper is as follows. In Section 2, we will describe the
relevant large-scale meteorological problems where the constrained non-
linear optimization (e.g., the augmented Lagrangian formulation) was
applied. A large-scale unconstrained optimization problem must be invari-
ably solved in the inner loop of the solution of the augmented Lagrangian
constrained nonlinear minimization. The robust memoryless quasi-Newton-
like conjugate-gradient solver due to Ref. 20, its structure, and its computa-
tional complexity will be described in Section 3.

Numerical tests (Ref. 21) show that limited-memory quasi-Newton-like
conjugate-gradient methods with inexact line searches require substantially
fewer function evaluations than the simple conjugate-gradient method where
little additional storage is required. Numerical results concerning the vec-
torization of the function/gradient evaluation part, which is problem depen-
dent but which in real life is always the most computationally intensive
part of it, wilt be presented in Section 4.

Results concerning the performance of the conjugate-gradient code
under scalar, automatic vectorization, and refined manual vectorization will
be numerically and graphically presented and discussed in Section 5. The
resulting speed-up of the conjugate-gradient method and the relative
improvements in performance will be tabulated and summarized. Finally,
the impact of the number of variables in the nonlinear function to be
minimized on the speed-up performance of the vectorized nonlinear conju-
gate-gradient code for a particular vector supercomputer (e.g., the CYBER
205) will be discussed.

74 JOTA: VOL. 66, NO. 1, JULY 1990

Section 6 will include a summary and concluding remarks with implica-
tions for the vectorization of different nonlinear conjugate-gradient methods
applied to large-scale and very large-scale unconstrained minimization.

2. Large-Scale Meteorological Problems

Here, we will introduce the two large-scale meteorological problems
where nonlinear constrained minimization was applied. The inner loop of
the constrained minimization (i.e., the augmented Lagrangian method)
involved large-scale unconstrained minimization solved by the quasi-
Newton memoryless conjugate-gradient method of Ref. 20, hereby referred
to as CONMIN.

2.1. Conservation of Integral Invariants of the Shallow-Water Equations
(GUSTAF Problem). An augmented Lagrangian constrained minimization
method is applied to enforce the conservation of the three integral invariants
of the shallow-water equations model on a limited-area domain (see Refs.
22-24). The three integral invariants are the total mass, the total energy,
and the potential enstrophy.

The augmented Lagrangian method approximates the nonlinear
equality constrained minimization problem by solving a series of uncon-
strained minimization problems (Ref. 25). In our case, we define the func-
tional f by

Nx N>

~ n ~ n 2 ~ n - t l 2 ~ n ~n 2 f = ~. • [a(Ujk--UA) + (Vjk--Vj,) -t-~(hjk-hjk)]; (1)
j = l k = l

here,

NxAx = L, NyAy = D, Ax = Ay = h;

h is the grid size; n designates the time level t. = nAt; At is the time step;
L and D are the respective dimensions of the rectangular domain over
which the shallow-water equations are being solved (see Ref. 23).

(aj -°, "" , vjk hjk) are the predicted variables at the nth time step using a
finite-difference algorithm (i.e., the nonlinear ADI method of Ref. 26 for

tl n solving the nonlinear shallow-water equations system); (uj~, vjk, hjk) are
the field values adjusted by the nonlinear constrained optimization method
using the augmented-Lagrangian technique to enforce conservation of the
three integral invariants of the shallow-water equations; ~ and/~ are weights
determined by the principle (Ref. 27) that the relative weights are selected
so as to make the fractional adjustment of variables proportional to the
fractional magnitude of the truncation errors in the predicted variables.

J O T A : VOL. 66, NO. 1, J U L Y 1990 75

We used

8 = 1, fi = g /H , (2)

where H is the mean depth of the shallow fluid. The augmented Lagrangian
function L is defined by

L(x, A, r) = f (x) + a re(x) + (1/2r)[e(x)[2, (3)

and the minimization of (3) replaces the problem

m in f (x) ,

s.t. e(x) =0, e = (e ~ , . . . , era), m<-n, (4)

where e(x) are the equality constraints. Here,

(U l l ~ . . . ' ~n ~n - , ~n T ldNxN r, V l l , . . ?.)NxN:~, h n , ° . . , hN~u~) ; (5)

in our particular case, the equality constraint vector has three components
given by

E " - E ° - I
e (x) = Z " - Z ° , (6)

H . _ H ° J

where

N x N v

j = l k= l

N x N

z ' = ~ 2 2
j = l k ~ l

N Ny

H" = E Y, hj"k AxAy.
j = t k= l

~n ~n 2 [hjk(uj~) +(~7~)2+ -o 2 g(hjk)]AxAy,

~n ~n. . + ~n 2 [(OVjk/OX--aUjk/Ov £)/hjA Axay,

(7a)

(7b)

(7c)

Here, E ", Z n, H n are the discrete values of the integral invariants of the
total energy, the potential enstrophy (i.e., the discrete sum of the square of
the absolute vorticity), and the mass at time t~ = nAt; E °, Z °, H ° are the
values of the same integral invariants at the initial time t = 0; A is an
m-component Lagrange multiplier vector,

= (< , • . . , A~)~; (8)

r is a penalty parameter; g is the acceleration of gravity; and 1-<-j-< N~,
1 -< k -< Ny, such that N~Ax = L, NyAy = L.

