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in this paper, we report our work on applying Krylov iterative
methods, accelerated by parallelizable domain-decomposed (DD}
preconditioners, to the solution of nonsymmetric linear algebraic
equations arising from implicit time discretization of a finite element
model of the shallow water equations on a limited-area domain,
Two types of previously proposed DD preconditioners are employed
and a novel one is advocated to accelerate, with post-precondi-
tioning, the convergence of three popular and competitive Krylov
iterative linear solvers. Performance sensitivities of these precondi-
tionersto inexact subdomain solvers are also reported. Autotasking,
the parallel processing capability representing the third phase of
multitasking libraries on CRAY Y-MP, has been exploited and suc-
cessfully applied to both loop and subroutine level parallelization.
Satisfactory speedup results were obtained. On the other hand,
automatic loop-level parallelization, made possible by the autotask-
ing preprocessor, attained onfy a speedup smaller than a facter of
two. © 1995 Academic Press, Ing,

1. INTRODUCTION

Parallelism was introduced to be one of the novel architec-
tural features of today’s computers for further increasing the
computing speed and making possible the numerical solution
of even larger scientific and engineering problems.

One of the research focuses in the area of parallel computing
has centered on the issue of how to cost-effectively introduce
parallelism into strongly coupled problems, such as the parallel
solution of large linear or nonlinear systems of algebraic equa-
tions, which arise from the finite difference or finite element
discretization of PDEs in many areas of industrial applications.

Despite the fact that numerous approaches have already been
developed and implemented on different types of parallel com-
puters {see, for example, [13, 31, 32]) for the parallel solution of
linear or nonlinear algebraic equations, more recently proposed

parallel numerical algorithms to this end are largely based on,
or closely related to, the principles of domain decomposition.

For the past eight vears, many domain decomposition meth-
ods have been proposed and developed (see [7] and references
therein). These general approaches, with a modification of one
or more of their ingredients, provide almost infinitely many
variants of the so-called iterative domain decomposition algo-
rithms. Another dimension should be added 1o this variety if
implementation details are taken into account. A very recent
comprehensive review of this subject was furnished in [11].

The Schur domain decomposition method, as discussed in
[30], reduces the solution of a system of linear equations defined
on the onginal computational domain to a dense, but much
smaller, Schur complement linear system on the interfaces only.
This reduced linear system is solved by a *‘divide and feed-
back™ iterative procedure, The solution of the Schur linear
system then serves as the boundary conditions for parallel solu-
tion of the subdomain problems.

However, the aforementioned *‘divide and feedback’ pro-
cess usually requires repeatedly exact subdomain solutions
which are not cheaply implementable for nonseparable elliptic
operators or for other more complicated cases such as the
shallow water equations.

To improve efficiency of the parallel solution of partial differ-
ential equations, for which no fast subdomain solvers are avail-
able, at least two other approaches have been proposed. One
is the domain-decomposed (DD) preconditioner approach (also
called full matrix domain decomposition in [22]) first advocated
in [6]; the other is the recently proposed modified interface
matrix (MIM) approach (see [30]). Both approaches abandon
the idea of Schur domain decomposition, that decoupled subdo-
main problems are independently solved only after the interface
solution s obtained.
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The DD preconditioner approach consists essentially of the
construction of a preconditioner in a domain-decomposed way
such that approximate solutions in the subdomains and on the
interfaces can be successively updated at the cost of only inexact
subdomain solvers. On the other hand, the MIM approach suc-
cessively improves the subdomain and interface approximate
solutions with iterative improvements of initial guesses in both
the subdomains and interfaces being made. Thus it mitigates
the disadvantage due to the absence of fast subdomain solvers.

In this paper, which is an extended and revised version of
our earlier contribution in [8], we concentrate our aitention
only on the application of DD preconditioners to the finite
element shallow water flow simulation. A detailed comparison
between DD preconditioned Krylov methods and MIM ap-
proach for the problem at hand will be addressed elsewhere in
a separate research work.

We test all proposed algorithms, to be presented shortly, on
a shallow water equations model using the Grammeltvedt’s
initial conditions [19] on a limited-area rectangular region—a
channel on the rotating earth. All ideas and test results obtained
on this model will then serve as references for extension of
these domain decomposition ideas to irregular domains with
nonuniform and unstructured grids, in order to study real
weather-prediction-related problems,

The plan of the current paper is as follows. In Section 2, we
briefly describe the shallow water equations system and the
finite element discretization. Section 3 is concerned with block
preconditioning of the block-bordered matrix introduced by
substructure numbering of the global nodes. Two types of
widely used DD preconditioners are employed and a novel one
is proposed. Carefully selected numerical results on a single
processor of the CRAY Y-MP are reported and discussed in
section 4, Section 5 will discuss parallelization issues on the
CRAY Y-MP/432 high performance vector-parallel supercom-
puter via domain decomposition methods and multicolor num-
bering techniques for the finite element assembly. Summary
and conclusions are provided in Section 6.

2. THE SHALLOW WATER EQUATIONS

The shallow water equations model under our consideration,
in its primitive variables, assumes the form
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where U = (@, u, v). ¢ = gh is the geopotential of the fluid,
g is the acceleration of gravity, and A is the height of the
free surface. f is the Coriolis parameter given by a 8 plane
approximation, while iz and v are the horizontal velocity compo-
nents in x and y directions, respectively.

