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Abstract

A new partly-implicit time-differencing scheme is applicd to the non-linear shallow-water equations on a
limited-arca domain, employing a semi-momentum space-differencing scheme. Numerical integration is
performed with time steps 2,5 times as large as the greatest allowed for by the CFL (COURANT, FRIEDRICHS
and LEVY)- criterion for the leapfrog explicit scheme. It is shown that an unconditionally stable scheme can
be obtained by coupling implicitly the continuity cquation and one of the momentum equations. Numcrical
experiments with the barotropic cquations arc performed both in a channel and in combination with coarse-
mesh data, using the partly implicit schemc with well-posed boundary conditions. Integral invariants of the
shallow-watcr equations are conserved well during the numerical integrations and it is found that the simula-
tion of the process of geostrophic adjustment is more realistic when this partly-implicit scheme is used.

Zusammenfassung. Anwendung eines neuen teil-impliziten zeitlichen Differenzen-Verfahrens zur Losung der
»Flachwasser-Gleichungen*

Ein neues teilweise implizites zeitliches Differenzenverfahren wird auf dic nichtlincaren Gleichungen fiir eine
barotrope Fliissigkeit (Flachwasser-Gleichungen) fiir cin begrenztes Gebict angewandt, Dabei wird als rdum-
liches Differenzschema das Semi-Momentum-Verfahren benutzt. Dic numerische Integration crfolgt mit Zeit-
schritten, die 2,5 mal so grof$ sind wie dic grofiten Schritte, dic das CFL (COURANT, FRIEDRICHS und
LEVY) - Kriterium fiir das explizite ‘“Leap Frog” — Verfahren crlaubt, Die Arbeit zeigt, dafd sich ein unbe-
dingt stabiles Schema ergibt, wenn man dic Kontinuitatsgleichung und cine der Bewegungsgleichungen
implizit koppelt. Numerische Experimente mit den barotropen Gleichungen werden sowohl in cinem Kanal als
auch in Kombination mit eincm grobmaschigen Gitter durchgefiihrt, wobei das teilweise implizite Verfahren
mit konsistenten Randbedingungen benutzt wird. Pic integralen Invarianten der Flachwasser-Gleichungen
bleiben wihrend der numerischen Integration mit guter Genauigkeit erhalten, und cs stellt sich heraus, daf$ dic
Simulation des Prozesses der geostrophischen Anpassung realistischer verlduft, wenn dicses teilweise implizite
Verfahren verwendet wird.

Résumé: Application d’un nouveau schéma de différentiation temporelle particllement implicite pour
résoudre les equations en eau peu profonde.

Un nouveau schéma de différentiation temporelle particllement implicite cst appliqué aux équations non
linéaires en cau peu profonde sur un domaine daire limitée, en utilisant un schéma de différentiation spatiale
appliqué particllement aux quantités de mouvement, L’intégration numérique est cffectuée avec des pas
temporels 2,5 fois plus grands que lc maximum acceptable d’apres le critére de COURANT-FRIEDRICHS-LEVY
dans le schéma explicite ,,leap-frog*. On montre qu’un schéma inconditionnellement stable peut €tre obtenu cn
couplant implicitement 1’équation de continuité et 'une des équations du mouvement. On exécute les
expéricnces numériques avec les équations barotropes, dans un canal ct en combinaison avec un réscau a
grandes mailles, en employant le schéma particllement implicite avec des conditions aux limites bien poséces.
Les invariants intégraux des équations cn cau peu profonde se conservent avee une bonne précision durant
Iintégration numériquc ¢t on trouve que la simulation du processus d’ajustement géostrophique est plus

réaliste quand ce schéma particllement implicite st utilisé.
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1 Introduction

During the last few years a number of investigators have devoted considerable attention to
implicit-time integration schemes. In explicit-time difference approximations applied to the primitive
equations the time step is restricted by a maximum value depending on the inverse velocity of the mo
rapid wave solutions, i.c. the fast gravity-wave solutions. In contrast the use of implicit-time schemes
stable integrations of the primitive equations possible with only little restriction on the time step. Fur
more, implicit-time schemes can be formulated with built.in selective damping, thus alleviating the nop,
linear instability problem.
KURIHARA (1965) and MARCHUK (1965, 1974) have extensively investigated several implicit-time

differencing schemes. GUSTAFSSON (1975) used an alternating-direction implicit (ADI) method for t
shallow-water equations, solving the resulting non-linear algebraic equations by a quasi-Newton methoqg
whereas FATRWEATHER and NAVON (1977) propose a ne

w linear economical ADI method based on
perturbation of a CRANK-NICOLSON-type discretization.