76 JOTA: VOL. 66, NO. 1, JULY 1990

In our application, we follow the augmented Lagrangian algorithm
(Refs. 28 and 25) for minimizing the augmented Lagrangian

Lr~(x, ,~k)=f(x)+ ~t[e(x)+(1/2rk)le(x)l 2 (9)

and updating the Lagrange multipliers and penalty parameters. Here, k is
an index of the iterations sequence. For the inexact unconstrained minimiz-
ation of the augmented Lagrangian function Lr~(x~, ,~k), we use a conjugate-
gradient method which has the virtue of requiring only a few vectors for
memory storage; this suits us, since we are dealing with a large-scale
minimization problem. The conjugate-gradient method will be described in
ample detail in the next section.

For this application, we used two grids. The first grid was a coarse grid
with a space increment of

Ax = Ay =400 km, At = 3600 sec,

where At is the time step. This resulted in a 12x15 grid in the x and y
directions respectively for a rectangular domain of L = 4400 km and D =
6000 kin. The augmented Lagrangian function was a function of x with
12 × 15 x 3 = 540 variables; i.e., the unconstrained minimization was carried
out on a nonlinear function of 540 variables. A second grid, using a refined
mesh space increment of

~x = Ay =40 km, At =360 sec,

was also tested. This results in 150 x 111 x 3 ~ 50,000 variables in the non-
linear unconstrained minimization.

2.2. Constrained Adjustment to Suppress Lamb Waves (AUGLAG
Problem). In meteorological applications, one is often interested in sup-
pressing external gravity waves by modifying the observed wind field in
such a way that the vertical motions vanish at the lowest level of a three-
dimensional atmospheric model. An alternative way is to regard this adjust-
ment as a variational adjustment of the horizontal wind fields in a pressure
coordinate system (x, y, p), so that the pressure tendency dp/dt is zero
everywhere; here, Ps is the surface pressure.

The continuity equation in pressure coordinates is given by

au/ax +av/ay +aw/ap = 0. (10)

Integrating this equation from the top to the bottom of the atmosphere
and assuming the vertical velocity w = 0 at both endpoints, we obtain (see
Ref. 29)

fo ~" (au/ax +av/oy) dp = O. (11)

JOTA: VOL. 66, NO. 1, JULY 1990 77

Using this equation as a constraint will ensure that

dpjdt=O. (12)

In other words, using the continuity equation as a strong constraint will
enable us to suppress Lamb waves.

The Lamb waves are high-speed acoustic-gravity waves which appear
as solutions to the primitive equations in numerical weather prediction
along with slow, physically relevant meteorological waves. As such, we are
interested in suppressing the Lamb waves, which can be viewed as noise
in a meteorological model and which, moreover, impose very stringent
computational stability conditions on the allowable time step At.

The functional tbr which the stationary value is to be found for this
problem is

f=fxfyfp[(u-~t)2+(v-v)]2dxdydp

+ fx fy[h if'(Ou/Ox+Ov/Oy) dp] dxdy; (13)

here, a and ~ are the analyzed horizontal wind components, u and v are
the observed horizontal wind components; and A is the Lagrange multiplier.

In a discrete augmented Lagrangian formulation, we obtain

L = 2 2 2 [(uijk - t~k)= + (V i j k - ~jk)~]axayAp ijk

+~h~[~ k -2Ax I vi'Y+"k--v"s-i'k~hp]AxAY2Ay]

o,F:E(I L . (14)

where C 0 are the penalty terms and h o are the Lagrange multipliers.
Our model domain is rectangular in the horizontal sense; in the vertical

sense, we have 10 discrete levels, resulting in this application in a function
of 4 6 x 4 6 x 1 0 x 2 components ~42,320 variables. A coarser mesh case,
where the mesh spacing was increased by a factor of 2 in the horizontal
sense, resulted in a function of 23 x 23 x 10x 2 components ~10,000 vari-
ables. The gradient of the discrete augmented Lagrangian function L with
respect to the vector x, where x is given by

x = (u , , , . . . , UN~N>Np, V , , , , VN~,N,) ~, (15)

7 8 J O T A : V O L . 66, N O . 1, J U L Y 1990

for the three-dimensional limited-area domain in x, y, p (NxAx = L, NyA y =
D, NpAp = H) is given by

OL t . [h~-I - hi+i'~ ~u i~k= 2(uUk-uijk)AxAyAp+~ -~X)±xAy~@

+ \ y /

x A p (C i - t d - Ci+~'J'~ AxAy, (16)
\ 2Ax]

aLI = 2(V~jk -- ~k)Ax~yAp + (A!,J.! S ;t!,j+~ AxAyAp
-~v Ok \ 2A y]

(Ui+l,j,k--Ui-l,j,k l.)i,j+l,k--~i,j-l,k~

(Ci'j-1zC'a+I"]AxAy. (17)
× Ap \ 2Ay]

The same inexact minimization of the augmented Lagrangian of Ref. 25 is
applied using the same rules for updating the multipliers and penalties. The
same conjugate-gradient unconstrained minimization method (CONMIN,
Ref. 20) is used to minimize the augmented Lagrangian discrete functional.

3. Conjugate-Gradient Method

In our applications, we have decided to use the memoryless quasi-
Newton conjugate-gradient method due to Ref. 30 and proposed in Ref.
20. This was found to be robust and performing for meteorological applica-
tions (see Ref. 19), when compared with other conjugate-gradient methods
such as Fletcher-Reeves, Polak-Ribiere, and the method of Ref. 33 (IMSL
Mathematical Software Library), and when compared with the E04DGF
software (Ref. 34) and the methods of Refs. 35-36. The last two methods
are also memoryless or limited memory quasi-Newton-like conjugate-
gradient methods.

The CONMIN routine proposed in Ref. 20 finds the local minimizer
of a nonlinear function f (x) of n variables, where

X = (X l , . . . , Xn) , 1"/-- 1, (18)

can be any real numbers. This subroutine incorporates two nonlinear
optimization methods (i.e., a memoryless quasi-Newton-like conjugate-
gradient algorithm and a BFGS quasi-Newton algorithm), with the choice
of the method being left to the user.

