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ABSTRACT

This paper presents a new methodology for adjoint sensitivity analysis, previously developed in general terms
by Cacuci, into a form directly applicable to meteorological problems. This technique is illustrated by examining
the sensitivity of a blocking index in a two-layer isentropic model. The index represents a response function for
the sensitivity analysis that, unlike previous meteorological applications, is an operator and not a functional,
and thus, extends the scope of adjoint sensitivity to general operator-type responses depending on time and/

or space.

The sensitivity of the blocking index to perturbations introduced into the model atmosphere, as well as to
model parameters, is discussed. The methodology of generalized adjoint sensitivity analysis described in this
paper constitutes a prototype for further applications in the atmospheric and/or oceanic sciences.

1. Introduction

The use of adjoint functions for sensitivity analysis
dates as early as the 1940s, and has evolved from the
perturbation theory work of Wigner (1953) or the
variational approaches of Levine and Schwinger (1949)
and Roussololos (1953). The first use of adjoint func-
tions for sensitivity analysis of a simple model in at-
mospheric sciences is due to Marchuk (1974), who
applied established techniques already used routinely
in reactor physics. All of these applications involved
linear models and responses that were functionals (as
opposed to general operators) of the model’s param-
eters and dependent (i.e., state) variables.
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schungzentrum, Karlsruhe, Germany.
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State University, SCRI, B-186, 415 Science Library, Tallahassee, FL
32306.

© 1993 American Meteorological Society

In 1981, a general sensitivity theory for nonlinear
systems was formulated by Cacuci (1981a), comprising
two alternative formalisms: the “forward sensitivity
formalism” and the “adjoint sensitivity formalism.”
The forward sensitivity formalism is expressed in a
general linear vector space and can be used, in a con-
ceptually straightforward way, to assess the effects of
few parameter changes on many responses. For prob-
lems involving many parameter alternations or a large
database and comparatively few responses, the adjoint
sensitivity formalism is computationally far more eco-
nomical, since the sensitivity of one response to all the
model parameters and the model state at previous time
can be evaluated in terms of a single adjoint solution.
In contrast to the forward sensitivity formalism, the
form of the adjoint equations remains unchanged re-
gardless of the parameters considered. Furthermore,
the adjoint functions provide a quantitative measure
of the importance of data or region in phase space in
contributing to the response under consideration. This
sensitivity theory has been applied by Cacuci and his
coworkers to nonlinear problems in several different
fields [see Cacuci (1988) for a review], including a
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comprehensive sensitivity analysis for a radiative—con-
vective model of the climate (Hall et al. 1982).

Cacuci (1981b) has also extended the scope of this
theory to general operator-type responses, such as time-
and/or space-dependent functions of the model’s de-
pendent (state ) variables and parameters. The first ap-
plication of this theory to a time-dependent response
in a nonlinear heat transfer problem has been reported
by Cacuci et al. (1980). A review of sample applications
of this comprehensive sensitivity theory has been pre-
sented by Cacuci (1988).

The first application to a nonlinear problem in at-
mospheric research of this adjoint sensitivity theory
was presented by Hall et al. (1982). Subsequently, Hall
and Cacuci (1983) have shown that the adjoint func-
tions in a radiative convective model quantify the im-
portance of previous (antecedent) states to the current
response functional. In a similar vein, Errico and Vuk-
icevic (1992) indicated that the adjoint fields quantify
the antecedent conditions that most affect a specified
forecast aspect.

Adjoints of atmospheric and oceanic models are used
for variational data assimilation (LeDimet and Tala-
grand 1986; Thépaut and Courtier 1992; Navon et al.
1992, to mention but a few), for optimal parameter
estimation (Smestad and O’Brien 1991; Zou et al.
1992), as well as for the evaluation of optimal growth
rates of initial perturbations (Farrell 1990; Tribbia
1991; Barkmeijer 1991),

The variability in predictive skills of numerical
weather prediction (NWP) models is strongly related
to the occurrence of blocks (Kimoto et al. 1992; Trac-
ton et al. 1989), and it is therefore important to un-
derstand the model errors associated with blocking sit-
uations. The research reported in this paper focuses on
the methodology of adjoint sensitivity analysis and uses
the sensitivity of a blocking index to the source of model
error as an illustrative example. This novel application
to a meteorological problem represents a qualitatively
significant generalization of previous applications of
the adjoint sensitivity method to geophysical sciences,
and will hopefully open the way for additional research.

In this study we use a two-layer, isentropic primitive
equation model on a hemisphere with wavenumber 2
bottom topography and simple parameterizations of
radiative heating and surface drag. This model is de-
scribed in detail in appendix A. In section 2, we cast
the spectral model equations into operator form and
present the mathematical definition of sensitivity, the
derivation of the adjoint equation model, and the
expressions of sensitivities in terms of these adjoint
functions. Three different types of response—func-
tionals, operators depending on time, and operators
depending on both time and space—are described. In
section 3 we use the adjoint technique to study the
sensitivity of a blocking index at a fixed longitude so
that index becomes, for simplicity, a function of time
only. Summary and conclusions are presented in sec-
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tion 4, which discusses further application of the adjoint
method to the sensitivity analysis of more sophisticated
NWP models.

2. Sensitivity analysis

The two-layer isentropic model simulates the non-
linear life cycles of baroclinic waves quite realistically,
and the occurrence of blocks is observed (Figs. 1-3).
The model equations can be written in operator form
as [see (A.23)-(A.25) in appendix A for details]

Lo F(s;x, a),

~ (2.1)

where x is a state vector of dimension 6 X nmdim,
where nmdim = [J(J — 1) + 2]/2—which denotes all
the spectral coefficients of vorticity {, divergence D,
and perturbation layer thickness Ax'—.J is the total
zonal wavenumbers, the operator F represents all pro-
cesses that change the model state x, and « is the model
parameter vector.

In sensitivity analysis studies, the results of interest
that are calculated using the model are usually referred
to as the system’s response. In this section we follow
Cacuci (1981a,b) to outline the mathematical foun-
dation of adjoint sensitivity analysis for responses that
are either functionals (i.e., scalar-valued operators) or
time- and/or space-dependent operators of the model’s
dependent variables and parameters.

a. System response: Functional

The specific response R(x, «) considered in this
subsection is a functional of x and « of the form

R(x, a) = fta r(t; x, a)dt, (2.2)

where r(¢; x, «) depends on model variables x and the
parameters «, and the time interval [¢¢, #,] represents
the selected time window, where (7, — 1) is the time
interval of most interest. '

The most general definition of the sensitivity of a
response to variations in the system parameters is the
Géteau (G) differential (see Cacuci 1981a). The G
differential VR(x°, &%, h,, h,) of R(x, ) at the nom-
inal values (x°, «°) for increments (h,, h,) around
(x°, a%) is given by

lg la
VR(x°, a hy, ha)=f r;-hxdz+f r, - h.dt,
o

o

(2.3)

where

= i’__‘?’_)] , (2.4)
. axl (9Xp (x0,a)
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a i}
ri= [(—' : —'—)] SNCE)
6‘a[ 6aN (x9,a0

N is the dimension of a vector of model parameters;
P is the dimension of the model variable x; P = 6
X nmdim, if x represents the spectral coefficients of
the model variables; and P = 6 X NLONS X NLATSH,
if x represents the model variables on Gaussian grid,
where NLONS and NLATSH are the total number of
grid points along longitude and latitude.

When R(x, «) is continuous in x and «, the total
variation of R is given by

R(x° + hy, «® + h,) — R(x°, a?)
= VR(x° &% hy, h)
+ O([h %) + O(lIh]?); (2.6)

where, VR(x°, a°; hy, h,) is linear in h, and h,. If R
or its derivatives are discontinuous, the G differential
still has meaning as a general functional, i.e. a distri-
bution.

The remaining problem is to find an efficient way
of calculating VR as defined in (2.3). In (2.3) the sec-
ond term 1is called the “direct effect,” which can be
calculated directly without the use of the adjoint model.
The first term is the “indirect effect” and its calculation
requires knowledge of h.(¢).

