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Parallel Domain-Decomposed
Preconditioners in Finite Element
Shallow Water Flow Modeling

Y. CAI AND .M. NAVON

ABsTRACT. This paper is a highly condensed account of applying a domain-
decomposed (DD) preconditioner approach to the parallel numerical solu-
tion of the shallow water equations by the finite element method. Three
types of DD preconditioners are employed to accelerate, with right pre-
conditioning, the convergence of several competitive non-symmetric linear
iterative solvers of current interest. Analysis and comparisons are provided
in this contribution. The resulting algorithms are parallelized at both the
subroutine level to accommodate the subdomain by subdomain computa-
tion and at the loop level to exploit the parallelism of the finite element
discretization. The implementations were carried out on the parallel vector
supercomputer CRAY Y-MP/432.

1. Introduction

Although domain decomposition ideas are traceable to the work of Schwarz
[17] in 1869 and that of engineers beginning from the 1960s [8,14,15], an ef-
ficient way to handle the coupling between artificially divided non-overlapping
substructures was first proposed in [7]. In essence, this is a divide-and-feedback
process which continues until a prescribed convergence criterion on the interfaces
is satisfied.

However, the method mentioned above can be expensive in the absence of
fast subdomain solvers. To remedy this disadvantage and, at the same time,
retain the nice parallelization property, at least two other approaches have been
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proposed. One is the domain-decomposed preconditioner approach (DDPA) (also
called full matrix domain decomposition in [11]) advocated in (3], the other being
the recently proposed modified interface matrix approach (MIMA) (see [13]).
Both approaches abandon the idea of the Schur complement matrix approach
that decoupled subdomain problems are independently solved only after the
solution on the interfaces is obtained.

The DDPA approach consists of the construction of a preconditioner in a
domain-decomposed way such that approximate solutions in the subdomains
and on the interfaces can be simultaneously updated at the cost of only inex-
act subdomain solvers. On the other hand, the MIMA approach successively
improves the subdomain and interface approximate solutions with improved ini-
tial solutions. Thus it mitigates the disadvantage due to the absence of fast
subdomain solvers.

In this paper, we shall concentrate our attention only on the application of
DDPA to finite element shallow water flow simulation. A detailed comparison
between DDPA and MIMA for the problem at hand will be addressed elsewhere
in a separate research work.

We test all the proposed algorithms, to be presented shortly, on a shallow wa-
ter equations model using the Grammeltvedt initial conditions [9] on a limited-
area rectangular region — a channel on the rotating earth. The model is essen-
tially the same as the one earlier used by Houghton, et al. (10].

Non-symmetric linear iterative solvers are important kernels to the current
domain decomposition approach. Among many available algorithms, we are
especially interested in three, namely, GMRES [16], CGS [18] and Bi-CGSTAB
[19].

In section 2, we give three types of DD preconditioners under consideration.
Carefully selected numerical results are given in section 3 and main conclusions
are drawn.

2. Domain-decomposed preconditioners

The DD preconditioner approach is presented in this section using the notation
adopted in [13]. We consider solving linear systems resulting from finite element
discretization in space with an implicit temporal difference scheme [4].

Since we are interested in implementing the algorithms on parallel computers
with powerful vector processors, the original domain is divided into strips along
the west-east directions in order to yield longer vectors (see [12]). Thus, cross
points are eliminated from consideration.

In order to explore the inherent parallelism at the subdomain level, following
[14], we number the global nodes in a substructured way, such that the coefficient
matrices of geopotential and velocities at each time step present the following
block-bordered structures

_ | Ada Aas
(2.1) A—[ASd ASJ
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The meaning of each element in the matrix is explained in [13]

Three types of DD preconditioners employed for our problem assume, respec-
tively, the structurally symmetric form, the block upper and the lower triangular
forms

(1)

(2.2) B= [id: ‘;d}
(2)

(2.3) B= [Bgd Aé?]
3)

(2.4) B= [i"‘j g]

where Bgq approximates Agjg in some sense. For example, B;; might be the
relaxed incomplete LU factorization (RILU) [2] of Ay;. Bss is given, for the first
type of DD preconditioners, by

n
(2.5) Bys =G+ AuBj Ais
i=1
For all three cases, the matrix G is to be determined.
Let

P; P;
2.6 AB = |0 12]
(26) [le Py

Then we may show that (P11, P12 and Py, are given in [4])

(Ass - AsdBd—dlAd,g)G_l for (22)
(2.7) Poy = { (Ass — AsaByl Aas)G™1 for (2.3)
JAs.gG"-1 fOI‘ (24)

The matrix G is chosen such that P»p is an identity matrix. Thus we have
that G = A, for the third type of DD preconditioners and

k22
(28) G=A;— AsdBd—dlAds = Ass - ZAsiB;;lAis-
i=1
for the first two types. For the latter case, nns number of inexact subdomain
solves must be carried out for the construction of G such that Py, is an identity
matrix, where n and n, are, respectively, the number of subdomains and number
of nodes on the interfaces. After one has constructed the preconditioner B, the
major computational work required for solving the preconditioning linear system
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TABLE 1. Amount of work for solving Bp = q

First type 2n inexact subdomain solves
Second type n inexact subdomain solves
Third type n inexact subdomain solves

of the form Bp = ¢ at each time step corresponding to each of the three types
of DD preconditioners is summarized in Table 1.