JOTA: VOL. 66, NO. 1, JULY 1990 79

The conjugate-gradient algorithm option in CONMIN (Ref. 37) is the
restarted memorytess variable-metric algorithm documented in Refs. 30-31.
This method requires approximately 7n single/double precision words of
working space to be provided by the user.

The full quasi-Newton option in CONMIN is the BFGS algorithm
with initial scaling, documented in Ref. 32. This method requires approxi-
mately n 2 / 2 + l l n / 2 [i.e., O(n2)] double-precision words of working
storage.

For solving large-scale nonlinear optimization problems, memory con-
siderations generally mandate using the conjugate-gradient algorithm; i.e.,
we used only the memorytess quasi-Newton-like conjugate-gradient option
of CONMIN, requiring an O (n) working storage (7 vectors of length n).

The CONMIN subroutine was modified so as to maximize the vectoriz-
ation of its code on the CYBER 205 vector supercomputer. As will be shown
in the next section, the performance of this conjugate-gradient code can be
improved significantly by careful implementation on supercomputers when
solving large-scale nonlinear optimization problems.

4.1. Description of the Shanno-Phua Conjugate Gradient Method
(Ref. 20).

Step 1. Initialization. Choose xo, e, H o = I ; set k=0 ; compute

fk : f (xk) , (19a)

gk = g(xk) , (19b)

Sk = --gk, (19C)

s2gk = -g ' [gk . (19d)

Step 2. Linear Search Procedure. In this step, we perform the inexact
linear search procedure, proposed in Ref. 31, with some modifications. As
shown in Refs. 30 and 31, inexact linear searches are preferable to exact
searches, particularly for the memoryless quasi-Newton method with Beale
restarts. The basic linear search uses Davidon's cubic interpolation to find
a steplength ak which satisfies the following two conditions:

f (Xk + C~kSk) < f(Xk) + 0.0001 akS 2gk, (20)
T + Iskg(xk akSk)S2gk] <0.9. (21)

Step 3. Test for Convergence. Set

Xk+l = Xk + akSk, (22a)

fk+l = f(xk+,), (22b)

gk+t = g(xk+~), (22C)

Pk = Xk+l -- Xk, (22d)

Yk = gk+~ -- gk. (22e)

80 J OTA: V O L 66, NO, 1, J U L Y 1990

If

IIg~÷~l[~ ~ max(l , Ilxk+,ll),

then stop. Else, proceed to Step 4. In our case, the gradient is obtained by
numerical differentiation, as is evident from the fact that we use a finite-
difference discretization.

Step 4. Beale Restart According to Powell's Criterion. If the criterion
suggested in Ref. 33 holds, then perform the restart procedure of Ref. 37,
described in this step. Otherwise, proceed to Step 5. The restart criteria of
Ref. 33 are the following:

(a) the iteration k is a multiple of n; (23a)
(b) lgr÷lgd>-llgk+~tl 2. (23b)

If either one of the above two conditions holds, then compute the new
search direction Sk÷t by

(l+yyrykP[gk+l YY[gk+l t
Sk+l = Ygk+l -- P leg P [y k P [y------~ j Pk + - -

where
T T

Y =pkYk/YkYk.

Set Pt = sk, y, = Yk, and go to Step 2.

YP[gk+l
p r y k Yk, (24)

(25)

Step 5. New Search Direction by the Two-Step Memoryless BFGS
Formula. This is a nonrestart step in which we compute the new search
direction by using the two-step memoryless BFGS scheme as suggested in
Ref. 30. That is, we compute Sk+l by

T / T ^ A
~". --Pk gk+l ^ Yk Hkyk pTkgk+l yTHkgk+l~

S k + l ~- --/"/kgk+ 1 -] " ~ Hyk -- t 1 -~ - - (26)
PkYk P[Yk P[Yk P[Yk "}Pk"

Here,/2/is an approximation to the inverse Hessian, and the vectors I2Ikgk+~
and I~kYk are defined by

" =PfY____A pT gk+l +(pT gk+l Ytgg+l~
Hkgk+l YTYt gk+l YTYt y~ \ ~ Y t Y~y-----~]P" (27)

7: 7: (2 p, Yg YO'g~ "" Pt Yt Pt Yk , r
HkYk=yTy--'---~tYkyfy-----~tYt± pry, yr----~yt,]P" \ - 7 - - (28)

In this method Hk÷t, the approximation to the inverse Hessian, is a matrix
obtained by updating the identity matrix with a limited number of quasi-
Newton corrections. The storage of an (n x n) matrix is avoided by storing
only the vectors that define the rank-two corrections. Consequently, Ref.

JOTA: VOL. 66, NO. 1, JULY 1990 81

30 calls the method the memoryless quasi-Newton method. See also Ref.
38 as well as Refs. 35 and 36.

As suggested in Ref. 39, the search vector Sk+l is scaled by

S*k+~ = (2 (A + , - - A) / g r ,) & + , . (29)

Go to Step 2.

3.2. Storage Requirements for CONMIN. From the description of the
CONMIN algorithm (see also Ref. 20), it is evident that the implementation
of this algorithm requires the storage of the following vectors:

x = current estimate of the minimum;
g = gradient evaluated at the current point;
s = current search direction;

x*= new estimate of the minimum;
g*= gradient evaluated at x = x*;
sr = Beale restart search direction;
yr = Beale restart vector.

Notice that no extra storage is required to store the vector y, since this
vector can be stored into the vector x* after the vector x is replaced by x*.
Consequently the CONMIN subroutine requires 7n single/double precision
real words of storage, in addition to the storage of various auxiliary scalar
products.