Taking the G differential of (2.1), we obtain the
linear system

L[x°(¢), a®Thy(?) = Q[X°(2), a®]h,, (2.7a)
hX|l=to = hx(to), (27b)

where L and Q are constant matrices defined as

0 oy 4, _9F
L[X (t)s « ] - dll X s (28)
Q[x°(2), a°] = -aF, (2.9)
da

and | is the respective unit matrix. The system of (2.7)
i1s sometimes referred to as the tangent linear system,
and h,(¢) may be obtained by solving (2.7). However,
when the dimension of the initial state vector and the
number of parameters are large, the computational cost
of calculating this so-called indirect effect is very high.
Therefore, we eliminate h,(¢) from (2.3) by using the
adjoint formulation.

The adjoint operator L* is defined through the re-
lationship

ly ta
f hx'(L*Q)thf q- (Lho)dr — (he q)i, (2.10)
fo )

where q is at this stage an arbitrary column vector of
dimension P.
Defining the adjoint model as

L*q =ry, (2.11a)
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q(z,) = 0, (2.11b)

where the inhomogeneous term r’ is given by (2.4),
and using (2.11), we write equation (2.10) as

la ta
f r;-hxdt=f q-(Lhy)dt +h(20) - q(t9). (2.12)

o o

Substituting (2.7) into (2.12), we obtain

fla ry - h.dt = flaq-(Qha)dZ + h.(20)- q(%). (2.13)

o o

With the use of (2.13), (2.3) can be written as

lq 12
VR :f I+ hodt +f q+(Qh.)ds + hi(20)a(to),
4]

(2.14)

which is the adjoint formulation for sensitivity analysis
of a response functional (2.2).

The main advantage of the adjoint formulation is
that (2.14) is independent of h.(¢). Thus, (2.14) re-
places the time integration of the model consisting of
different equations for h, [which would have been
required to evaluate (2.3)] with the calculation of a
quadrature, an operation much cheaper to perform
when the number of the model parameters is large.
The adjoint variable q(¢) is the solution of the adjoint
equations (2.11), which are independent of h,(t) and
h,,. Therefore, a single adjoint model calculation suf-
fices to obtain the sensitivities to variations of all the
model parameters. However, the forcing term, r’y, in
the adjoint model depends on the functional defining
the response, so that for each response the adjoint
model equations must be integrated anew.

b. System response: Operator that depends on time

In section 2a, we considered a system response map-
ping the domain £ = F, X E, into the underlying space
A of real scalars. However, in many practical problems,
the system response may be time and/or space depen-
dent, and is therefore a more general operator, rather
than a functional, whose range is not in A but in some
other normed linear space Ey. In the following we shall
specifically consider a time-dependent operator to be
the response R. This application of sensitivity analysis
of a time-dependent response is novel in meteorology.

For a general derivation of the sensitivity of a time-
dependent response, we note that

R(t) = R(x(1), a), (2.15)
where x represents a vector of dimension P and consists
of all the spectral coefficients of the model dependent
variables, and « represents a vector of all the model-
parameters with dimension M. We are interested in
the behavior of R(¢) over a finite window of time ¢,
SI< U,
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As before, the sensitivity of R(z) to changes h, in
the parameters and changes h, in the model solution
is defined as the Gateau differential of R at (x°, «®):

VR(x%(1), a®, he(2), ha) = Ri(x°(1), a®Yh(1)
+ RL(x°(1), a®)h,. (2.16)

The indirect effect [the first term in (2.16)] now is
a function of time instead of a scalar, as in (2.3). How-
ever, the adjoint operator can be introduced only
through a scalar in E, that is an inner product of h,
with some other vector. Therefore, we restrict E,, E,,
and Ey to be Hilbert spaces with inner products de-
noted by {,}; [,]; and {,), respectively, and proceed by
expanding the term R’ (x°(¢), «®)h,(¢) in terms of a
truncated infinite-dimensional orthogonal basis w,,(?),
m=1,2---, mm,such that

R (x°(1), a®)hu(2) = mZM amWm(1), (2.17)
m=1
am = (RE(X%(1), a®Yhe(2), wa(2)). (2.18)

Since a,, are functionals of h,(¢) (i.e., scalar-valued
quantities), they may be rewritten as

(R(XO(1), a®)hy(2), wi(1))
= hy(1), M(x(1), a®)w(1), (2.19)

where M = (R’)7 is the adjoint of R’ and the inner
product defined in the E, space is

P
h>g= Z<hiagi> (2-20)
i=1
for any two P-dimensional vectors h and g.
Introducing the mm-adjoint systems,
L*(x°(2), @®)@n(?) = Mwn(1), (2.21a)
Qm(ta)=0> m=1,---, mm, (2.21b)

and using (2.7), (2.21), we obtain
h (), M(x°(2), a®)wm (1)
= [he(2), LX(X°(1), a®)am(1)]
= [qm(1), L(x°(1), a®Yh(1)] + [h:(0), 4(0)]
= [am(1), Q(x°(2), a®)h,]
+ [hx(0), q,(0)]. (2.22)

Substituting (2.21) into (2.17) for the indirect effect
term, the sensitivity (2.16) can now be written as

VR(x°(t), a% he(2), h)

= 2 [an(8), Q(x°(1), a®)h}wm(?)

m=1
+ [h.(0), @ (0)Jwn(2)
+ {R;(xo(z), a®)h,}. (2.23)
We observe, from (2.21), that the calculation of the
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sensitivity of a certain response in the adjoint formu-
lation involves the integration of the adjoint model
mm times [ mm being in practice a small number that
depends on the level of truncation in (2.17)]. The
computational effort in sensitivity calculations based
on the adjoint approach is as follows:

(i) develop the adjoint model, which depends on
the nominal values of the initial conditions and pa-
rameters;

(ii) calculate the matrix Q, which also depends on
the nominal values of the initial conditions and pa-
rameters;

(i11) find the forcing term Mw,,(t), which depends
on the definition of the response; and

(iv) calculate quadratures [q,,., Qh,] mm times and
perform the summation shown in (2.23).

By comparing (2.16) and (2.23) we observe that
h,(¢) no longer appears; instead, the adjoint variables
q,» appear in the expression (2.23) giving the sensitivity
VR. The adjoint variables q,, depend only on the basic
state x°(¢#), «® and the response function (for the forc-
ing term), and are independent of changes in the pa-
rameters and initial conditions, while in (2.16), h,(?)
is the solution of the linear differential equation (2.7),
which depends on the changes in the parameters and
the initial conditions. For each parameter change or
model-state change at time ¢, the linear differential
system (2.7) would have to be solved anew, an expen-
sive task when the dimensions of the parameter and
the model-state vectors are large.

¢. System response: Operator that depends on both
time and space

Possibly the most interesting meteorological cases
involve operator responses that depend on both time
and space. We present below the treatment of such a
response: R(A, ¢, t). Expanding R(A, ¢, t) into spher-
ical harmonics, or any other basis (e,(], ¢)), we obtain

N
R(X\, ¢, 1) = 2 Ru(t)en(X, ),

n=1

(2.24)

where N represents the total number of the expansion
coefficients. Taking the G differential of R yields

VR(x°(1), @°, hy(2), hy)

N N
= 2 (Romhcen(N, @) + 20 (Ro)nhatn(N, 6),

n=1 n=1

(2.25)

where (R ), and (R,,), are P-dimensional vectors that
depend on time.
Using an orthogonal basis expansion w,,(t),
=1, 2.+, mm, expand (R}),h, as before, in a
truncated series to obtain

(R)hu(t) = 2 apwi(1),

m=1

(2.26)
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am = {(RO)a()h(1), win()).

Since a7, are functionals (i.e., scalar-valued quantities )
of h,(t), we may rewrite (2.27) as

(2.27)

UR)(Dh(), wi(1)) = ha(2), (RE)7 () Wrn(2).