KWITZAK (1970) and KWITZAK and ROBERT (1971) used a semi-im

only the terms representing the gravitational modes were treated jm
term was treated explicitly.

plicit time-integration Scheme, i ¢
plicitly, while the advective non-lj

Economical explicit-integration schemes have been proposed by MAGAZENKOV et al. (1971), SHUM‘A;_
(1971) and SHUMAN et al. (1972). These schemes permit the use of a time step having twice the value
that used in the leap-frog scheme. GApD (1974) and MESINGER (1974, 1976) proposed similar econ
explicit-integration schemes, SCHOENSTADT and WILLIAMS (1976) showed that the presence of a mes

given in Section 2, where the numerijcal procedure is also described.
analysis, both of the partly implicit scheme and an unconditionally
of two test calculations are given in Section 4, demonstrating the st

scheme alleviates to 3 certain extent the process of

geostrophic adjustment time scale retardation inherent in implicit schemes.

2 Equations and Numerical Procedure

a) The shallow-water equations

du__ou _ ég+fv %
ot Yax Vg ax
du__ v av o ap
ot "ox Vo ~fu dy
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where

= gh the geopotential

= the acceleration of gravity

the Coriolis paramcter

the eastward component of the wind

the northward component of the wind

h = the height of the free surface of the fluid above sea-level.

H

< g o o
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b) The partly-implicit scheme
Let Ay, Ay and Ay denote the discretized right-hand sides of equation (1). The partly-implicit
scheme is then written as

n+l __ ,n _ n . n  n+1i
Oy 0y = At Ag(uy, vy, ¢

ij

i

n+l_ n _ n+1 n+1i n+1
Vij vij-—AtAV(uij JVig s B3

where wi; corresponds to the values assumed by w on a rectangular grid at the point (iAx, jAy, nAt) where

ij
i,j, n are integers and w stands for u, v or ¢.

More explicitly, using the semi-momentum finite-difference scheme of SHUMAN and STACKPOLE (1968)
we can specify Ag, Ay and A, as

Y TR * ) xy
Ag=— [(u(ru MO WM R )y}
D D Y i h  aen Y ]
Ay =- [u(n b tv Uy + oy -f v ] ®)
1 Xy ( +1)y n+1xy (n71 X ( +lx —~xy"—‘—+ Xy Xy
A‘,=—[u(n ) m +v vy ) +o" ) 4f D }
where the following basic finite-difference operators were used:
Fo=(F(a+3A0)+F(a—3Aq)/2
4)
F, = (F(a+ Aaf2)—F(a— Aaf2))/Aa
while multiple superscripts have the following meaning:
o
Fee = (o) )

where « stands for x and y.
The following spacial distribution of the dependent variables ¢, u, v was adopted (see Figure 1):
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1 Introduction

During the last few years a number of investigators have devoted considerable attention to
implicit-time integration schemes. In explicit-time difference approximations applied to the primitive
equations the time step is restricted by a maximum value depending on the inverse velocity of the mog
rapid wave solutions, i.e. the fast gravity-wave solutions. In contrast the use of implicit-time schemes m
stable integrations of the primitive equations possible with only little restriction on the time step. Furt
more, implicit-time schemes can be formulated with built-in selective damping, thus alleviating the nop
linear instability problem. .

KURIHARA (1965) and MARCHUK (1965, 1974) have extensively investigated several implicit-time
differencing schemes. GUSTAFSSON ( 1975) used an alternating-direction implicit (ADI) method for the
shallow-water equations, solving the resulting non-linear algebraic equations by a quasi-Newton method
whereas FAIRWEATHER and NAVON ( 1977) propose a new linear economical ADI method based ona
perturbation of a CRANK-NICOLSON-type discretization.

KWITZAK (1970) and KWITZAK and ROBERT (1971) used a semi-implicit time-integration scheme, i.

only the terms representing the gravitational modes were treated implicitly, while the advective non-lin
term was treated explicitly.