3.3. Computational Complexity of the CONMIN Subroutine. Our
practical experience (see also Section 4) showed that this conjugate-gradient
algorithm required p function and gradient evaluations per iteration, with
2-<p <-3. The computational effort of function and gradient evaluation is
problem dependent, but as a rule becomes the most expensive part of the
conjugate-gradient algorithm as the number of variables increases, i.e., for
large-scale unconstrained minimization.

As shown in Ref. 40, the basic formula for CPU time consumption in
an optimization code is

T = t i n i+ tgng + tin~ = t i (n i + nng) + tin~; (30)

here, t i and tg are the times required per function and gradient calls,
respectively; t~ is the average overhead execution time per iteration; n i is
the number of function evaluations; ng is the number of gradient evaluations;
tg = ntf; and n~ is the number of iterations.

The computational complexity of our test problems will be further
discussed in the next section.

We shall now attempt to analyze the computational complexity of
CONMIN in terms of the number of operations (multiplications and addi-
tions) required per iteration. For the above description, we notice that a

82 JOTA: VOL, 66, NO, 1, JULY 1990

Table 1.

S t e p Multiplications Additions

2 pn pn

3 n 2n

4 7n 7n

5 19n 16n

complete cycle of an iteration in C O N M I N involves the execution of Steps
2-5. The number of operations required to perform each of these steps can
be summarized in Table 1. Since 2 <-p-< 3, due to the particular line-search
method used (Ref. 20), CONMIN requires at most 3n multiplications and
additions to perform Step 2. There are two distinct types of iterations in
CONMIN, namely a restart iteration and a normal (nonrestart) iteration.

Each restart iteration involves the execution of steps 2-5, whereas a
normal iteration consists of Steps 2, 3, 5. In summary, we have Table 2. In
other words, the amount of operations required in performing a restart
iteration of C O N M I N is at most 10n multiplications and additions, whereas
20n additions and 22n multiplications are required to perform a normal
iteration.

One may wish to find out how frequently a restart iteration is performed
in comparison to a normal iteration. The runs of the CO N MIN subroutine
were closely investigated when it was applied to solve our problems. We
found that in general a restart was being made every two or three iterations.
It was extremely rare for a given direction to be used for more than ten
iterations.

4. Vectorization Techniques

In this section, we describe the various steps taken to speed up the
performance of the quasi-Newton conjugate-gradient algorithm for the
CYBER 205 vector computer. Because of its memory-to-memory architec-
ture, the CYBER 205 has a longer vector start-up time than, say, a register-to-
register supercomputer such as a CRAY X-MP. Hence, in order to achieve

Table 2.

I terat ion Multiplications Additions

Restart (8+p)n (8+p)n
Normal (20+p)n (18+p)n

JOTA: VOL. 66, NO. 1, JULY 1990 83

top performance, it becomes necessary to increase the vector length on the
CYBER 205 to fairly long vectors. For the CYBER 205, the half-performance
length is about 100, whereas on the CRAY X-MP it is around 10 elements.
The half-performance length can be defined as the vector length needed to
achieve one-half the asymptotic peak vector operation rate.

The conjugate-gradient algorithm involves two principal sections of
code that consume most of the CPU time: (a) function and gradient
evaluation; (b) actual minimization step, including the linear search.

We included routines from BLAS-2 and BLAS-3 in order to vectorize
the vector inner products as well as using machine call Q8-SDOT.

As we shall see later, the ratio of the CPU times spent in (a) and (b)
will vary from problem to problem, depending on several factors such as
the complexity of the objective function, the number of independent vari-
ables, and the total number of degrees of freedom in the problem, among
others.

As was evident from the results, the vectorization of the problem-
independent parts of the minimization routine results in promising benefits
only for large problems (a speed-up factor of 7 for the largest problem),
whereas only a factor of 3 was obtained for the medium-size problems. For
small problems, due to the slower start-up time of the CYBER-205, no
benefit is to be expected. This could be different on a CRAY supercomputer.

As a first step, the minimization routine CONMIN was restructured
so that all DO-loops could be vectorized. The bulk of the DO-loops in this
routine perform inner product and summation operations. On the CYBER
205, the aforementioned tasks are initiated by a certain type of machine
instructions called vector macros. Although both of these computations are
reduction operations, they are vectorizable because of their hardware
implementation.

The floating-point add and multiply units on the CYBER 205 have
feedback connections for accumulative add or multiply operations. Addi-
tionally, the result from any of the functional units can be routed directly
to the input of other units wihout stopping in some intermediate registers
or referencing of memory. This process, known as short stopping, gives an
effective stream rate of one result per cycle. The timing information for
summation and inner product is as follows:

Q8-SSUM, 96 + N cycles,
Q8-SDOT, 107 + N cycles.

After the initial vector start-up time of 96 and 107 cycles, respectively, a
new result becomes available after each cycle. Hence, the larger N, the
lesser the impact of the start-up time on the final performance of the two
operations.

84 JOTA: VOL. 66, NO. 1, JULY 1990

Having vectorized the minimization routine, the next task is to vectorize
the often computationally intensive FUNCT routine, which calculates
the cost function and its corresponding gradients for subsequent use in
CONMIN. The number of function and gradient evaluations within each
iteration in CONMIN is dependent on the rate of convergence, the stepsize,
and the number of restarts.