(2.28)

Defining the mm X N adjoint system as
L*(x°(2), a®)am(?) = (R 2 (D)wh(2), (2.29a)
am(ts) = 0, (2.29b)

and proceeding along the same lines as those leading
to (2.22) gives

ho(0), (RX)n(Owi(0) = a7, Q(x°(0), a®)h,]
+ (h(0), ¢7(0)]. (2.30)

Finally, we note that the sensitivity ¥R for a response
that is both a time- and space-dependent operator is
given by the expression

VR(x°(1), a% hy(1), ha)

™M=z

a7 (2), Q)b whin(2)

1 m
+ [he(0), g7 (0)Iwh (1) en(N, ¢)
+ [Roh.].

3
I

(2.31)

We observe that the foregoing derivations are similar
to those in section 2b except that one has to carry out
a space expansion of the response function. The cal-
culation of the sensitivity of a time- and space-depen-
dent response in the adjoint-function sensitivity anal-
ysis method involves the integration of the adjoint
model for N X mm times, where mm is the maximum
truncation of the time expansion for the coeflicient in
(2.24), while N is the total number of the nonzero
space expansion coefficients in (2.24). This could be
computationally expensive. However, for a given ap-
plication, even though the state variables x are ex-
panded spatially in spherical harmonics Y 4(\, ¢), the
indirect term R’ i, need not be expanded in Y (), ¢)
if a more suitable basis is available. Furthermore, even
if R’ h, is expanded in Y %(\, ¢), a few spectral terms
may suffice. The choice of the optimum basis for ex-
panding R’ &, will depend on the shape of R(A, ¢, £).
In fact, it usually turns out that expanding R or
R/, h, in the same basis functions as used to calculate
the dependent variables x is a poor choice. The whole
point in having used different inner products in Cac-
uci’s (1981b) sensitivity theory (for the response, ad-
joint function, etc.) is precisely to enable us to use dif-
ferent basis functions when solving for the dependent
variables x, adjoint variables q, and response sensitiv-
ities (i.e., R’ h,), respectively.
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To decide what basis functions should be used for
the R’ h,, we need to examine some representative
plots of R(A, ¢, t), both as a function of ¢ for some
fixed and interesting values of A and ¢ [see, for ex-
ample, (3.3)], and as a function of A and ¢ (separately
and together) for some fixed and interesting values
of t.

3. Numerical experiments

Although this work primarily focuses on the math-
ematical foundations of generalized sensitivity studies
of certain classes of responses, in this section we offer
(1) a meteorological illustration of the method (section
2b) applied to a blocking index obtained in the model
previously discussed in section 2 and appendix A, and
(i1) specific mathematical approximations for the study
of the sensitivity of that blocking index. Again, we do

asa T
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FiG. 1. Time (day 250 to 350) versus longitude (Hovmoller) plot
of blocking index derived from full upper-layer streamfunction field.
Contour interval is 2 X 10°, with positive values suppressed.
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LAYER 2 PSI T = 267.0 DAYS

Z

CONTOUR FROM -5.5x187 T0 4.5x12” BY B.5x107

LAYER 2 PSI T = 269.8 DAYS

CONTOUR FROM -6x18’ TO 4.5x18” BY 8.5x187

LAYER 2 PSI T = 271.0 DAYS

CONTOUR FROM -6.5x187 TO 4.5x18” BY 8.5x107

LAYER 2 PSI T = 273.8 DAYS

oW

CONTOUR FROM -6x18’ TO 4.5x18’ BY 8.5x187

FIG. 2. The (a) upper- and (b) lower-layer full-field streamfunction distribution obtained on day 267, day 269, day 271, and day 273.

not view this section as a thorough analysis of the
blocking dynamics but rather as an illustration of the
previously discussed method.

The time integration of the model starts at time ¢
= 0 from arbitrary initial values of the dependent vari-
ables, and the first 100 or so days are discarded. The
integration proceeds until the final time ¢, is reached.
For the results presented in this paper, the total time
span of the model is 1100 days. For the sensitivity
analysis, a 32-day time window [{, 7,] was used when
a blocking event occurred.

a. Meteorological preliminaries

We define a blocking index analogous to the one
introduced by Lejends and Okland (1983):

RN 1) = (Yo (N 1) = ¥y, (A, 1))

X H-(Yp, (A, 1) — (N, 1)), (3.1)
where
1, if x>0
H_(x) = R (3.2)
0, if x<0
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LAYER 1 PSI o T

267 .@ DAYS

CONTOUR FROM -@.3x18’ TO 5.4x18’ BY ©.3x18’

LAYER 1 PSI T = 269.0 DAYS

CONTOUR FROM @ TO 5.1x18’ BY 2.3x187

LAYER 1 PSI T = 271.8 DAYS

1]

CONTOUR FROM @ TO 6x10’ BY 8.3x197

LAYER 1 PSI T
9ou

270v
CONTOUR FROM -8.3x107 TO 5.4x18’ BY 8.3x1@’

273.8 DAYS

1]

FiG. 2. (Continued)

is the unsymmetrical Heaviside function and y,,, is
the upper-level streamfunction at latitudes ¢;, ¢,
which were empirically selected as the Gaussian lati-
tudes 39° and 65°N. Figure 1 shows a Hovmoller plot
of R(t) in which X is plotted horizontally and time
increases upward from 250 to 350 model days. In that
figure the reader should note how longitudes are mea-
sured; in particular, the zonal wavenumber 2 mountain
ridges are located at A = 45° and 225°W. In Fig. 2, A
= 0 corresponds with the conventional positive “ x axis”
in the first quadrant. During the interval, day 250 to
day 350, three model blocks form.

The formation of blocks is particularly difficult to
predict ( Tracton 1990; Tibaldi and Molteni 1990), and
several theories have attempted to offer mechanisms
for this process; no single theory is presently universally
accepted. We do not claim to resolve the differences
between blocking theories in this paper but rather pres-
ent results that point at the power of the adjoint sen-
sitivity method previously described.

From Figs. 1-3 we notice that although we make no
claim that the topography chosen is in any way “earth-
like,” the coherent structures that develop resemble
those observed in the atmosphere. We will discuss the
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LAYER 2 PSI T =

278
CONTOUR FROM -6x187 TO 4x18’ BY 8.5x187

LAYER 2 PSI

270w
CONTOUR FROM -6x187 TO 4x187 BY @8.5x12’

LAYER 2 PSI

é

,@\@l\.\ ,v

CONTOUR FAOM -7x187 TQ 4x1@8’ BY B.5x10’

LAYER 2 PSI

CONTOUR FROM -6x187 TO 4x18’ BY 8.5x18’

FIG. 3. The (a) upper- and (b) lower-layer full-field streamfunction distribution obtained on day 281, day 283, day 284, and day 285.

blocks that formed around day 272 (block 272) and
around day 283 (block 283). Figures 2a,b and 3a,b
show the streamfunction maps of synoptic situations
in upper [panel (a)] and lower [panel (b)] layers just
prior to the formation of these blocks. In these and
similar figures the outmost latitude is 20°N, and at
that latitude the flow is easterly. For block 272 (Fig.
2), in the lower layer, starting from day 269, the lee
cyclone west of 0°W intensifies, while the zone of the
anticyclone near the mountaintop propagates west-
ward, resulting in a strong northward heat transport

along 0°W. In the upper layer, the trough above that
cyclone intensifies and the ridge narrows, extends
northward while the downstream trough intensifies and
extends southeastward. For block 283 (Fig. 3), for ex-
ample, at day 281 the circulation over 90°-180°W
(second quadrant) is zonal with no significant mean-
ders. At day 283, a meridional elongation of the dis-
turbance leads to the formation of the block over 150°-
180°W (days 284 and 285), which will last for some
8 days. Visual inspections of the figures in the lower
layer (Fig. 2b) show that the preblocking situation in-
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LAYER 1 PSI T =
98w

&

27BH
CONTOUR FROM -@.3x107 TO 4.5x18’ BY 8.3x187

281.8 DAYS

LAYER 1 PSI T = 2B3.0 DAYS

CONTOUR FROM -2.3x187 TO 5.4x187 BY 0.3x1@’

LAYER 1 PSI T = 2B4.0 DAYS

zvaw
CONTOUR FROM -1.2x127 TO 6x10’ BY 2.3x10’

LAYER 1 PSI T = 2B5.8 DAYS

278w
CONTOUR FROM @ TO 5.4x10° BY 2.3x10’

FIG. 3. (Continued)

volves intense thickness advection northward, this ad-
vection being due to the proximity, in the lower layer,
of a high-low dipole. Thus, the initiation phase of
blocking is highly baroclinic. Once formed, these blocks
have a tendency to slowly retrograde and do not main-
tain the modon shape advocated by simple baroclinic
models of blocking ( Haines and Marshall 1987). Ob-
servations of streamfunction model fields in both layers
indicate that a barotropic character prevails in mature
and decaying blocks.