The model assumes that the fluid is homogeneous, inviscid,
barotropic, and incompressible. These pure convection equa-
tions are defined on a limited-area rectangular domain which
corresponds to a channe! on the rotating earth. The southern
and northern boundaries are assumed to be rigid, ie., v = 0
and the flow is assumed periodic in the west—east direction.
This is a standard shallow water equations model which was
used to test various finite difference schemes in [19].

To scale the problem, we need to have a good control of the
magnitude of the geopotential field ¢, which is dimensionally
the dominant variable. We use the following set of dimen-
sionless variables, which are different from those introduced
in [19], to nondimensionalize the equations and auxiliary condi-
tions (e.g., initial conditions, geostrophic relationship, etc.),
where ¢y is a preselected reference geopotential

x' =x/L, y =y/L, t =1VglL,
o = @lg, o Iul\/—%, v =vl\/%,

W o= hiL, H)=HJL H =H/L (3)

Hi=HJL g =gllgn [ =fLVe.
where H,, H,, and H, are three constants related to the
Grammeltvedt’s initial height field.

By using this set of dimensionless variables, the governing
equations assume the same form after dropping the primes.
However, the Coriolis parameter and the geostrophic relation-
ship, amongst others, require minor changes (see [30] for de-
tails).

Upon using the Galerkin finite element discretization proce-
dure with triangular piecewise linear elements and an extrapo-
lated Crank—Nicolson scheme for the time discretization, in
which the nonlinear advective terms are quasilinearized by the
following second-order approximation in time

W = B — L 4)

Un+lI2 —_ %Un — %U”_l, (5)

we obtain, omitting details, the three linear systems which need
to be inverted at each time step,

AAgr =fr. BAw =fi, CAv"=f;, (6)

where A", B", and C" are nonsymmetric matrices due to the
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presence of advective terms and Ag" = "' — &, Au" =
um}-] — un‘ AU" = Un+1 — UH.

It is worth pointing out that the above discretization proce-
dure transforms the originally coupled PDEs into a set of decou-
pled discrete algebraic equations at the (n + 1)th level, which
corresponds to reduced storage requirements and improved
computational efficiency compared to methods which generate
coupled algebraic equations. The explicit appearance of Ag,
Au, and Av instead of ¢, 4, and v minimizes the buildup of
roundoff errors in the computation (see [18]) and offers direct
indications as to the choice of initial guesses for iterative
methods.

For a high order two-stage Numerov—Galerkin treatment of
quadratically nonlinear advective terms, we refer to [27] for
theory and to [28] for implementation issues. Some essential
components of the two-stage Numerov—Galerkin procedure are
concisely reviewed in [30].

3. POMAIN DECOMPOSED PRECONDITIONERS

In this section, three types of DD preconditioners are pre-
sented, along with a heuristic analysis of these preconditioners.
Through this analysis, we show that for preconditioners of the
third type to be proposed in this section, the matrix A,,, which
correspends to the discretization of the differential operator
restricted to the interfaces, is the optimal interface precondi-
tioner in some sense.

This optimal interface preconditioner G = A,,, which is part
of a domain decomposed preconditioner of the third type, is
thus explicitly obtained without additional computational work
associated with the construction of an approximate Schur com-
plement matrix, which is nevertheless required for DD precon-
ditioners of the first two types to be presented in what follows.

3.1. Problem Setup

Several DD preconditioners are presented in this section
using the notation adopted in [30]. We consider solving linear
systems {0) resulting from finite element discretization in space
with an implicit temporal finite difference scheme, as described
in Section 2.

Since we are interested in implementing the algorithms on
parallel computers with powerful vector processors, the original
domain is divided into strips along the west—east directions in
order to yield longer vectors {see [23]).

In order to explore the inherent parallelism at the subroutine
level, following [33], we number the global nodes in a substruct-
uring way, such that the coefficient matrices of geopotential and
velocities at each time step assume block-bordered structures,

A= , 1
[Asd Ass ( )

where

Ay = diag[Ay, An, i Al (8)
is a block diagonal matrix with each block A, fori = 1, 2, ...,
n being the discrete analog of the restriction of the original
differential operator on each subdomain.

A, and A, represent connections between subdomains to

interfaces. They assume block bi-diagonal forms,

E,
F, E
Ay = 3 ®
E.
F,
and
G, H
G, H,
Ay = ; (10
G.-; H,
where
Ei = (0? O, (211 0, El'sm{.)T (11)
—
m-1 blocks
Fi = (E)]p 0, 0, ey U)T (12)
m-1 blocks
G=1(0,0,..0 G (13)
—
-1 blocks
(14}

Hi = (Hl'sls Oa wees O! 0)9
——

m1 blocks

m; being the number of horizontal grid lines in the ith subdo-
main. The blocks E,., Fi., G, and Hy,y in matrices £;, F, G;,
and H,, respectively, are either diagonal or bi-diagonal point
matrices, depending on whether a five-point finite difference
scheme or a seven-point stencil, resulting from a linear triangu-
lar finite element method, is used.

A, corresponds to the discretization of the original differen-
tial operator restricted to the interfaces. Since there are n — 1
numbers of internal boundaries for an n subdomain case, A,
assumes the block diagonal form, in which each block is associ-
ated with one of the interfaces,

A, = diag[Ty, Ty, ...