We have applied the conjugate-gradient method to two separate
meteorological problems. However, for the sake of brevity, we will describe
the vectorization techniques and detail the modifications for the Lamb wave
problem only. The Lamb wave problem is a multi-dimensional boundary-
value problem, and as a result the minimization is done only in the interior
of the domain. This necessitates collapsing of the two-dimensional and
three-dimensional arrays into one-dimensional arrays to achieve top perfor-
mance on the CYBER 205. The computation of the cost function and the
gradients can be vectorized over all three dimensions by collapsing the DO
loops in the three spatial directions into a one-dimensional DO loop and
making use of the control bit vectors. Such collapsing is done very efficiently
in a bit-addressable computer such as the CYBER 205, with help of WHERE
statements that enable us to mask the results along the boundary grid points
by initializing those addresses to zero bits with Q8VMKO calls. Also, the
largest loop range was made the innermost loop in those loops where
collapsing was not possible due to the iterative nature of the computations.

5. Discussion of Numerical Results

By running the conjugate-gradient large-scale minimization, it became
evident that the bulk of the CPU time was spent in the function and gradient
evaluation procedures. This is particularly true for the scalar versions of
the minimization code for the two large-scale problems tested in this study.
As such, our vectorization effort was mainly directed toward the performance
improvement of the function and gradient evaluation routines, while the
rest of the code was vectorized by an automatic vectorizer procedure
(VAST2) as well as by using adequate BLAS routines for linear algebra.

As a starting point of this effort, we began with automatic vectorization.
Further improvement in the speed-up due to vectorization was achieved by
using manual vectorization, hereby referred to as supervectorization. We
found out that, in both problems, the improvement due to automatic
vectorization was only marginal; only after performing manual vectorization
was an impressive speed-up achieved. The manual vectorization included
loop-collapsing, in-line machine calls, and eliminating or reordering code
so as to allow for optimal vectorization.

JOTA: VOL. 66, NO. 1, JULY 1990 85

Table 3. Speed-up ratios for the AUGLAG minimization problem.

Quantity Mesh Funct Minimiz Total

(a) Scalar to super vector ratio 46 x46 64.8 3.35 21.00
(a) Scalar to super vector ratio 23 x 23 31.9 2.97 15.03
(b) Scalar to auto vector ratio 46 x 46 126 3.35 1.86
(b) Scalar to auto vector ratio 23 x 23 1.72 2.91 1.80

(a) Speed-up ratio (ratio of corresponding CPU timings) between scalar code and manual
refined vectorization performed after the code was initially vectorized by the automatic
vectorizer procedure VAST2. The manual vectorization is referred to as supervectorization
since it achieves a high percentage of vectorization (~90%).
Speed-up ratio (ratio of corresponding CPU timings) between scalar code and code
vectorized by the automatic vectorizer procedure VAST2.

(b)

In the first problem (AUGLAG), using a 46 x 46 mesh, the speed-up
due to vectorization was a factor of almost 65 in the function and gradient
evaluation routine. Since all the DO loops in the conjugate-gradient
minimization routine (CONMIN) were already vectorized by the automatic
vectorizing compiler, no further speed-up could be achieved for that routine.
The net speed-up for the first minimization problem was an impressive
factor of 21, as shown in Table 3.

For the coarser mesh version of AUGLAG (23 x 23 mesh), the improve-
ment was relatively smaller. This is due to the fact that the CYBER 205
has a slower vector start-up time compared to the CRAY computers (see
Fig. 1) and the performance efficiency of the CYBER 205 has a strong
dependence on the vector length.

On the other hand, for the second problem treated in this study
(GUSTAF), the speed-up due to vectorization was a factor of about 7 for

Fig, 1.

100

80
O . .
o
u_ 60

40

20

]..~.~'7"

' ~ CYBER 2O5
faster faster

1 I , , ,

100 200 300 4'00 500 600 700 800 9()0 11700
Vector Length

Performance of the 2-pipe CYBER 205 (broken line) and the CRAY-1 (full line) as
a function of vector length (see R. W. Hockney and C. R. Jesshope, Parallel Computers:
Architecture, Programming, and Algorithms, Taylor and Francis, 1981).

86 JOTA: VOL. 66, NO. 1, JULY 1990

Table 4. Speed-up ratios for the GUSTAF minimization problem.

Quantity Mesh Funct Minimiz Total

(a) Scalar to super vector ratio 111 × 150 6.7t 7.03 6.73
(a) Scalar to super vector ratio 12 x 15 1.90 1.05 1.71
(b) Scalar to auto vector ratio 111 x 150 1.20 7.03 1.25
(b) Scalar to auto vector ratio 12x 15 1.11 1.00 1.1

See Table 3 for Explanations (a) and (b).

the fine mesh case (l l l x150 mesh). This clearly reflects the problem-

dependen t na ture of the computa t iona l cost for the func t ion and gradient

evaluat ion routines. The total speed-up for the second prob lem was also a

factor of 7. For a very coarse mesh version of G U S T A F (12 x 15 mesh), the

speed-up due to vector izat ion was only by a factor of less than 2, again
reflecting on the longer breakeven point for vector computa t ions on the

C Y B E R 205 supercomputer . These results are also detai led in Table 4.

A more detai led b reakdown of the computa t iona l cost and over-

heads associated with the min imiza t ion of the conjugate-gradient rout ine

C O N M I N and the func t ion and gradient evaluat ions are i l lustrated in

Tables 5-8. The relative percentages of C P U time spent in the various parts

of the min imiza t ion program (namely, the min imiza t ion rout ine itself and

the func t ion and gradient evaluat ion rout ines) are depicted in Figs. 2-5.

Table 5. Timing details for the AUGLAG minimization problem (46× 46 mesh)
for various levels of vectorization (CPU times in sec).