The index given by (3.1) is both a function of time

and space. To simplify we select a fixed longitude A
for a given block and redefine the response as a function
of time only as

R(t) = (‘9{/(3)/([) - ¢/¢},(I))H—(¢¢h(l) - l)[/d)[(t)))
where we select the constant longitude A, = 23°W for
block 272, A; = 150°W for block 283, and A\, = 360°W
for block 322. In the experiments to be described, a
time window ?y < ¢ < {, will be selected, with ¢, being
varied from a few to several days before blocking, and

(3.3)
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t, chosen past the duration time of blocking where R(%,)
= 0. For time intervals greater than the limit of validity
of the tangent linear model, the use of the adjoint model
can be questioned (Lacarra and Talagrand 1988; Ra-
bier and Courtier 1992). Therefore, it is very important
to select a reasonable time window for a sensitivity
study of a specific problem.

As a representative measure of the blocking index
we first select a time window extending from ¢, = 267
days to 7, = 298 days for block 283 and calculate the
response once a day, shown as a solid line in Fig. 4.
The finite Fourier sine expansion

mm 1 —
R(1) = S g, sin TRU 1) 54
a” L0 p=1 [ ]

is also shown in Fig. 4 as a dash—dotted line, for mm
= 8, and as a dotted line, for mim = 16. The mm = 16
representation matches the response extremely well in
the region where the computed response differs from
zero, that is, between day o + 18 and ¢y, + 22. When
the response is zero, the approximation given by (3.4)
suffers from a Gibbs phenomena, and therefore, one
should be careful in interpreting preblocking results
that are tainted by this shortcoming. In what follows
we selected the truncated basis function w,,(f)
=sin[xm(t — ty)/t,—toland m =1, - - -, 16. Since
the response does not depend upon the model param-
eters, the direct effect R, h, is zero and the indirect
effect is

R (x°(1), %)y = (hy, = hy,)H_(¥5, — ¥30), (3.5)

where we used x6(x) = 0, a property of the Dirac delta
function.

10107
0.0 19°
1.0 107
-2.0 107
30107

-4.0107

50107 Lt | L

Time (day)

F1G. 4. Variation of the blocking index in time (solid line) and its
approximation of the finite Fourier sine expansion truncated at mm
= 8 (dash-dotted line) and mm = 16 (dotted line).

MONTHLY WEATHER REVIEW

VOLUME 121

TABLE 1. Sensitivity of R to the increment ef(fp) in
the field of streamfunction y(t).

Predicted change

Adjoint Direct Actual

@ method?® method® change®
1072 4.683E17 4.683E17 —6.311E17
1073 4.683E16 4.683E16 4.721E16
1074 4.683E15 4.683E15 4.709E15
1073 4.683E14 4.683E14 4.686E14
1076 4.683E13 4.683E13 4.683E13

" 2 Predicted change (adjoint method) = [¢(0), A,.(0)].
b Predicted change (direct method) = [R,, A,].
¢ Actual change = R(X + /,, a®) — R(x", a°).

b. A simple test: The functional response

For code verification, before dealing with R(¢), we
consider a simple functional response not related to
blocking. For simplicity, we write

R(X(Zo), Ol) = Z ‘pz(kis d)j, k; tr):
i, J,r

(k = 2, upper layer), (3.6)
where the summation is over longitude, latitude, and
time, once a day for 32 days starting at 7o = 267 days.
The sensitivity of the response to changes in model
state h,(?y) and in parameters h,, can be obtained in
three different ways: 1) using the adjoint formulation

VR™ = 3 g(1)Q(x°(f,), a®Yh, + he(fo)g(lo),

(3.7)
2) using the direct forward integration
VR = 3 20°(1,)hy(t,), (3.8)
and 3) using the total variation of the response
dR = R(x + hy, a + h,) — R(x, «)
=29 (x°+ hy, a® + hy 1)
—¢3(x% a%1). (3.9)

We anticipate that (3.7) and (3.8) should produce, to
within numerical accuracy, identical results but that
(3.9) can be compared only with the previous two for
sufficiently small changes; that is, in some sense [|h,]|
and |/h,| must be small. In the foregoing expressions,
g is the adjoint variable obtained by integrating the
adjoint model (2.11) with forcing terms r’, = 2¢°(¢,)
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FIG. 5. Variations of dR(z) (dotted line for ¢ = 1072 and solid line for ¢ = 107%) and VR (¢) (solid line for ¢ = 10~ and circles for
¢ = 107%) with time in the time window of [#o, £,) for variation of ey(#) in the field of ¥ at time ¢, for (a) ¢ = 107> and (b) e = 107°.

present at time ¢,, ¥ = I,, * « *, to, where ¢, = 298 days
and t, = 267 days; h, is obtained by integrating the
tangent linear model (2.7) directly.

Table 1 shows VR2*¥ PRI and dR for h,
= (e¢°(ty), 0, 6)7 and h, = 0, where ¢ ranges from
1072 10 107°. The results presented in the columns
labeled ““actual change” are the changes in the blocking
index obtained by rerunning the nonlinear model after
i is increased by ey. The columns “predicted change
(direct)” are sensitivity values obtained by using VR4,
while the columns “predicted change (adjoint)” display
results due to VR . The good agreement between the
predicted changes obtained by the direct and adjoint
methods supports the belief that the numerical method
has been correctly applied to solve the adjoint system.
For ¢ large (~1072), the nonlinear dR results differ
from those obtained using the linear method. Figure
5a plots, for e = 1072, the values of 2¢°(¢,)hy(¢,) and

PO+ by, 0 1) — P2 (x%, % ). (3.10)

The two curves are very close for the first 9 days of
integration and begin diverging afterward, indicating
that the cumulative effects of the nonlinear terms, for
this value of ¢, are no longer negligible. This result
implies that the tangent linear model approximation
is valid for 9 days of integration for this size (e = 1072)
of perturbation. However, when ¢ = 1078, the agree-
ment between these same curves (Fig. 5b) is excellent,
confirming results of Table 1 and verifying that the
tangent linear model approximation holds. We feel
confident that there are no gross errors in the code,
and proceed to a more representative response.

¢. A time-dependent blocking index

We now focus our attention on the index R(t) as
given by (3.3). We can view R as being dependent

upon the vector X (¢) in physical space or upon the
vector of time-dependent spectral coefficients x. We
will consider the mathematical formulations from both
points of view.