» Tﬂ_l.ﬂ_l]‘ (15)
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where the nonzero entries of T, i = 1, 2, ..., n — 1, amount
to the following cyclic tridiagonal structure due to presence of
periodic boundary conditions:

B0 a7
asf) bgi} Ci)
g - (16)
a, B

CS,“ ag&') b,(,”

The numerical solution of Ax = fis equivalent to solving

Cx,=g onl (a7
Ay = fi — Ay, indl, (18)
where I" and £}, i = 1, 2, ..., n, stand for the interfaces and
subdomains, respectively, and
C=As— D Achi'As (19)
i=1
and
g =52 AdAifs (20)
=1

where € is the well-known Schur complement matrix,

The Schur domain decomposition method starts by first de-
termining x, on the interfaces between artificially divided subdo-
mains by solving (17). Upon obtaining x;, the subdomain prob-
lems (18) trivially decouple and may be solved in parallel,
The main computational cost for the iterative solution of (17)
depends on the number of iterations required to achieve conver-
gence to a preset accuracy criterion and the computational costs
of subdomain solvers. This approach has already been applied
to the finite element simulation of the shallow water flow
{see [30]).

3.2. Three Types of DD Preconditioners

For problems where a fast subdomain solver is not available,
the DD preconditioned Krylov method may turn out to be more
efficient. Instead of solving for the interface unknowns first,
this approach successively updates, at the cost of only inexact
subdomain solves, the approximate solutions in both the subdo-
mains and on the interfaces. The idea here is to solve linear
system Ax = fdirectly with an appropriate preconditioner hav-
ing the same block-bordered structure as that in (7). Two types
of such preconditioners were reviewed in the literature (see
[21], for instance).

One of the preconditioners employed for our problem is of
the structurally symmetric form

de Ad.\'
B= .
A:d' B.r:

where A, and A,; are given by (9) and (10). The matrix By, has
the same structure as that given by (8), except that each By,
i= 1,2 .., n, 18 now an approximation of A;. For example,
B; might be the relaxed incomplete LU factorization (RILU}
[4] of A;. B, is given by

21

Bﬂ = G + E AsiBi:i_]Ais’ (22)

=]

where G is an appropriate preconditioner to the Schur comple-
ment C. Historically, the preconditioner of the type presented
in (21) was motivated by a theorem of Eisenstat in 1985 in the
context of the preconditioned conjugate gradient method for
symmetric linear systems (see [21]).

It may be verified that the solution of the preconditioning
linear systermn Bp = g is equivalent to solving the linear systems

Gp, = q. — 2, ABi'q: (23)
i=1

Bipi=qi— Ayp, fori=12,..n, (24)
where the meaning of p; and p, is self-evident.

Instead of solving a linear system with a coefficient matrix
B; exactly, we may equivalently solve the criginal linear system
with coefficient matrix A; approximately. Therefore, the precon-

ditioning system Bp = g may be solved in the following fashion:

1. Solve approximately in each subdomain

AﬁP.m =4 (25)
fori = 1, ..., n in parallel;
2. Solve the interface precondiiioning system
Gp, = g. — 2, Aupl"; (26)
i=1
3. Solve approximately in each subdomain
AgpP = —Aisps (27)
for i = 1, ..., k in parallel;
4. Form
pi=p"+p? fori=1,..n (28)
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The other type of DD preconditioner, applicable only to a
nonsymmetric linear system, assumes the following block upper

triangular form:
|:de Ads]
B = .
0 G

Now the solution of the preconditioning system Bp = ¢
requires only one inexact subdomain solve in each subdomain,
compared with two such solves in the previous case with B
given by (21). Obviously, the solution p of Bp = g can be
obtained by solving the preconditioning system on the interfaces

(29)

Gp. = g, (30)

and approximately solving in each subdomain

Aupi = g — Ayps (31)
for i = 1, ..., n in parallel.

A third type of DD preconditioner which we would like to
propose and focus on in this paper assurnies the following block
lower triangular form:

B—[de 0} 2
“la, al (32)

We need to solve

Aipi = g, (33)
approximately fori = 1, ..., # in parallel and the preconditioning
system on the interfaces

Gp, =g, — 2, Aup:. (34)
i=1

Similar to the second type of DD preconditioners, it applies
anly to nonsymmetric systems of algebraic equations due, typi-
cally, to the discretization of the convection terms.

We note that, in addition to the structurally symmetric, upper
triangular, and lower triangular block preconditioning matrices
presented in (21}, (29), and (32), respectively, a block diagonal
matrix was used to precondition the GMRES {16]. This may
result in better parallelization results, however, at the cost of
requiring a greater number of iterations to attain convergence.

It is easy to see that the computational work involved here
for the third type of DD preconditioner is only part of that
required for the first type—compare Eqs. (33) and (34) with
Egs. (25) and (26). However, a greatly improved computational
efficiency results (see Section 5).

A question arises as to what constitutes an appropriate alge-
braic form for the interface preconditioner G for each of the

three types of domain-decomposed preconditioners. For precon-
ditioners of the first two types, G may be constructed as a
preconditioner to the Schur complement matrix. This construc-
tion is, however, not appropriate for preconditioners of the third
type and it leads to a deterioration in performance. In order to
see this, we provide formulas for AB™! below. Due to the
importance of these formulas, we derive them in the form of
a lemma. The following lemma may be readily verified follow-
ing the procedure demonstrated in [5, pp. 71-72].