Vectorization level

Hand- Automatic
Quantity vectorized vectorization Scalar

(c) Time spent in FUNCT 0.0334 1.2316 2.1649
(c) Time spent on FUNCT calls 0.1003 3.6949 6.4945
(d) Time spent in CONMIN (total) 0.3491 3.9436 7.3278
(e) Time spent in minimization 0.2487 0.2488 0.8333

(c) FUNCT is the subroutine where the function and gradient evaluations are performed.
(d) Total time spent in the conjugate-gradient unconstrained minimization subroutine

CONMIN, which includes time spent in the subroutine FUNCT and in calls to subroutine
FUNCT.

(e) Time spent in the conjugate-gradient unconstrained minimization subroutine CONMIN,
excluding, however, time spent in function and gradient evaluation and/or calls to
subroutine FUNCT.

Table 6.

JOTA: VOL. 66, NO. 1, JULY 1990 87

Timing details for the A U G L A G min imiza t ion p rob lem (23 x 23 mesh)
for var ious levels of vector izat ion (C P U times in sec).

Vectorization level

Hand- Automatic
Quantity vectorized vectorization Scalar

(c) Time spent in FUNCT 0.0131 0.2428 0.4178
(c) Time spent on FUNCT calls 0.0395 0.7291 1.2533
(d) Time spent in CONMIN (total) 0.0942 0.7849 1.4158
(e) Time spent in minimization 0.0547 0.0558 0.1625

See Table 5 for Explanations (c), (d), (e).

Table 7. Timing details for the G U S T A F min imiza t ion p rob lem (111 x 150 mesh)
for var ious levels of vector izat ion (C P U t imes in sec).

Vectorization level

Hand- Automatic
Quantity vectorized vectorization Scalar

(c) Time spent in FUNCT 0.08362 0.46648 0.56127
(d) Time spent in CONMIN (total) 0.08699 0.46985 0.58508
(e) Time spent in minimization 0.00337 0.00337 0.02371

See Table 5 for Explanations (c), (d), (e).

Table 8. Timing details for the G U S T A F min imiza t ion p rob lem (12 x 15 mesh) for
var ious levels of vector izat ion (CPU times in sec).

Vectorization level

Hand- Automatic
Quantity vectorized vectorization Scalar

(c) Time spent in FUNCT 0.00281 0.00481 0.00535
(d) Time spent in CONMIN (total) 0.00361 0.00564 0.00619
(e) Time spent in minimization 0.00080 0.00083 0.00084

See Table 5 for Explanations (c), (d), (e).

88 JOTA: VOL. 66, NO. 1, JULY 1990

AUGLAG (46 X 46)

i i i

0 . .

i i

O

Fig. 2.

100

80

60

40

20

93.6

SUPER AUTO SCALAR

71.2

SUPER AUTO SCALAR

OBJECTIVE FUNCTION AND
GRADIENT EVALUATION

MINIMIZATION

Histograms of the relative percentages of scalar, automatic vectorizafion, and super
(manual) vectorization code given as percentages of total CPU time spent in minimiz-
ation code (AUGLAG problem, 46 x 46 mesh).

AUGLAG (23 X 23)

t . td

D-
O
LL
O

Fig. 3.

100

80

60

40

20

92.9

SUPER AUTO SCALAR

OBJECTIVE FUNCTION AND
GRADIENT EVALUATION

58.1

SUPER AUTO SCALAR

MINIMIZATION

Histograms of the relative percentages of scalar, automatic vectorization, and super
(manual) vectorization code given as percentages of total CPU time spent in minimiz-
ation code (AUGLAG problem, 23 × 23 mesh).

JOTA: VOL. 66, NO. 1, JULY 1990 89

LIJ

F.-

r,
O
LI-
©

Fig. 4.

100

80

60

40

20

96.1

G U S T A F (111 X 150)

95,9

I ~) 3.9 0.7 4k l
SUPER AUTO SCALAR SUPER AUTO SCALAR

OBJECTIVE FUNCTION AND MINIMIZATION
GRADIENT EVALUATION

Histograms of the relative percentages of scalar, automatic vectorization, and super
(manual) vectorization code given as percentages of total CPU time spent in minimiz-
ation code (GUSTAF problem, 111 x 150 mesh).

I.IJ
p-
~D t'~
O
l.U
O

Fig. 5.

t

100

80

GUSTAF (12 X 15)

60

40

20

SUPER AUTO SCALAR

OBJECTIVE FUNCTION AND
GRADIENT EVALUATION

22.2

SUPER AUTO SCALAR

MINIMIZATION

Histograms of the relative percentages of scalar, automatic vectorization, and super
(manual) vectorization code given as percentages of total CPU time spent in minimiz-
ation code (GUSTAF problem, 12 × 15 mesh).

90 JOTA: VOL. 66, NO. 1, JULY 1990

These figures show the relative percentages for the scalar code, the
automatic vectorization code, and the super (manual) vectorization code,
given as percentages of the total CPU time spent in the minimization code.
For the first problem (AUGLAG), a reversal of the relative percentage of
CPU time spent in the function and gradient evaluation routines versus the
time spent in CONMIN, the conjugate-gradient minimization code, is
noticed. This fact is even more evident in the fine mesh case (46 × 46 mesh)
which involves minimization over a much longer vector (46 × 46 x 10 × 2
40,000 variables).

In contrast, for the second problem (GUSTAF), the function and
gradient evaluation routine dominates by far the computational cost. This
is noticed for all three versions of the code (scalar, auto, supervector) and
for both short and long vectors. Despite this fact, a speed-up factor of 7
was achieved due to hand vectorization for the entire minimization code.