1) RESPONSE IN PHYSICAL SPACE
Expressing the response R(?), (3.3), and the indirect

effect R'yhy, (3.5), as functions of the model variables
in Gaussian grid space, we write

R(1)=a"XH (~-a"X), (3.11)
vhy =aThyH_(—aTX?), (3.12)
1510’ r S S : 1
! ]
10107 ]
i -
[ <4
5010° | ]
(I J
0.0 10 jb
’ ]
5.010° ]
L 1
r‘ <4

10107 el
0 4 8 12 16 20 24 28 32

Time (day)

FIG. 6. The actual changes (solid line for ¢ = 0.01 and dashed line
for € = 0.001) and the predicted changes (dotted line for € = 0.01
and circle line for e = 0.001) by the direct method when ¢ at time
to has a perturbation of ey(1o).
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FIG. 7. The actual changes (solid line) and the predicted changes
(dotted line) by the direct method for 1% changes in 7grg.

where the vector a is defined as
1, if [=(1 - 1)+ il
—1, if [=(j2- DI+l
0, otherwise,

Jj1,j2, and il correspond to ¢, ¢, and A, respectively,
and I = NLONS is the total number of grid points in
the longitudinal direction. It follows that the partial
derivative of the response with respect to the model
variables X is

(-

Express the sensitivity of the response in terms of

a = (3.13)

axX
H_,( aTX()) Ta

X ) (3.14)

mm

VR(X(1), a® hx(1), hy) =

a Om__

We run the nonlinear model once to obtain the value
of response function (3.11) and the partial derivative
of the response (R’y)7, (3.14). Then, we integrate the
adjoint model backward mm = 16 times with different
forcing terms (R'y) T sin[wm(t — 1)/ t. — to] to obtain
the values of the adjoint variables g,,(¢). Having ob-

[g(1), gP(1)] = z G ONIRIO)

P
=3 Az( g (10)gP (t0) + z e )e® () + 1 58 (tn-)gl?
i=1

where g’ and g'? are two arbitrary vectors in physical
space; an extended trapezoidal rule was used for the
time integration and ¢; = o + j[(t, — to)/N — 11,
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the basis function {sin{am(z — 10)/1, — o], m = 1,

-+, mm} and obtain
VR(X°(1), «°, hx(2), h,) = Ry hy

mn ) rm([—to)
2 Gy sin ————,

l‘loml .=t

(3.15)

where
7rm(l - to)
— 1o

f Ry hy sin —————= dt

<R’th, sin M>

e — 1o

lo)

la— 1o

am(t —

Il

[hx, (R'y)7 sin ] (3.16)

Define the adjoint equation as
wm(t — lo)

GHL*S*q,,(1) = (Ry)" sin =,
]

t,, (3.17)

where G is a transform from Gaussian grid space of
(¢, D, Ax’) to the spectral space of ({, D, Ax’)and S
= G~'. Then, we can write

= [hy, G*L*S%q,,(1)]

= [gm(1)SLGhx(1)] + [hx(t0), gm(t0)]. (3.18)

Using the G differential of the model equation,

SLGAy = SQ#A,, (3.19)
a,, can be expressed as
Ay = [qm, SQh] + [hx(to), gn(t0)].  (3.20)

Substituting (3.20) into (3.15), we finally obtain

m(t - [0)

(3.21)

a

tained the values of all g,,(¢), m = 1, , mm, we
use (3.21) to calculate the sensitivities of the response
to model parameters and to model state at a certain
time.

The inner product’in (3.21) is

>(zN_1)), (3.22)

Jj=1

=0, -+ ,N—1,where N— 1= 31 is the total number
of subintervals in the integration period [z, 7,].
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The summation in the sensitivity formula (3.21)

2

mm ) T mi
VR\,-, = Y m§=jl Q Sin N—jl ,
j=0,---,N—1 (3.23)

is obtained by a fast Fourier sine transform.

2) RESPONSE IN SPECTRAL SPACE

Expressing the response R(t) and the indirect effect
R’ h, as functions of the model variables in spectral
space enables us to study the sensitivity of the blocking
response to changes in different wavenumber ampli-
tudes. Then (3.11) and (3.12) are written as

R(1) = a"SxH_(—a"Sx), (3.24)

R h, = a"Sh, H_(—a"Sx"), (3.25)

where the vector a is defined in (3.13). The partial

1.5107 AL I B SRS RS
10107

6
5.0 10 L’

0.0 10°

-5.010° |

210 .107 L 1 1 | L L i 1

Time (day)

8.0107 T ™ T T T T T
60107 .. ]
40107 N .

2010

0.0 10°

2.0 107 t

_4‘0107 LL..AL‘..J..AI.

Time (day)
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derivative of the response with respect to the spectral
model variables x is

9
R, = ( oo, H_(~a"Sx%)a’s — | ..
ax;

]

) (3.26)

Following the derivation in section 2b, the sensitivity
of the response to variations h, and h, can be obtained
by integrating the adjoint model

L*(x(1), a®)an(t) = (RY)T sin FEZ10) (3 07,
a
(L) = 0, (3.27b)
and using the formula
VR(x°(1), % hy(1), h,)
=2 {lan(1), Q(x°(1), a®)h,]
t—1
+ (1), @)1} sin TR0 (3.08)
a — t0
3.010° T T T R B A S B j
2010° ~
ol ]
1010° [ ]
f ]
0010° |~ ]
[ ]
1.0 10° E ;
2010° | ]
?
,3'0105 N [ [N l e 1 N M AR
0 4 8 12 16 20 24 28 32

Time (day)

FIG. 8. The actual changes (solid line) and the predicted changes
(dotted line) by the adjoint method for 1% changes in (a) ¥, (b) D,
and (c) An’ at time £,.
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FI1G. 9. Distribution of (a) an isolated vorticity source used as the perturbation for the vorticity field at time ¢4, to which a sensitivity
analysis is applied, (b) the corresponding streamfunction distribution, and (c¢) and (d) the layer thicknesses.

d. Additional verification procedures

Before carrying out the adjoint sensitivity analysis,
we present several additional checks that ensure that
the development of the matrices L, Q, and L* is free
of errors. Figure 6 shows the actual change and the
predicted change by the direct method when h, assumes

the following values:
hs = (e¢ (1), 0,0)T, e =0.01,0.001,

and h, = 0. The predicted change (dotted line) is

slightly smaller than the actual change (solid line) when
¢ = 0.01, and they are nearly the same (dashed line
and circles, respectively ) when we decrease e by another
order of magnitude. This ensures that the L matrix is
coristructed correctly. We then compare the predicted
change and the actual change when h, = 0 and h,
= (0.0175¢, 0, 0, 0)T (Fig. 7). The predicted change
matches the actual change very well. Similar results are
obtained when h, = (0, 0.0175%,, 0, 0)T, h, = (0, 0,
0.0173,0)T, or h% = (0,0, 0, 0.014,)T. These results
ensure that the Q matrix calculation is correct. The
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F1G. 10. Values of sensitivity of the blocking index response at
longitude 22° between days 267 and 298 to perturbation in Fig. 8
placed at day 267. The numbers on the line indicate the longitudes
of the vorticity perturbation center.

correctness of the adjoint operator L* was verified by
applying an identity check (see Navon et al. 1992).

In Fig. 8 we show the predicted changes using the
adjoint method and the actual change for three values
of h,:

= (0'01¢0(t0)’ O’ O)T
h2 = (0, 0.01 D°(to), 0)"

= (0,0, 0.01A7"%(£,))", (3.29)

and h, = 0. We observe that the adjoint-predicted
changes due to h} and h% are smooth and slightly
smaller than the corresponding actual changes, and the
adjoint-predicted change due to h2 is smooth and
slightly greater that the actual change. These discrep-
ancies are partly due to the nonlinear effect (see Fig.
6) and partly due to the nondifferentiable property of
the response function.

From now on, we will use only the adjoint formu-
lations (3.21) and (3.28) for all the numerical exper-
iments that follow.

e. Sensitivity analysis

1) SENSITIVITY TO ISOLATED VORTICITY
PERTURBATION IN THE UPPER LEVEL

The first sensitivity experiment deals with the lon-
gitudinal placement of an isolated vorticity perturba-
tion at a fixed latitude, 43°N, in the upper layer (Fig.
9) at time ¢, for block 272; the thickness field is cal-
culated by solving the nonlinear balance equation
(Charney 1962) at the initial time to = 267 or ¢,
= 315. Figure 10 shows the various sensitivities of the
blocking index when the placement longitude is varied
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in steps of 30° of longitude. The isolated vorticity per-
turbation placed upstream of the block at 300°W seems
to produce the maximum change in favor of a more
intense block 4 days later near 22°W. A small vorticity
source placed downstream of the block at 60° of lon-
gitude weakens the block.