Lemma 1. Let
P Q
A= . 35
1 35)
If A, P, and S are nonsingular, then
_p-1
P [ X P QW:l
-~-WRP! W (36
I: ¢ —XQS“:I
Tl-skx ow ]
where
W=(5—RP'Q)" =85+ 5'RXQS™ (37
X=P'+PIQWRP'=(P—QS'R)".  (38)

On applying the lemma to (21), (29), and (32) to obtain
the inverses and by post-multiplying (7) by these inverses,
we obtain

Py Py
AB ' = . (39)
Py Py
where
AuBid + (AuBd — 1)ALG'AuBs for (21)
Py =1 AuBai for(29)  (40)
(A — AsG™'A ) By for (32)
(L — AwBaALG™ for (21)
Py = Uy — AuBi)ALG™" for (29) (41}
AgG! for (32)
[Iss - (Ass - AsdBd—dlAds)G—l]A:dBd_dl for (21)
Py = { AuBi for (29) 42)
(]:.r - AJSG_l)AsdBEdl fOf (32)
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(A — AuBulAs)G™' for (21)
Py =< (A, — ABIANG™" for(29) (43)
AG™! for (32).

By examining (43), one may see that, for the first two types
of preconditioners, the optimal interface preconditioner & (in
the sense that Py, = I,) should be constructed such that

G =A, — ABil AL = A, — D, ABT A,

=1

(44)

Hence, G consists essentially of the approximate Schur comple-
ment matrix of the problem. For the preconditioner of the third
type, however, G = A, is an optimal choice. Under these
choices, P, = 0 and P, = I; for the first type of preconditioners,
Py = I; for the second type, Py = 0 and Py, = I, for precondi-
tioners of the third type.

Although the matrix G is explicitly available for precondi-
tioners of the third type, for the first two types of DD precondi-
tioners, nn, inexact subdomain solves must be carried out for
the construction of G so that P, = I;, where #n is the number
of subdomains and n, is the number of nodes on the inter{aces.
To reduce the number of subdomain solves and to improve
the computational efficiency, we should be satisfied with an
approximate construction of G.

In fact, the particular structure of the matrix G, although
dense, indicates a strong coupling between neighboring nodes
and very weak dependence between nodes which are a mesh-
size distance apart on the interfaces (see [8]) for details). The
property allows itself to be appropriately approximated by a
very low-bandwidth sparse matrix. This suggests that the ideas
of interface probing techniques [12], which were mainly devel-
oped for elliptic PDEs, may be extended for use in the current
problem (see [10] for a recent review of interface probe precon-
ditioning).

The primary idea involved in the interface probe construction
is to capture the strong dependence between grid points on
the interfaces and to ignore the weak dependencies. For this
approach, the number of subdomain solves reduces to kn, where
k is the number of probing vectors and is quite often just 1 or
3. Numerical experience with interface probe preconditioners
was reported in, for example, [9, 21, 22, 30].

Following notations used in [9], IP(0) and IP(1) are the
most commonly used among many choices available within
this class. However, as in [30], we construct G by retaining
the cyclic tridiagonal structure of each T;; in A,; and then replace
each entry in the main diagonal of A, by the corresponding
row-sum of G. We denote this interface probe approach by
MIP(0). Only one probing vector of the form (1, 1, ..., D)7 is
required for this construction, which requires # inexact subdo-
main solves.

Numerical experiments confirm that this construction yields
better results than those obtained by using IP{0) for the shallow
water equations case. Since IP(1) is not found to be superior
to IP(0) or MIP(0) in terms-of the CPU time, we focus our
interests in the MIP(0) interface probing.

With this particular interface probing construction MIP(0)
of the matrix G, we can readily observe that the number of
subdomain solves involved in using each of these precondition-
ers for the solution of a linear system at each time step is
(2k; + 3)n, (k, + 2n, and (ky; + D)n, respectively, where
ki, k, and k; are numbers of iterations required to achieve
convergence for an iterative method (where only one matrix—
vector multiplication is needed in each iteration, like GMRES)
using the first, second, and third types of DD preconditioners,
respectively. Note that, in the above counts of subdomain
solves, the work required for recovering the final solution x =
B7'x is also included.

For these three types of preconditioners, the interface precon-
ditioners G preserve the block diagonal structures of A; see
{15). We denote ( in a unified way by

G= diag[Tn, Tzz, veey Tn—l.n—l]' (45)
Then, the linear system Gu = v may be split up into # — 1
smaller systems Ta, = v, i=1,2,..,n— 1, which may be
solved in parallel. Since each of these T, is cyclic tridiagonal, we
use the so-called (see [36]) Ahlberg—Nielson—Walsh algorithm
[2], which is an extension of the well-known double-sweep
algorithm of Thomas {38]. For an efficient numerical algorithm
for solving cyclic pentadiagonal systems, see [29].