6. Summary and Conclusions

Vectorization of the nonlinear conjugate-gradient method applied to
large-scale unconstrained minimization problems on a CYBER 205 super-
computer has been presented in the present research. Using the timing
routines of the CYBER 205 (SPY), it became evident that, for the large-scale
meteorological minimization problems, the gradient and function evaluation
routines dominate the CPU time spent in minimization. By performing
automatic and then hand vectorization, we succeeded in achieving a sizable
reduction in the CPU time required for finding the local minimum of
nonlinear functions of 104 to 105 variables. This confirms the hypothesis
(Ref. 12) that vector computers are advantageous in the case of large-scale
unconstrained minimization.

With the application of optimal control methods in meteorology (see
Ref. 41) for 4-D data assimilation, large-scale minimization in meteorology
becomes a current and frequent problem, and the present approach points
to the use of vector supercomputers in speeding up the solution of such
problems. The speed-up is to some extent computer dependent, and the
results are more impressive for large-scale problems where the number of
variables is of the order of 104 , The conjugate-gradient algorithm used in
the present study is an optimized version of CONMIN (Ref. 20) and forms
the basis of the modern quasi-Newton-like limited-memory conjugate-
gradient methods such as the variable storage method of Refs. 35 and 36
and the E04DGF algorithm of the NAG library (Ref. 34) due to Ref. 38.
This method has been found to be extremely robust in a variety of applica-
tions in meteorology (Ref. 19), oceanography (Ref. 42), and molecular
dynamics in chemistry (Ref. 43).

JOTA: VOL. 66, NO. 1, JULY 1990 91

Further research should concentrate on other applications of vectoriz-
ation of large-scale unconstrained minimization problems using the non-
linear conjugate-gradient method such as in chemistry, structural optimiz-
ation, and network optimization. While efforts are being pursued in the
direction of parallelization of the nonlinear conjugate-gradient method, the
present study points out the benefits of computational economy and speed-
up that can be achieved for large-scale unconstrained minimization using
vector supercomputers. In the future, we would like to extend this effort to
take advantage of the multiprocessing capabilities of the newly introduced
ETA ~° Supercomputer and exploit the inherent parallelism of the nonlinear
conjugate-gradient algorithm.

References

1. CHAZAN, D., and MIRANKER, W. L., A Nongradient and Parallel Algorithm
for Unconstrained Minimization, SIAM Journal on Control, Vol. 8, pp. 207-217,
1970.

2. SLOBODA, F., A Conjugate Direction Method and Its Applications, Proceedings
of the 8th IFIP Conference on Optimization Techniques, Wurtzburg, Germany,
1977; Springer-Verlag, Berlin, Germany, 1977.

3. SUTTI, C., Nongradient Minimization Methods for Parallel Processing Computers,
Part 1, Journal of Optimization Theory and Applications, Vol. 39, pp. 465-474,
1983.

4. SUTTI, C., Nongradient Minimization Methods for Parallel Processing Computers,
Part 2, Journal of Optimization Theory and Applications, Vol. 39, pp. 475-488,
1983.

5. POWELL, M. J. D., An Efficient Method for Finding the Minimum of a Function
of Several Variables without Calculating Derivatives, Computer Journal, Vol. 7,
pp. 155-162, 1964.

6. LOOTSMA, F. A., State-of-the-Art in Parallel Unconstrained Optimization, Parallel
Computing 85, Edited by M. Feilmeir, E. Joubert, and V. Schendel, North-
Holland, Amsterdam, Holland, pp. 157-163, 1986.

7. NAZARETH, L., A Conjugate-Gradient Algorithm without Linear Searches,
Journal of Optimization Theory and Applications, Vol. 23, pp. 373-387, 1977.

8. DIXON, L. C. W., DUCKSBURY, P. G., and SING, P., A Parallel Version of the
Conjugate Gradient Algorithm for Finite-Element Problems, Technical Report
No. 1132, Numerical Optimization Centre, Hatfield Polytechnic, 1982.

9. DIXON, L. C. W., and PATEL, K. D., The Place of Parallel Computation in
Numerical Optimization, IV: Parallel Algorithms for Nonlinear Optimization,
Technical Report No. 125, Numerical Optimization Centre, Hatfield Polytech-
nic, 1982.

10. DIXON, L. C. W., PATEL, K. D., and DUCKSBURY, P. G., Experience Running
Optimization Algorithms on Parallel Processing Systems, Technical Report No.
138, Numerical Optimization Centre, Hatfield Polytechnic, 1983.

92 JOTA: VOL. 66, NO. 1, JULY 1990

11. PATEL, K. D., Parallel Computation and Numerical Optimization, Technical
Report No. 129, Numerical Optimization Centre, Hatfield Polytechnic, 1982.

12. SCHNABEL, R. B., Parallel Computing in Optimization, Computational Mathe-
matical Programming, Edited by K. Schittkowsky, Springer-Verlag, Berlin,
Germany, pp. 357-381, 1985.

13. STRAETER, Z. A., A Parallel Variable-Metric Optimization Algorithm, NASA,
Technical Note No. D-7329, 1973.

14. Housos , E. C., and WING, O., Parallel Nonlinear Minimization by Conjugate
Gradients, Proceedings of the International Conference on Parallel Processing,
Los Alamitos, California, pp. 157-158, 1980.

15. Housos , E. C., and WING, O., Pseudo-Conjugate Directions for the Solution
of the Nonlinear Unconstrained Optimization Problem on a Parallel Computer,
Journal of Optimization Theory and Applications, Vol. 42, pp. 169-180, 1984.

16. MUKAI, H., Parallel Algorithms for Solving Systems of Nonlinear Equations,
Computers and Mathematics with Applications, Vol. 7, pp. 235-250, 1981.

17. PIERRE, O. A., A Nongradient Minimization Algorithm Having Parallel Structure
with Implications for an Array Processor; Computers and Electrical Engineering,
Vol. 1, pp. 3-21, 1973.