The streamfunction maps in both layers near day
267 are shown in Fig. 2. A naive explanation may go
as follows. With the mean upper-level wind (about 30
m s~ 1), it takes about 1 day for a quantity placed near
the center of the westerly current to be advected 30°
of longitude; day 267 is 3 or 4 days from block for-
mation. Therefore, a midlatitude vortex placed 90° of
longitude upstream of the block will reach longitude
22°W at day 267 + 3. Colucci (1985, 1987), while
studying the role of synoptic scales on block formation,
found that rapidly deepening cyclones can play a major
role in block formation or demise. He found that not
only is the cyclone intensity important but its phase
in relation to the planetary waves is cruc1a11y important;
the importance of the phase placement is responsible
for enhanced potential vorticity transports associated
with the synoptic-scale motion.

2) SENSITIVITY ANALYSIS TO CHANGES IN
STREAMFUNCTION AT TIME /g

We use (3.21) to perform sensitivity analysis when
at time ¢, we introduce a 1% change in ¢ at each
Gaussian grid point, respectively. This kind of sensi-
tivity analysis will indicate where the most sensitive
regions for a certain blocking event are. Since the total
number of the grid points in one layer is 96 X 24, more
than 4000 sensitivity calculations are required. The
computational advantage of using the adjoint sensitiv-
ity analysis method is thus clearly evident. Again, we
require the system to be in balance, and plot spatial
maps of relative sensitivity.

Figures 11a,b show, for ¢y = 267, upper- and lower-
layer relative sensitivity of the blocking index at lon-
gitude 22°W at days ¢4 + (5, 6, 7) for block 272; thus,
we are in preblock conditions. The results in Fig. 11
display the sensitivity of the blocking index 5, 6, and
7 days after ¢, to alterations of the structure of the
streamfunctions at ¢,. The dominant sensitivity occurs
upstream of the block in the upper layer and slightly
downstream of the block in the lower layer. If we look
at Fig. 2 we see that both the upstream trough in the
upper layer and the downstream cyclone in the lower
layer intensifies in the preblock stage. The positions of
the contours in the upper and lower layers are consis-
tent with advection calculations using typical mean
winds in each layer (about 30 ms™' and 10 m s~ in
the upper and lower layers, respectively). The features
shown have meridional scales of some 103 km, with
longitudinal scale several times larger. It seems that the
presence of jet streak in the fourth quadrant at day 267
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when the perturbation is introduced contributes to a
large number of contours in that quadrant. Thus, block
formation may be more sensitive to certain flow fea-
tures.

Figures 12a,b show maps of the relative sensitivity
for block 283 and 1, = 280, that is, sensitivity of the
blocking index at longitude 150°W to changes in
streamfunction 6 days before block formation. There
is a large number of contours, at least in the upper
layer, that emanate from the tropics. In the lower layer,
some of the contours lie in the wake of the block. Also,
the features in Fig. 12 have larger longitudinal scale

FIG. 11. The relative sensitivities of the blocking index at
longitude 22° and days 271 to 273 to 1% changes of ¢ in
gridpoint space at the upper level (a) and the lower level (b)
at day 267.

than that in Fig. 11. All this may imply that the blocks
at days 272 and 283 might be caused by different
mechanisms. Visual observation of the streamfunction
distribution in upper and lower layers (Figs. 2 and 3)
tends to support this conjecture. For block 272, the
cyc]ogenesis upstream of the block seems to play a ma-
jor role. For the block 283, the block seems to be the
result of a Rossby wave breaking, since both the lee
cyclone near 270° and the upstream high intensify from
day 281 and move westward. The ridge in the upper
layer is rather stable, and the downstream trough ex-
tends southwestward.
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FiG. 11. (Continued)

3) SENSITIVITY ANALYSIS TO CHANGES IN
SPECTRAL SPACE

We here address the sensitivity of the blocking index
to different scale processes using (3.28) for block 272.
The relative sensitivity to different wavenumbers in
the upper layer is calculated and shown in Table 2.

The results of sensitivity analysis in spectral space
seem to confirm, for the simple model considered, the
importance of zonal flow, planetary waves, as well as
synoptic-scale features: positive relative sensitivities
that imply block intensification and scale (m, n) = (2,
7,0, 11; 6, 11) have a dominant contribution. The

guantities (m, n) represent the zonal wavenumber and
the number of nodes in the meridional direction. A
Cartesian meridional wavenumber, /, could be ap-
proximately obtained by writing / ~ (m — n)/2. These
sets of waves that contribute most to block intensifi-
cation could then be characterized as being planetary
(m=0,n=7,1~ 2), synoptic (m = 6, n = 11; |
=~ 2),and zonal (m =0,n = 11; [~ 5-6). The waves
producing negative values of relative sensitivity that
contribute most to block demise are (m, n) = (0, 3; 0,
7; 4, 7; 5, 6). Again, zonal flow seems to be very im-
portant, in agreement with the findings in the next sec-
tion.
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TABLE 2. Values of relative sensitivities of the blocking index at longtiude 150°W and day 271 to 1% perturbations
of ¥ in spectral space at the upper layer at time 7, = 267 (day).

m=0 m=1 m=2 m=3 m=4 m=15 m=6 m=717
n=0
n=1 —3.0E—-2*
n=2 —4.6E—4
n=3 —-2.7E—1 -2.3E-2
n=4 ~4.4E-2 2.7E-2
n=>5 8.6E-3 ~4.9E-2 —5.0E-2
n==6 —5.0E—2 —3.4E-2 —-1.7E-3
n=17 -1.2E~1 8.8E—2 —1.2E~1 1.3E-2
n=28 ~4.1E-3 6.4E—2 —8.7E-2 8.8E-3
n=9 —-2.5E-2 3.5E-2 —5.0E-2 -2.2E-2
n=10 ~4.0E-3 —-1.3E-2 . -4 8E~-2 —1.2E-2
n=11 9.5E-2 —7.7E-3 ~2.0E-2 8.4E-2
n=12 3.1E-2 ~9.8E-2 —1.0E-2 ~8.4E-3
n=13 —4.6E—4 -8.1E-4 —6.4E—-3 —1.9E-2
n=14 2.0E-3 ~7.8E-3 2.9E-3 —4.2E—4

* —3.0E—2 means —3.0 X 1072

The main sensitivities in the wave band m = 0-6
occur mainly in meridional wavenumber # = 0-9. The
sensitivities in wavenumbers m = 7-12 are one order
of magnitude smaller than those in wavenumbers m
= 0-6. The major sensitivities in this wave band (m
= 7-12) have smaller meridional scale (9 < n < 12).

4) SENSITIVITY ANALYSIS TO MODEL
PARAMETERS

If a variation occurs solely in the nth parameter, we
denote by h’ the corresponding vector of parameter
variation

hi=(0, -+, A%, -+, 0)7, (3.30)

and denote the corresponding sensitivity by VR". The
relative sensitivity s, is defined as the dimensionless
quantity :

V Rn hn -1
-7 ()

Sn 5 (3.31)
Ap
Note that because R <0 and #"/a% > 0, s, and VR"
have opposite signs; s, > 0 implies block intensification.
The magnitudes of the relative sensitivities serve as a
guide to ranking the importance of model parameters.
Figure 13 shows the relative sensitivity of the block-
ing index at longitude \; = 23°W in the time window
of [267, 298]. Only the relative sensitivities for the 5
days when the blocking index is not equal to zero are
plotted. We observe an antisymmetric distribution of
the time evolution of the relative sensitivity, which is
produced by the symmetric-like distribution of the re-
sponse function (see Fig. 4). Of the four parameters
in the model, the largest sensitivity corresponds to the
mountain height 4,, as can be seen from Fig. 13. The

second most important parameter affecting the block-
ing index is 7z, which is a measure of the slope of the
layer interface and therefore a measure of the upper-
level zonal jet in the radiative drive. Next comes the
surface drag that controls the baroclinic life cycle via
the barotropic governor mechanism of James and Gray
(1986)and James (1987). Mechanical drag is an order
of magnitude more important than the Newtonian
damping, 74. The relative importance of these pa-
rameters could be justified on physical grounds. We
suspect that the blocks are a result of the interaction
between synoptic-scale baroclinic waves and planetary-
scale zones of diffluence associated with forced moun-
tain waves. An increase in the mountain height pro-
duces a larger-amplitude stationary wave and stronger
regions of diffluence (Shutts 1983). A decrease in the
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FiG. 13. The relative sensitivities of the blocking index to model
parameters 74mg(solid line), 74p (dotted line), n5 (dashed line), and
ho (dash—dotted line).
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surface drag suggests a stronger forced response, stron-
ger diffluence, and more blocks. From the work of
James and Gray (1986) and James (1987) we know
that it does not necessarily lead to stronger baroclinic
waves, and the maintenance mechanism of blocks may
be made less effective.