As to inexact subdomain solvers, we employ the so-called
relaxed incomplete LU factorization (RILU) [3, 4] to approxi-
mate the subdomain stiffness matrices A;, §{ = 1, 2, ..., »,
namely, B; = LU, = A; + Ry, where R; is an error matrix. In
short, given a matrix A,,, the RILU factorization of A can be
obtained in the following n — | steps of transformation,

A=A Al - A=,

where for k = 1, 2, ..., n — 1 the calculations

Iy = aflaly)
raff) — lalf),
Gk 1=j=mNEGHENNI#]
0,
A= 1= 00 G ED

"
aE,“ —lalf t o E(p=k+1.(i.p)€f}(a£p - likag;))

L ifj=i

are carried out. Here J is a subset of ordered integer pairs J C
§ =164 j=1,2, .., n} which defines the allowed fill-
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ins, where n is the size of the matrix under consideration and
0=w=I.

To conclude this section, we provide some results corre-
sponding to three types of domain-decomposed preconditioners
applied from the left. We may verify that if

i = [QI. Q.z]
QZ] QZZ

then entries Q;'s, i, j = 1, 2, of the matrix B~'A are given by

(46)

* For the first type of DD preconditioners

O = BilAu + BiAsG'AlBilAy — T 4n
QIZ = B;dlAds[[ss + G_](A:dBEdlAds - Ass)] (48)
Q= GT'A {1y — BilAW) (49)
QZZ = G_I(A.r.r - AsdB;a']Ads) (50)
* For the second type of DD preconditioners
Qn = Bil(Ayu — AsGT'AL) 50
QIZ = B;dlAd:([ss - G_lAss) (52)
Ou=G"Ay (53)
On=G'A, (54)
*» For the third type of DD preconditioners
Qu = BilAu (55)
Qn = B3lAs (56)
O = G'A (1 — BilAu) (57)
Q22 = GAI(ASJ - A.vdB;d]Ads)- (58)

We notice that, for left preconditioning, the approximate
construction of an interface preconditioner is required for the
first and third types of DD preconditioners, but not for the
second type.

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present selected numerical results along
with some discussions. All numerical experiments are carried
out on the CRAY Y-MP/432 vector-parallel supercomputer
for the shallow water equations discussed in Section 2. The
numerical values of some constants are summarized here

L =6000km, D =4400km

g = 10m/s, = 2000 m
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FIG. 1. A 3D view of the initial non-dimensionalized geopotential field.

H =220m, H=133m
Ff=10"s", B=15%x10"1s"'m,

where L and D are the length and width of the channel, g is
the acceleration of gravity, f and 8 are used to determine the
Coriolis parameter f = F+ B(y — D/2), and, finally, three con-
stants Hy, H,, and H, are used to analytically define the initial
geopotential and velocity fields by the geostrophic relationship,

ah ah
p=gh, u=—(glf) ay U (85 (59)
where the initial height field is given by
h(x,¥) = Hy + Htanh[9(D/2 — y)/2D]
(60)

+ Hysech’[9(D/2 — y)/2D1sin(27x/L).

We scale the problem by choosing a reference geopotential

@ = 10 m*/s%, The corresponding dimensionless constants are
L'=1, = (0.7333333
=6 X 10°, =0.33333 X 10*

H{ = 0.366666 X 107,
F = 60,

Hj = 0.221666 X 10~
B’ =54.

With this choice of dimensionless constants, a 3D presentation
of the initial condition is seen in Fig. 1.

Although the conjugate gradient method is almost invariably
used for the solution of a positive definite linear system, it is
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TABLE I

A Comparison of CPU Time (Number of Iterations) Required for Solving the Geopotential Linear System at the End of One Hour with a
Half Hour Time Step

Preconditioner First Second Third Third type

types type type type with MIPA()

40 x 35 GMRES 0178 {123 0.102 (12} 0.088 {(11) 0101 (12)
mesh CGS 0.199 (7) 0.099 (6 0.106 (7} 0.111 (D
resolution Bi-CGSTAB 0219 (7 0.099 (6) 0.092 (6) 0.111 (M
80 x 75 GMRES 0.89 (14 053 (i5) 047 (14) 0.52 (15)
mesh CGS 1.08 (9 0.54 (8) 0.50 (8) 0.59 9
resolution Ri-CGSTAB 097 (8) 0.54 () 0.50 (8) 0.58 (9
120 x 118 GMRES 256 (18) 1.49 (19) 141 (19) 1.48 (19)
mesh CGS 324 (1) 1.64 (il) 1.56 (11) 162 (1D
resolution Bi-CGSTAB 274 (1) 1.63 (11} 1.55 (11) 1.60 (11)

Note, Using GMRES, CGS, and Bi-CGSTAB algorithms accelerated by three types of DI preconditioners.

not apparent which Krylov solver is to be preferred for solving
nonsymmetric linear systems.

In this work, we choose to use, among many others, three
popular solvers, namely, GMRES [34], CGS [35], and Bi-
CGSTAB [37] for solving the geopotential and velocity non-
symmetric linear algebraic systems, accelerated by three types
of DD preconditioners discussed above. We choose to use
preconditioning from the right only, since it does not yield
results very different from those obtained by preconditioning
from the left and, moreover, a linear system preconditioned
from the right preserves the residual of the original linear
system.

4.1. The Convergence Behavior

In the first set of numerical experiments, we test relative
efficiencies of the three types of DD preconditioners discussed
in Section 3, using MIP(Q) interface probe construction for
-the first two types of DD preconditioners and RILU-based
subdomain solvers. In addition, we also present computational
results corresponding to preconditioners of the third type, how-
ever, with GG given by (44) instead of the optimal A,,.