Economical explicit-integration schemes have been proposed by MAGAZENKOV et al. (1971), SHUMA
(1971) and SHUMAN et al. (1972). These schemes permit the use of a time step having twice the value
that used in the leap-frog scheme. GADD (1974) and MESINGER (1974, 1976) proposed similar econom
explicit-integration schemes. SCHOENSTADT and WILLIAMS (1976) showed that the presence of a mean
flow reduces the increase in the time step achieved by the use of the SHUMAN -technique. :
In the present paper a new partly-implicit time-integration scheme is proposed. The equations used ar
given in Section 2, where the numerical procedure is also described. Section 3 provides a linear stability,
analysis, both of the partly implicit scheme and an unconditionally stable scheme. The numerical result
of two test calculations are given in Section 4, demonstrating the stability of the method and its abili
control non-linear instabilities and to conserve linearized integral invariants of the shallow-water equa

A linearized frequency analysis shows that this scheme alleviates to a certain extent the process of
geostrophic adjustment time scale retardation inherent in implicit schemes.

2 Equations and Numerical Procedure

a) The shallow-water equations

We consider the equations of a barotropic fluid in two space dimensions, using a local coordin";
system with the positive x-axis pointing east and the positive y-axis north
du___du _ du d¢

0 v -

at . Yoax Yoy ax

u__ v v
ot “ax oy oy

9p__0(gu) _3(¢v)

t 0x oy
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where

= gh the geopotential

= the acceleration of gravity

= the Coriolis parameter

the eastward component of the wind

the northward component of the wind

= the height of the free surface of the fluid above sea-level.
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b) The partly-implicit scheme

Let Ay, Ay and Ay denote the discretized right-hand sides of equation (1). The partly-implicit

scheme is then written as

n+1 _

= +1
¢~ i At Ay, v, o T

n+1

RS | B n+l _n n+1
uj; uij—AtAu(uij Vi @)

1

n+l__ _n _ n+1 n+1 n+1
Vij vij—AtAV(uij s Vi ,d)ij

where wﬁ corresponds to the values assumed by w on a rectangular grid at the point (iAx, jAy, nAt) where

i, j, n are integers and w stands for u, v or ¢.

2

More explicitly, using the semi-momentum finite-difference scheme of SHUMAN and STACKPOLE (1968)

we can specify Ay, A, and A, as

I T Ty Xy
Ag=—[@™ gm0y L S
o= =@M RN 7 gD Ty

Xy

Yy

Au:-—[u(n+l)x u£n+l) Y+R;)—xy @Tl)_x.;_(;(;n**;)—y—f‘xy v(—n)xy']

Xy

Av=——l:u(n+1) > V§n+1) Y +Vn+1XY v§“+1) x+¢§,"+’)x+?_xyu(“+l)xy:|
where the following basic finite-difference operators were used:
F®=(F(a+3;A0) + Fla—iA)2

Fo = (F(a+ Aaf2) —F(a— Aa/2))/Ax

while multiple superscripts have the following meaning:

. — (¢4
F Qo _ (F 04)
where & stands for x and y.

The following spacial distribution of the dependent variables ¢, u, v was adopted (see Figure 1):
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© Figure 1 Spatial distribution of the
dependent variables on a square grid.

® Bild 1 Riumliche Verteilung der ab-
hingigen Variablen auf dem benutzten
quadratischen Gitter

corresponding to scheme C of ARAKAWA (1977), WINNINGHOF
of the implicitly-treated terms, as well as the choice of the spati
with a view to a realistic simulation of the process of geostrophi
confirmed by a subsequent frequency analysis.

For the sake of simplicity of notation and to avoid a number of tehnicalities the sir

scheme of secondorder accuracy will be used for
and d,i.e.

F (1968). The rather unconventional ¢
al distribution of the variables, was may
¢ adjustment. That is an advantage wag

mplest space differ_ef1
specifying space derivatives in Ag, Ay and A,in Sec

a —
éﬁ = Doxujj = (uf, 1T 1)) QAx) !+ 0(Ax?)

ou -
—@:DOYUU = (U, T o) QAy)! +0(4y?).

¢} Linearization procedure

The advective non-linear term in the mome
solution of non-linear systems of algebraic equation
nonlinear advective term s obtained via a backw
(1967, p. 203).

The space finite-difference approxim

ntum equations imposes upon discretization the
s. To avoid solving such systems, a linear analogue
ard Taylor-series projection (see RICHTMYER and MORTON

ation to the implicit non-linear advective term is expressed as
n+1

n+1 @ —, n+1 n+l_ A+l .n+1 _ n+i — 1
i <8x g oo Dox Uy ™ "= uj (AR Uily, ) axyt.