f. Computational cost

Table 3 presents the computational cost of the gen-
eralized adjoint sensitivity analysis. For one time in-
tegration, the CPU time spent in the adjoint model
(3.17) integration is double the time required for the
nonlinear model integration (2.11). The high cost of
integrating the G-differential equation (3.19) originates
from the left-hand-side term Qh,, which is calculated
at every time step. The CPU times for calculating the
predicted change by the adjoint method and the direct
method are 1455 (with 16 times adjoint integrations)
and 1119 s, respectively. The CPU time for calculating
the actual change is 92 s. It seems that the adjoint sen-
sitivity analysis requires the highest CPU time. How-
ever, once the values of the adjoint variables g,,,, m
=1, - - -, 16 are obtained, the subsequent sensitivity
analysis is computationally very cheap. The sensitivity
calculation of the response to any changes in the model
variables takes only 1 s, and the sensitivity calculation
of the response to any changes in the model parameters
requires only 33 s, which is the time required to com-
pute the quadrature in (3.21). Therefore, the adjoint
sensitivity analysis is most economic for sensitivity
analysis when the dimension of the model-state vari-
ables or the number of the model parameters is large.

The computational cost is rather small to compute
sensitivity of the blocking index to vorticity sources in
different locations. Once the values of the adjoint vari-
ables g,,, m = 1, « + +, 16 have been obtained for this
blocking index, the adjoint sensitivity calculation to
any perturbations of the model dynamic fields takes
only few seconds of CPU time. The CPU time required
to calculate sensitivity to perturbation at different grid
points of the model variables—that is, 2 X NLONS
X NLATSH = 4608 time calculations of VR in (3.21)
or 2 X NMDIM = 1024 times calculations of (3.28 ) —
requires only 10-40 s, which would be otherwise im-
possible using the forward sensitivity formulation.

TABLE 3. Computational cost of the adjoint sensitivity analysis.

32-day
Models integration Sensitivity calculation

Adjoint model 86 s 1455 s
Adjoint model variable (| s) parameter (33 s)
G-differential

model 1074 s 1119 s
Nonlinear

model 46 s 92's
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4. Discussion and conclusions

This work has demonstrated the application of the
sensitivity analysis method developed by Cacuci
(1981a,b) for nonlinear systems and operator-type re-
sponses to a two-layer isentropic spectral model. The
results for this model have shown the method to be
both efficient and accurate. A few adjoint calculations,
each involving a similar amount of computation as
would be required for solving once the tangent linear
of the original model, sufficed to obtain sensitivities of
a blocking index to all the relevant model parameters
and model states (the total dimension is 3076 in spec-
tral space and 13 828 in grid space). The use of sen-
sitivities of a time-dependent response has been dis-
cussed and illustrated in detail. In this context, the ad-
joint sensitivities accurately predicted the effect of small
variations in the model state and parameters. Relative
sensitivities were used to rank the importance of all
the parameters. The sensitivity of the blocking index
to mountain height was found to be the largest. The
sensitivity analysis in grid space and spectral space has
shown that the significant sensitivities for blocking oc-
cur in some preferred regions and spectral wave bands.

A marked difference between the generalized adjoint
sensitivity analysis presented in this paper and the ad-
Jjoint sensitivity used until now in meteorology consists
in the following two issues.

(a) The response function is not a scalar value but
an operator depending on time and/or space. Due to
this basic difference, more comprehensive expressions
for the sensitivity were obtained.

(b) In our case, the model parameters are taken as
the control variables in addition to the model state
variables, whereas in the case presented by Errico and
Vukicevic (1992), for instance, the model-state vari-
ables are the only control variables. This results in a
more complete tangent linear model with a right-hand
side consisting of the first derivative of the nonlinear
model with respect to the model parameters.

The two-layer isentropic spectral model includes
many aspects found in numerical weather prediction
models. This work has shown that the efficient appli-
cation of the adjoint model to sensitivity analysis is
feasible. The response can be a function of both space
and time. When derived via the adjoint sensitivity for-
malism, the exact expression of the sensitivity of an
operator-type response contains as many adjoint func-
tions as there are nonzero terms in the expansion in
time and space of the indirect term [see (2.17)] and
the response [see (2.24)]. While adjoints of NWP
models are increasingly applied in variational data as-
similation and parameter estimation, the present ap-
plication of the adjoint method to sensitivity analysis
shows that large-scale exhaustive sensitivity analyses
of any 3D NWP models are feasible without any con-
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ceptual difficulties. It is a useful diagnostic tool and
helps explore the physical details of sensitivity. The
generalized adjoint sensitivity analysis is also a useful
tool for synoptic examination and data impact studies,
since it quantifies the antecedent conditions that most
affect a specified forecast aspect. It also helps assess the
reliability of forecasts. In particular, this approach can
help assess reliability of forecasts in data-void versus
data-rich regions, especially if the sensitivity with re-
spect to a response function is found to be larger over
a data-rich region. This will enhance our confidence
in the forecast. All these prove that the generalized
adjoint sensitivity analysis constitutes a useful and
powerful tool for numerical weather prediction.
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APPENDIX A
Description of the Isentropic Two-Layer Model

The isentropic primitive equations can be written as

+ .
é(g-al—f) + V.J =0 (vorticity equation), (A.l)
D yoxy+vi{m+ Y Y)=o0
at 2
(divergence equation), (A.2)
9o +V-(Vo)+ 9(bo) =0 (continuity equation),
at a0
(A.3)
oM
20 = 7 (hydrostatic equation), (A.4)

where { + f—absolute vorticity, or potential vorticity
(PV) per unit volume; J = [u({ + /) + 00v/06 — Fjli
+ [v(¢+ ) — 00u/a6 + F;]j—the flux of PV per unit
volume due to advective, diabatic and frictional effects;
m = Cy(p/po)—the Exner function; M = = + gz—
the Montgomery potential; ¢ = —g~'dp/df6—the is-
entropic mass density; and F = F;i + F; j—the local
friction force per unit mass.

As a direct consequence of (A.1), “PV substance”,
that is, the amount of PV per unit volume, can neither
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be created nor destroyed in an isentropic layer except
where that layer intersects a boundary. The PV sub-
stance is simply concentrated within that layer by ad-
vective, diabatic, and friction forces (Haynes and
Mclntyre 1987).

For simplicity, the nonlinearity in the relationship
between ¢ and M is eliminated by making the Bous-
sinesq approximation. This is done by noting that

9z,
0= Pg >

% (A.5)

where

C,/R
_ o (m\" oo
pa—Roo(Cp) =G (A6)

are the density and height in an isentropic atmosphere
with potential temperature 6,. Assuming p, = po = po/
R, gives

(A7)

After the Boussinesq approximation, (A.3) becomes

0 (0w on 0 (. 0n
- — V.[V— —180—1=0. (A.
6[(60)+ ( 60)+60(060) 0. (A8)

The fluid system to be studied consists of two layers
of constant potential temperature on a rotating sphere.
The subscripts 1 and 2 are used to denote the lower
and upper layers, respectively, and 1/, 3/», and 5/ the
surface, layer interface, and upper boundary, respec-
tively. The boundary conditions are taken as

fs/2 = 01,2 = 0. (A9)

The condition (A.9) means that there is no mass ex-
change through the upper and lower boundaries. In
addition, the upper boundary is assumed to be a free
surface so that ws,, = constant. Therefore, the conti-
nuity equation (A.8) in the upper layer becomes an
equation for the layer interface pressure 73,5.