For RILU-based subdomain solvers, we compute and com-
pare different values of w and find that the optimal w in terms
of the number of iterations is in the interval (0, .5), depending
on which type of DD preconditioners and which iterative
method (GMRES, CGS, or Bi-CGSTAB) are used. This result
is in contrast to 0.95 found in a recent work [39] for some
‘other computations in the original whole domain. On the other
hand, in terms of CPU time, we find that RILU with @ = 0
yields the best performance. Hence, unless otherwise stated,
we apply RILU with w = 0, i.e., the ILU factorization to
our problem.

The convergence behavior and CPU time required, respec-
tively, are summarized in Table I for three mesh resolutions
of 40 X 35, 80 X 75, and 120 X 115. The stopping criterion

is that the final Euclidean residual norm, namely, ||f — Ax¥,,
be smaller than 0.1 X 107" A time-step size of At = 1800 s
is used throughout unless otherwise stated. Note that timings
in Table I do not include those for RILU faciorizations.

It should be pointed out that CPU time recorded here is for
solving the geopotential linear system only and on a specific
time level (¢ = 3600 s). Quite often, however, we need to
integrate the shallow water equations set to the end of 10 days.
If the time step is a half hour, it would require solving each
of the three linear systems, which govern the geopotential and
velocity components, 480 times. The geopotential fields corre-
sponding to the end of one day, two days, ..., 10 days are
illustrated in [7].

From these results, we see that the three nonsymmetric itera-
tive methods, GMRES, CGS, and Bi-CGSTAB, are competitive
with each other. GMRES requires the largest number of itera-
tions to attain convergence. However, this does not mean that
GMRES is the most expensive algorithm to use since only
one matrix—vector multiplication is required for each GMRES
iteration, while two such operations are needed tor each CGS
or Bi-CGSTAB iteration, However, GMRES imposes a higher
demand for storage, which may be alleviated by restarting the
pracedure, but often at the cost of requiring more iterations
for convergence.

We observe that no sizable difference exists in terms of the
number of iterations required to attain convergence between
these three types of preconditioners. Preconditioners of the first
type, first proposed for a symmetric linear system arising from
the discretization of some self-adjoint elliptic PDEs, cannot
reduce the number of iterations to such an extent as to offset
the disadvantage of two inexact subdomain solves in each sub-
domain for solving the preconditioning linear system Bp = q.
As a result, they turn out to be the most expensive for the
current application. Preconditioners of the second and third
types behave much better in terms of CPU time due to only
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one ingxact subdomain solve being required in each subdomain
for the solution of Bp = 4. Moreover, an approximate construc-
tion of G is not required on the interfaces for the third type of
DD preconditioners.

4.2. Sensitivities of the Three Types of DD Preconditioners
to Inexact Subdomain Solvers

In the above set of numerical experiments, we obtain that
the number of iterations required for convergence is almost the
same for three types of preconditioners with [ILU subdomain
solvers and thus preconditioners of the third type are computa-
tionally least expensive. A question that naturally arises is if
similar conclusions hold for the same types of preconditioners
but with more or less accurate subdomain solvers compared (0
ILU. This requires us to test the sensitivities of these precondi-
tioners to inexact subdomain solvers.

To test the sensitivities of the preconditioners given in (21),
{29), and (32) to inexact subdomain solvers, we use the idea
of m-step preconditioning [1]. For this preconditioning ap-
proach, we consider a splitting of the matrix A; = P, — ; and
define G, = P;'QJ. As an approximation of the subdomain
matrix A, we take B, = P(Xio,G) " fori = 1,2, .., n. The
solution of B;p; = ¢ may be easily verified to be equivalent
to m iterations the linear stationary iterative scheme P;pi*!' =
Q.pt + g, with the initial solution p! = 0.

The P; may be taken to be any easily invertible simple rnatrix
as long as the spectraf radius p(G;) < 1. For example, P; may
be chosen to be the ILU factorization of P, = L), of A;, or
simply the diagonal part P, = D; of the matrix A;. Once P; has
been chosen, B; often becomes a better inexact subdomain
solver as m increases, in the sense that the number of iterations
required to reach a prescribed convergence criterion for solution
of the original linear system Ax = f decreases. By gradually
increasing m, we are able to observe the relative performance
behavior of these DD preconditioners corresponding to increas-
ingly accurate subdomain solvers.

For the current experiment, we decided to take P; as the
lower triangular part (including the diagonal part) of the matrix
A;. This corresponds to m Gauss—Seidel linear stationary itera-
tions in each subdomain. However, this choice of P; does not
guaraitee proper subdomain solvers for all mesh resolutions
in our case. For example, we found that SOR iterations with

TABLE IT

Iteration Counts as a Function of m Using GMRES Accelerated by
Three Types of DD Preconditioners

TABLE III

Iteration Counts as a Function of m Using CGS Accelerated by
Three Types of DD Preconditiopers

m=1 m=2 m =3 m=4 m=35 m=26 m=7
15 8 7 6 6 5 5
14 8 7 [ 6 5 5
16 g 6 7 6 7 6

@ = (.5 are appropriate for an 80 X 75 mesh resolution. In
Tables TI-1V we report resuits obtained with a 40 X 35 resolu-
tion, of GMRES, CGS, and Bi-CGSTAB iterations correspond-
ing to three types of preconditioners, respectively

From these three tables, we see that preconditioners of the
third type can accelerate the convergence of three iterative
methods at about the same rate as the other two types of precon-
ditioners, except for cases when subdomain solvers may be
considered to be exact or close to exact. Similar observations
are obtained for the case of mesh resolutions higher than
40 X 35. Since, in practice, the inexact subdomain solvers are
far from exact, we consider preconditioners of the third type
to be the best.