Taking the first term of the product and Taylor-projecting it about the time level nAt, we have

- 1 +1
ujj” uin+li:1_1§j_u?+l,j+é_t_un<gg>" LA, <@> roar)
20x 28k 28x W\t )y, T 2Ax Vit i\

ij
or using

<g?u) =(uf*! —uj)/At
ij
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and inserting the corresponding values in (8) we obtain

n n+1
uiju“'l’j n .n+1 n+1. n n.n
A 'v(uijui“,j L HEL A ~uijui+1’j)/2Ax. (10)

The same procedure is applied to the second term of (7).

d) Generalized linearization procedure

If we have a system of equations implicitly coupled as in Section 3b a general linearization procedure
was proposed by BRILEY and MCDONALD (1975, 1977), BEAM and WARNING (1976) and by STEGER and
KUTLER (1977).

Writing the shallow-water equations in the form

. 0
Se= A G Cw ()

where w is the vector

w=(u,v, ) (12)
and
®=2+/¢ (13) ”
while A, B and C are the matrices given by ;
[w 0 ®/2] v 0 0
A=1 0 u 0 B=10 v P/2
o2 0 u | 0 ®2 v
(14) “’
[ o f 0 ] .
C=| -f 0 0
0 o 0 | ‘fy
Taylor series linearizations are introduced by
n
A= A <§é> W —wh)+o(at?)
ow
n (15)
B"*l=p"4 (—B—E) (Wi —w™y ¢ 0(At?)
ow
wl _ ow ow .
viiere A and B stand for A % and Bé;‘ and the matrices 9A/3dw and 9B/dw are standard Jacobians and
W is the vector defined by Equation (12).
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e) Iterative improvement of the linearizationprocedure

The values obtained using the linearization procedure can be improved using the following
iterative algorithm due to VON ROSENBERG (1969):

¢r.1.+1 __¢r.1'+1

ij, m+1 i, 0 =—yht! D ¢n+] .+l D n+1

Y ihmPox®i jme 1 T Vi m Doydjm 4y

—4n+1 n+1 :-__n+1 n+1

955, m+1Doxt 1 5,5, m+1DoyVi i m

n+1 _..n+1

Lj,m+1" Y0 — 0 .n+1 “n+1 n+1 n+1
At = ui,j,m+1Dox(ui,j,m)""i,j,mDoyui,j,m+1

r n+1 _ n+1

+fVi,_i,m D0X¢i,j,m+l

n+1 n+1

Vi . -y

Li,n+1 L1,0 . Doyt t1 _on+1 Doy (70+1
At Lim+1Pox Vi m+1 7 Vi jm+1 0y (Vi j'm

—fn+1 — n+1

fui,j,rn-l—l DOY¢i,j,m+l

where the m-subscript denotes the iteration count and (") denotes a linearized value.
Also

n+1_n_n+1_,n,n+1__n
Yisi 0 TUL 5 Vig 0 T Vi, B g0 = 6 (1

The iteration is continued until

n+1 _..n+1
M m e — UG <ew
n+1 I T ) -
Wi me1 ~Vigml<ev

n+1 _4n+1

P55 me 1 =P m <
h — - ~-1 —_ 2 -2
where €, =€, = 107" m/sec and €5 = 1.m?sec™ 2.

It was found that generally one iteration was sufficient in our case to satisfy (17).

f) Accuracy

scheme can be modified by staggering the velocity and the geopotential half a time step apart in time,
while the linearized advective terms must be treated as proposed by STEPPELER (1975) by retaining an
additional term in the Taylor backward series linearization procedure.
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g) Method of solution

Upon performing the time and space discretizations, linear systems of finite- dlfference equations
aro obtained for ¢3* !, ufi* ! and v} * . We shall detail the solution procedure for 955", the procedures for

Yand vi *1 being similar.

After the time and space discretization of the continuity equation in (3) one obtains

+1 n+1 n+1
¢:} ¢u+31¢1+1J+1+a2¢,]+1+d3¢1_1,j+1+b1¢

i+t1, ]
1+ 1 n+1 (18)
bz‘]ﬁj +b3¢1_11+01¢1+1 1~1+02¢,J—_1+C3¢1 1,j-1 =0
where
_T NTEXYY - JPEXYY 4 GXXY 4 XY (n)
al - 16 ( lrl v ux Vy )
a, = : (2vxxyy +ﬁxyy +"7XXY)(")
Y =XXYY TEXYY 4 XYY 4 XXy )(n)
as =7-(—2u +2v u vy
b, Z (2uxxyy + uxyy +-‘7xxy)(“)
8
- Y XYy o —XXYy (n)
b2 —Z(ﬁx +Vy ) (19)
b = ;;7‘ (= 2T+ Y 4y (™
¢ = =T (QUYY 4 2FFYY 4 Y +VXXY)(n)
16
c = 7 —OVXRYY 4 xyy +~—xxy)(ﬂ)
8
Y — — — - (n)
¢ =g (= 2U%YY — Ry 4 Y 4 V;XY)
and
At
Y= A, 0
] with
l As= Ax = Ay. ©3))
Assuming a rectangular domain of sides MAx and NAy a block- -tridiagonal coeff1c1ent matrix is obtained
when the unknown vector