18. VAN LAARHOVEN, P. J. M., Parallel Variabte-~;tetric Algorithms for Uncon-
strained Optimization, Mathematical Programming, Vot. 33, pp. 68-81, 1985.

19. NAVON, I. M., and LEGLER, D. M., Conjugate-Gradient Methods for Large-Scale
Minimization in Meteorology, Monthly Weather Review, Vol. 115, pp. 1479-1502,
1987.

20. SHANNO, D. F., and PHUA, K. H., Remark on Algorithm 500, ACM Transactions
on Mathematical Software, Vol. 6, pp. 618-622, 1980.

21. Ltu, D. C., and NOCEDAL, J., On the Limited-Memory BFGS Method for
Large-Scale Minimization, Technical Report No. NAM-03, Department of Elec-
trical Engineering and Computer Science, Northwestern University, 1988.

22. NAVON, I. M., and DE VILLIERS, R., Combined Penalty-Multiplier Optimization
Methods to EnJbrce Integral Invariants Conservation, Monthly Weather Review,
Vol. 111, pp. 1228-1243, 1983.

23. NAVON, I. M., and DE VILLIERS, R., GUSTAF--A Quasi-Newton Nonlinear
ADI FORTRAN IV Program for Solving the Shallow-Water Equations with
Augmented Lagrangians, Computers and Geosciences, Vol. 12, pp. 151-173,
1986.

24. NAVON, I. M., FEUD)(; A Two Stage, High-Accuracy, Finite-Element FORT-
RAN Program for Solving the Shallow-Water Equations, Computers and
Geosciences, Vol. 13, pp. 255-285, 1987.

25. BERTSEKAS, D. P., Constrained Optimization and Lagrange Multiplier Methods,
Academic Press, New York, New York, 1982.

26. GUSTAFSSON, 13., An Alternating-Direction Implicit Method for Solving the
Shallow-Water Equations, Journal of Computational Physics, Vol. 7, pp. 239-254,
1971.

27. SASAKI, J., Variational Design of Finite-Difference Schemes for Initial-Value
Problems with an Integral lnvariant, Journal of Computational Physics, Vol. 21,
pp. 270-278, 1976.

JOTA: VOL. 66, NO. 1, JULY 1990 93

28. BERTSEKAS, D. P., Combined Primal-Dual and Penalty Methods for Constrained
Minimization, SIAM Journal on Control and Optimization, Vol. 13, pp. 521-544,
1975.

29. RAMAMURTHY, M., and CARR, F., Four-Dimensional Data Assimilation in the
Monsoon Region, Part 1: Experiments with Wind Data, Monthly Weather Review.
Vol. 115, pp. 1678-1706, 1987.

30. SHANNO, D. F., Conjugate-Gradient Methods with Inexact Searches, Mathe-
matics of Operations Research, Vol. 3, pp. 244-256, 1978.

31. SHANNO, D. F., On the Convergence of a New Conjugate Gradient Method,
SIAM Journal on Numerical Analysis, Vol. 15, pp. 1247-1257, 1978.

32. SHANNO, D. F., and PHUA, K. H., Matrix Conditioning and Nonlinear Optimiz-
ation, Mathematical Programming, Vol. 14, pp. 149-160, 1976.

33. POWELL, M. J. D., Restart Procedures for the Conjugate Gradient Method,
Mathematical Programming, Vol. 12, pp. 241-254, 1977.

34. ANONYMOUS, N. N., FORTRAN Library Reference Manual (Mark12),
Numerical Algorithm Group, E04DGF, Oxford, England, 1987.

35. BUCKLEY, A. G., and LENIR, A., QN-Like Variable Storage Conjugate-
Gradients, Mathematical Programming, Vol. 27, pp. 155-175, 1983.

36. BUCKLEY, A. G., and LENIR, A., Algorithm 630-BBVSCG: A Variable Storage
Algorithm for Function Minimization, ACM Transactions on Mathematical Soft-
ware, Vol. 11, pp. 103-119, 1985.

37. BEALE, E. M. L., A Derivation of Conjugate Gradients, Numerical Methods for
Nonlinear Optimization, Edited by F. A. Lootsma, Academic Press, London,
England, pp. 39-43, 1972.

38. GILL, P. E., and MURRAY, W., Conjugate-Gradient Methods for Large-Scale
Optimization, Technical Report No. SOL 79-15, Systems Optimization Labora-
tory, Department of Operations Research, Stanford University, 1979.

39. FLETCHER, R., Conjugate Direction Methods, Numerical Methods for Uncon-
strained Minimization, Edited by W. Murray, Academic Press, London, England,
pp. 73-86, 1972.

40. LE, D., A Fast and Robust Unconstrained Minimization Method Requiring
Minimum Storage, Mathematical Programming, Vol. 32, pp. 41-68, 1985.

41. LE DIMET, F. X., and TALAGRAND, O., Variational Algorithms for Analysis
and Assimilation of Meteorological Observations: Theoretical Aspects, Tellus, Vol.
38A, pp. 97-110, 1986.

42. LEGLER, D. M., NAVON, I. M., and O'BRIEN, J. J., Objective Analysis of
Pseudostress over the Indian Ocean Using a Direct Minimization Approach,
Monthly Weather Review, Vol. 117, pp. 709-720, 1989.

43. ROBERTSON, D. H., BROWN, F. B., and NAVON, I. M., Determination of the
Structure of Mixed Argon-Xenon Clusters Using a Finite-Temperature, Lattice-
Based Monte Carlo Method. Journal of Chemical Physics, Vol. 90, pp. 3221-3229,
1989.