4.3. Extensions to the Cases of More Than Four Subdomains

For implementation on a large nomber of processors or,
ambitiously, for massively parallel processing implementation,
it is very desirable for domain decomposition algorithms to
possess convergence rates that do not deteriorate as the number
of subdomains increases. Unfortunately, it is often the case,
rather than the exception, that the number of iterations will
increase as the number of subdomains increases, even though
the discrete problem size is kept fixed and the stopping criterion
remains the same, for both overlapping and nonoverlapping
domain decomposition cases.

In a few cases, the optimal preconditioners, in the sense that
the convergence rate is independent of both the mesh size 7
and the typical subdomain size H, are known. In other cases,
nearly optimal preconditioners have been constructed with the
property that the condition number of the preconditioned matrix
is proportional to (1 + log(H/EW", m = 2 or 3 (see 14, 15]

TABLE 1V

Iteration Counts as a Function of m Using BI-CGSTAB
Accelerated by Three Types of DD Preconditioners

m=1 m=2 m=3 m=4 m=35 m=6 m=10 m=20 m=1 m=2 m=73 m=4 m=3 m =0
26 15 12 11 10 106 9 8 14 8 7 6 6 5
27 15 12 11 10 10 9 8 14 8 7 6 6 5
28 15 12 11 10 10 10 10 14 8 6 6 6 6
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TABLE V

Iteration Counts of the GMRES Algorithm Accelerated by Three
Types of DD Preconditioners for Various Mesh Resolutions and
Numbers of Subdomains

Mesh Types of

resolutions preconditioners n=2 n=4 n=238 n=16

36 X 31 First 12 12 i2 13
Second 12 12 12 14
Third 11 81 1L 14

85 X 79 First [5 15 15 15
Second 15 15 16 17
Third 15 15 16 18

120 x 111 First 18 18 18 19
Second 19 19 20 22
Third 19 19 20 23

150 X 143 First 21 21 21 23
Second 23 23 24 27
Third 24 24 25 27

and references cited therein), One of the most important reasons
for the success of most of these preconditioners is the introduc-
tion, aimed at enhancing communications amongst subdomains,
of a much smaller global problem corresponding to the discreti-
zation on a coarse grid. However, we notice that these optimal,
or nearly optimal, domain decomposition algerithms may not
provide computationally the cheapest way to obtain solutions
to specific problems. The convergence rate alone does not tell
the whole story of the computational complexity.

In the following, we provide some numerical results corre-
sponding to the convergence rates of the GMRES algorithm
with each of the three types of DD preconditioners for n = 2,
4, 8, and 16 subdomains and for various mesh resolutions (see
Table V). _

We observe that the number of iterations increases only very
mildly for each fixed-size problem as the number of subdomains
increases from two to 16. Similar numerical results were re-
ported in [23-25]. Thus, it is a worthwhile effort to implement
these domain decomposition algorithms on such parallel com-
puters as the CRAY C90 which has a total maximum number
of 16 processors able to perform in parallel.

5. PARALLEL IMPLEMENTATION RESULTS

Being the most computationally expensive stage, solutions
of systems of algebraic equations resulting from finite element
discretization can be sought in parallel by employing domain-
decomposition algorithims presented in this paper. However, as
is well known, the parallel performance result will be seriously
degraded when even a small percentage of the total work (mea-
sured in CPU time) is not processed in parallel. This implies
that a good speed-up due to parallelism may not be achieved

unless computations related to the finite element discretization
are also efficiently parallelized

In view of this, we will exploit not only the parallelism
corresponding to subdomain by subdomain computations via
domain decomposition technigues, but also the parallelism in-
herent in element by element calculations. Subroutine level
parallelism may be sought for subdomain by subdomain compu-
tations, e.g., subdomain preconditionings and inexact solves,
Loop level parallelism may be exploited for element by element
calculations, e.g., the formation of element stiffness matrices
and the assembly into a global stiffness matrix.

For the finite element discretization, the setup of local stiff-
ness matrices and their assembly into a single global stiffness
matrix is the only part of the calculations which requires being
repeatedly carried out as the computation marches over time.
The efficient parallelization of this part is thus highly critical
to the overall parallel performance.

As was pointed out in [17] (see also some references therein),
the critical region in the assembly process is not inherent in
the element-by-element calculations and may be bypassed by
assembling the element matrices in a particular order. The basic
observation is that the necessity of introducing a critical region
into the assembly process is due to the possible simultaneous
contributions to a common node by more than one of its sur-
rounding elements. The critical region may be removed if the
assembly process can be carried out in groups such that, within
each group, no two or more elements connected to & common
node are able to make contributions to that node. This idea
may be realized by a multicolor numbering of the elements to
be assembled.