Similar to many other applications, it turns out that action of the matrix oper-
ator G is, in fact, predominantly local and the matrix G given by (2.8), although
dense, allows itself to be reasonably approximated by a very low-bandwidth
sparse matrix. The modified rowsum preserving interface probing ideas (4] (see
also [5,6]) are employed for the approximate formation of G, for which only one
inexact solve is needed in each subdomain.

With this particular interface probing construction of G, it is readily observed
that the number of subdomain solves involved in using each of these precondi-
tioners for the solution of a linear system at each time step is (2k1 +3)n, (k2+2)n
and (k3 + 1)n, respectively, where ki, k2 and k3 are numbers of iterations re-
quired to satisfy a convergence criterion for an iterative method (where only one
matrix-vector multiplication is needed in each iteration, like GMRES) using the
first, second and third types of DD preconditioners. Note that the subdomain
solves required for recovering the final solution z = B~ have been included.

3. Numerical results and main conclusions

In this section, we present selected numerical results along with some discus-
sions. All numerical experiments are carried out on the four-processor CRAY
Y-MP/432 vector-parallel supercomputer. The numerical values of some param-
eters associated with the original PDEs are summarized in [13]. The problem is
non-dimensionalized by choosing ¢y = 102 m?/s? [4].

In this set of numerical experiments, we test the relative efficiencies of the
three types of DD preconditioners presented in section 2. As inexact solvers in
the subdomains, we use RILU (relaxed incomplete LU) factorization along with
forward and back substitutions. On the interfaces, the MIP(0) interface probe
construction is used for the approximation of G given in (2.11) for the first two
types of DD preconditioners. Table 2 gives some numerical results.

We see that GMRES, CGS and Bi-CGSTAB are very competitive with each
other. GMRES requires the largest number of iterations to attain prescribed
convergence. However we note that only one matrix-vector multiplication per
iteration will drive GMRES to convergence, compared with two such multipli-
cations required for CGS or Bi-CGSTAB at each iteration. The non-smooth
convergence behavior (not shown here) of the CGS algorithm is observed in
the current set of experiments. Bi-CGSTAB and GMRES methods generate
smoother convergence history.



PARALLEL DOMAIN-DECOMPOSED PRECONDITIONERS

TABLE 2. A comparison of CPU time (number of iterations)

Preconditioner First Second Third
types type type type
40 by 35 GMRES 0.178 (12) | 0.102 (12) | 0.088 (11)
mesh CGS 0.199 (7) 0.099 (6) 0.106 (7)
resolution | Bi-CGSTAB 0.219 (7) 0.099 (6) 0.092 (6)
80 by 75 GMRES 0.89 (14) 0.53 (15) 0.47 (14)
mesh CGS 1.08 (9) 0.54 (8) 0.50 (8)
resolution | Bi-CGSTAB | 0.97 (8) 0.54 (8) 0.50 (8)
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Using the idea of m-step preconditioning [1], we can test the sensitivities of
these preconditioners to inexact subdomain solvers. We observe that precondi-
tioners of the third type can accelerate the convergence of three iterative methods
at about the same rate as the other two types of preconditioners, except for cases
when subdomain solvers may be considered to be exact or nearly exact.

In practice, the inexact subdomain solvers are far from exact, we consider
preconditioners of the third type to be the best, although the second type of DD
preconditioners is very competitive. Even if exact or nearly exact subdomain
solvers are used for the first two types of DD preconditioners, the gain in the
number of iterations is far from offsetting the additional computational cost
required for constructing these solvers.

For parallelization, subdomain by subdomain computations are carried out
at the subroutine level, and loop level parallelism is exploited for calculations
involved in finite element discretization using a multicoloring scheme [4].

We integrated the finite element model of the shallow water equations for four
different mesh resolutions for a period of five hours with corresponding time step
sizes of At = 1800 s, 1000 s, 600 s and 400 s, respectively, using Bi-CGSTAB
preconditioned by the third type of DD preconditioners. The speed-up results
are summarized in Table 3. It should be pointed out that the automatic do-loop
level parallelization as detected and exploited by the autotasking preprocessor
does not yield a speed-up larger than two. The reason is that autotasking is
unable to detect parallelism across subroutine boundaries.

TABLE 3. Parallel performance results on the CRAY

Mesh resolutions || 19x 15 | 34x27 [ 49x43 | 64x55
Serial seconds 1.03 6.26 35.19 108.07
Parallel seconds 0.38 2.03 10.29 29.77
Speed-up ratios 2.7 3.1 34 3.6

The main conclusions of this research are

(1) Three types of DD preconditioners were found to work reasonably well
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with GMRES, CGS and Bi-CGSTAB, with the third type being compu-
tationally the least expensive and the first type most expensive.

(2) For all cases, GMRES requires roughly twice as many iterations as re-
quired by the CGS or Bi-CGSATB. However, these three algorithms were
found to be approximately equally efficient in terms of CPU time.

(3) To achieve better speed-up results, it is important to remove the critical
regions in the assembly process by using multicoloring of the elements.
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