Using the hydrostatic equation, dr/dz = —g/8, it
can be shown that 0M/9z = w86 /0z. Therefore, M can
change only in the vertical when # changes, and so is
independent of height within each layer. The horizontal
momentum equations then require that # and v (hence
¢ and D) must remain independent of height within
each layer if they are initially so. The dynamics of each
layer is then similar to that of a shallow-water model.

By the definition of M at the surface, we then have
M, = 78, + gz, (A.10)

where z, is the topographic height. Integrating the hy-
drostatic equation across the layer interface results in

M2 = M] + 7l'3/2A0 = 01(A7r| + A?Fz + 71'5/2)

+ gz, + AB(Ams + ws2). (A.11)
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Using (A.10) and (A.11) and following the discret-
ization scheme of Hsu and Arakawa (1990) for the
vertical advection terms appearing in J, the discretized
equations (A.1) and (A.2), and (A.8) can be written
as

Ly Vg, BO1=0,  (A12)
oD, 1
= VU= B 4]+ VA M+ 5 (il + 0D) | = 0,
(A.13)
OAT;
atﬂ + V- [(uAmy, veAmy)]
—1)%0
D A, k=12, (Al4)
Al
where
93/2(A‘ﬂ'1 + Aﬂ'z)
A= w(§G+ f) + 22T 2T
k= w($e + 1) 2A0DT,
. O
X('Dz_vl)_ aV’ — Uk, (A15a)
Tdrag
B _ B30(Am; + Amy)
B =v (S + 1) 2A0AT,
. O
X(UZ—U1)+ oV — U (AISb)
Tdrag
Ay = Tpoyy2 = 12, (A.15¢)
A0 =6,—6,. (A.154d)

Here, we have parameterized the frictional force F using
a linear mechanical damping applied in the lower layer
only (to simulate surface drag), and a hyperdiffusion
in both layers (to contrpl the enstrophy cascade).
The diabatic heating 63, is parameterized as a New-
tonian relaxation toward an equilibrium interface Ex-
ner function .. Therefore, for k = 2, (A.14) becomes

0
_7;/2 + V- [(uAm;, v:A7)]
9 —-
= 22 (Amy + Am) =202 (A16)
Af 7 diab
Thus, the diabatic heating at the interface is
. - Af
by = —Te— Ta2) (A.17)

Taiab( Ay + Amy)’

implying that mass can be transferred between the
layers.

The prognostic equations (A.12)-(A.14), together
with the diagnostic relations (A.10), (A.11), (A.15),
and (A.17), are integrated numerically in spherical ge-
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ometry using a spectral transform technique similar to
that described by Browning et al. (1989). Spherical
harmonic basis functions with triangular truncation,
truncated at wavenumber 31, and a semi-implicit time
integration scheme with a time step of 45 min are used.
The semi-implicit scheme requires that the layer thick-
ness Aw be split into a horizontally uniform reference
state Aw and a horizontally varying part Az":

Ar = A7 + Ax, (A.18)
where
571’1 = Cp — Mmid»

Amy = Tmig — Ts/2,
1
Tmid = E (Cp + ﬂ'top)-

The divergence equation (A.13) and the continuity
equation (A.14) are then written as

oDy
— 4+ V- [(—By, A
Y [(—Bx, Ax)]
l
+ V2 gzs+5(ui+vi) + VM, =0, (A.19)
AAT] _
6_[” + V'[(ukAﬂ',k, U/\-A’Ir;\»)] + ATka
¢~ TWmi — A}
= (—nk T Tmia 7 22 (A 20)
Tdiab
k=1,2

All dependent variables are expressed in terms of a
spherical harmonic representation of the form

J J
Fi(o, )= 2 2 Fa(0)Y4, (A21)
I=—=J n=|l|

where J = 31 and the spherical harmonics Y, are given
by
Y (¢, A) = Pi(sing)e™, (A.22)

where P!, are the associated Legendre polynomials.
The spectral form of the model equations (A.12),
(A.19), and (A.20) is

dSin,
a;} F = Ay + 81(1) S (A.23)
dab; ...
dll:n,/\ = B[,n,k + al(n)Dl,n,k + Bz(n)MQ,,,,k, (A24)
dAT) _
Z;tl’ £ = Cppk = Dipp ATk, (A.25)

where A, represents the spectral coefficient of all
terms except the diffusion term in (A.12), B, , 4 the
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spectral coefficient of all terms except the diffusion and
V2M' terms in (A.19), C;.x the spectral coefficient of
all terms except the Aw D, term in (A.20), and

v/2
5,(n) = —a[%} _ (A26a)
5y = — ”(Lafi) (A.26b)

The last terms on the left-hand side of (A.24) and
(A.25) are responsible for gravity-wave propagation
and are treated implicitly using the Crank-Nicholson
time-differencing scheme, while the other terms are
treated explicitly using the leapfrog scheme. The vor-
ticity equation (A.23) is integrated explicitly using the
leapfrog scheme. A weak time filter is applied to all
three prognostic equations to damp the computational
mode.

The parameters settings used here are

0, = 280 K,
6, = 320 K,
Po = 1000 mb,
Ziop = 10% m,
Tsi2 = ¢, — gz—:op ,
v=12,
Tarag = O days,

Tdiab — 15 days,

where o is chosen so that the smallest resolvable scale
is damped within an e-folding time scale of 3 h. The
topographic height and equilibrium interface Exner
function are given by

zy = 4ho(p? — u*) sin2),
Te = Tmia — 5 T Cp — Tmia) COS20(sin26 + 2),

where p = sing, hy = 2000 m, mmia = 2(C, + 75,2),
and s = 0.75.

APPENDIX B

Numerical Aspects of the Sensitivity Analysis:
Mathematical Expression for the Components
of the Matrix Q

From (A.23)-(A.25) we can derive an expression
for the matrix Q as follows: '

aA[,n,k T
SO BTN

’ aTdrag
0A4 : Ox
SR (AL, B} = S €
aTdrag T drag
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Al = — ——v,, A4*=0
T drag
B?mg: . u, Bgrag:() (Bl)
T drag
B OBy i T
) LITe
; ink _ _{V, [(_Bgrag’ Agrag)]}l,n,k = 21\1 D
Tdrag T drag
(B.2)
0P, =0 (8:3)
aAl,n,k 8
QZ7diab = (. N aTd' b > " .)
0A; i i i
Lk — (V. [(Af, BdRY ],
aTdiab h
. 63 z(A‘n’] + Aﬂ-Z)
A(‘!1ab = 32277 7 7R -0
k 27qanbIAT, (2= )
‘ 032(Am, + Amy) |
Bc!lab - - B.4
g 2TdiabA0A7rk ( Uy U ) ( )
aB/,n,k g
oD, = (. ) O diab o .)
0B, .« i i )
p) LK = (V- [(—BE®, AP®)] Y (B.S)
T diab
aC‘/,n,k §
O -+, 22, )
OC; .k [ k Te — Tmig = AT)
nk o (—p)k Te T Tmia T A7) (B.6)
O diab 7 diab Lnk
0A; n i T
Qz,ﬂz(. -, )
0A; i
Lk = — (V- [(AF*, BE)) ik
67rﬁ
693/2 Amy + Am,
Afp = TOA0AR, (2T
k Omg  2A0Aw (2 =00
6@3/2 Amy + Amy
Bf=-———-= o
i dm; 260Am, (2T
0mg  Tagiab(AT) + Am) .
_ aB/,n,k T
o, =+ 2Bt )
0B, . i
= (V- [(~BE, AR s (BB)

67'{"3
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9C i T
671'5 ’

QP,, = ( ..,

agl,n,k — {(_l)k Mﬂ’_ﬁ)} (B.9)
g Tdiab Ink
QZho = 0 (BIO)
9C ni )T
Dy = [+ 00, =25 ...
Q ho ( aho
C, nx of , 9%
L L v/ =
6h0 [ (g 6h0> ]I,n,k
%:4( 2 — u*y sin2\ (B.11)
ohy K TH '
QPho = O (B12)
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