For the triangular linear element mesh used in the current
problem [27], six colors are required to guarantee that any node
in the physical domain is surrounded by elements of different
colors (see Fig. 2), where each integer represents a unique
color. The elements in the mesh may now be divided into six
groups. Elements of the same color comprise one group and
different groups have different colors. The assembly is carried

FIG. 2. Multicolor rumbering of elements for a triangular element mesh.
Each integer stands for a unique chosen color, A node in the mesh is surrounded
by elements of different colors.
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out one group after the other. Within each group, the elements
are internally disjoint and so the parallel assembly process is
made asynchronously. Notice that the multicoloring scheme
achieves not only the removal of critical regions, but also a
sharp reduction in the number of synchronization points.

The domain decomposition code corresponding to the use
of the third type of DD preconditioners was carefully tuned
and tested on the four-processor CRAY Y-MP/432 for a num-
ber of mesh resolutions. The main computational work for
the three nonsymmetric iterative methods employed in this
paper is associated with matrix—vector products, which are ob-
tained through approximately solving the problem defined on
each subdomain. The parallelization of these tasks is carried
out at subroutine levels. Since we do not find a sizable dif-
ference in speedup results obtained by using GMRES, CGS
or Bi-CGSTAB, the parallel performance results to be reported
in what follows comrespond to the Bi-CGSTAB iterative
method.

Prior to presenting the results, we need to clarify what we
mean by speedup. Speedup may be defined to be the ratio of
the wall clock time elapsed in a dedicated system, for computing
the same problem, using the best serial algorithm and the paral-
lel algorithm, However, the optimal serial algorithm is vsually
unknown, especially for modeling a meaningful physical pro-
cess. In our problem, use of GMRES, CGS, or Bi-CGSTAB
preconditioned by ILU in the original domain consumes more
CPU time than the use of the same iterative method and precon-
ditioner treated in a domain-decomposed way. In other words,
apart from parallelization issues, consideration of computa-
tional complexity alone justifies the use of domain decompo-
sition,

Since the best serial ireatment of the present problem cannot
be determined, the speedup results reported here refer to mea-
surements of wall clock time in a dedicated system relative to
the uni- and multi-processor implementation of the same do-
main decomposition algorithm (see also, among others, [20,
22, 26]). This definition properly incorporates communication
overhead and synchronization delays and shows how well the
domain-to-processor mappings are done. However, this defini-
tion presenis a serious drawback. Following this definition, a
parallel algorithm achieving a perfect speedup may actually
take longer tme to execute than a serial algorithm for solving
the same problem.

‘We integrated the finite element modei of the shallow water
equations for four different mesh resolutions, namely, 19 X
15, 34 X 27, 49 X 43, and 64 X 55 for a period of 5 h with
corresponding time-step sizes of Az = 1800's, 1000 s, 600 s, and
400 s, respectively. The experimental results are summarized in
Table VI. It should be pointed out that the automatic do-loop
level parallelization as detected and exploited by the autotasking
preprocessor does not yield a speedup larger than two. The
reason is that autotasking is unable to detect paralielism across
subroutine bonndaries. To explore subroutine level parallelism

TABLE VI

Parallel Performance Results for Four Different Mesh Resolutions
Using Bi-CGSTAB Preconditioned by the Third Type of DD
Preconditioners on the Four-Processor CRAY Y-MP/432 Vector
Paralle! Supercomputer

Mesh resolutions 19 X 15 34 X 27 49 X 43 64 X 55
Serial seconds 1.03 6.26 35.19 108.07
Parallel seconds 0.38 2.03 10.29 29.77
Speedup ratios 9 3.t 34 36

as offered by domain decomposition, one has to manually insert
appropriate autotasking directives into the code.

6. SUMMARY AND CONCLUSIONS

In this paper, two types of existing DD preconditioners and
a novel one, proposed here, were used to precondition three
well-known Krylov iterative methods, GMRES, CGS, and Bi-
CGSTAR, for the efficient numerical solution of systems of
nonsymmetric linear algebraic equations resulting from the im-
plicit time discretization of a finite element model of the shal-
low-water equations. For all test cases, preconditioners of the
first type are ronghly twice as expensive to use as those of the
second and third types. Preconditioners of the third type turned
out to be computattonally the least expensive.

We observe that, for all cases, GMRES requires roughly
twice as many iterations as required by the CGS or Bi-CGSTAB
methods to satisfy the same convergence criterion. However,
ail three algorithms are nearly equally efficient in terms of CPU
time for the current application.

Autotasking is able to exploit both small or large granularity
parallelism efficiently. However, by relying on the automatic
detection and exploitation of do-loop level parallelism offered
by autotasking, the speedup of domain decomposition code
turns out to be very low. Large-granularity parallelism inherent
to domain decomposition approach cannot be detected automat-
icailly by the autotasking preprocessor and must be exploited
by building case/end case structures into parallel regions.

Parallelization issues and numerical results on the shared
memory CRAY C-90 and distributed memory IBM SP-2 paral-
lel computers in the context of shallow-water flow modeling
will be reported and discussed in detail in another paper. We
are also Iooking into more challenging issues on domain-de-
composition algorithms designed to efficiently handle an irregu-
lar domain discretized with an unstructured mesh. The results
obtained from the current work will partly serve as a benchmark
to those more complicated issues we are now investigating.
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