Xij, i=1,..., My, j=1, ..., Ny

: is ordered as

T
L {X1,13"'9XMx)1’X1,2n"'stx,2’---9X1,Nya”'stxNy!} . (22)
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and is block-diagonaﬂy dominant, it is permissible to use the successive block-overrelaxation scheme
(CUTHILL and VARGA (1959), BENSON and Evans (1972)).

The optimal block-overrelaxation factor Wp was derived from the minmax expression by CUTHILL ap

relative accuracy test of 1.1074 was valid on the solution vector between successive iterations.

3 Stability Analysis

a) Stability analysis of the partly-implicit scheme
A necessary condition for the stability of the non-linear dicretized shallow-water equations
that the linearized version of the disturbance equations should be stable.

From Equation (1) a system of linearized perturbation equations is derived, using the following
assumptions:

¢$=¢+¢" u=U+u vy E;3%>=—FU

where ¢ is the mean geopotential of the atmosphere as 2 function of y, fis a constant, U is a basijc
constant zonal wind and u’, v’ and ¢" are perturbation quantities assumed independent of y.

The products of perturbation quantities and their derivaties are neglected. We also have that

EJLLU:@Q:_@:O
ot dx dy ox gt :

Upon dropping the primes, the linearized equations are

du u . 3¢

ot T U Vo
ov av _

ot +Uax+fu—0

9% 09 ;- 0u

tUS ~fUv==§

ot ox’

Harmonic perturbations for u, v, ¢ are assumed, of the form

F = Fgelk(x—ct)

transforms the function E(t) into F(t + At), i.e.
F(t+At) = XF(1)

and also
F(t—At)y=X"1F(1).

X is identical with the amplification factor,
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obtain

(X“l
At

+ UX

Ax

isinkAx) 3 isinkAx

g% ~ Dok F = (F(x + Ax) + F(x ~ Ax)) (2Ax) !
- A

XAtl ¢,i} + Uy sinkAx 1smk X ¢u —fU ' 3 mnkAx

Z(Z;_t_l + Uy inkAx 1smkAx n — ! n ' Xgr_l_k/lx ¢

X-1 isinkAx n_

—Xt“ + UX ——— Ax + Xfuij =Q.

Ax —fu

Note also that the application to (26) of a centered space-difference operator results in

Inserting these expressions into Equation (25) and applying the partly-implicit scheme, we have

Upon requiring the determinant of Equation (30) to vanish for non-trivial solutions of ¢,uand v, we

isinkAx X~1 isinkAx
= —f -
KB (e xR 0
X~—1 isinkAx
0 Xf <At + UX Ax >

X~—1  isinkAx ) 21 1yp2 iSiNKAX 2 (X—1 | isinkAx
< Al + Ax UX| —f*UX Ax + Xf ( AL + Ax UX)
—sin’kAx (X ~—1 isinkAx ) _
+Xo NG ( At T Ax UX )=0.

ForU=0und f =0, (32) reduces to
1 — AP
— (X- 1)[(X— 1Y +¢ AnE sin* kAx Xj|= 0

with the roots X; = 1 and

2

¢ At
| IR INE

— AP P AL
in?kAx * / =— sin’kA ( in?kAx — >
sin ‘ ¢ NG 1 X AA sin“kAx — 1

yielding the stability condition (i.e. |X|< 1):
Voq<a

| For other small values of U and f the stability condition remains about the same.
-~ Note that the improvement over the two-dimensional explicit leap-frog scheme is 24/2.

(29)

(30)

(€2))

fixpansion of the determinant (31) yields the following cubic equation in the amplification factor X:

(32)

(34)

(33)
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b) A proposed absolutely stable time-differencing scheme

Taking into account the structure of the shallow-water equations, we show here that in orde;
obtain an absolutely stable time-differencing scheme it is sufficient to couple implicitly two out of thy

cquations constituting the system of shallow-water €quations: viz the continuity equation and one of
momentum equations,

Let us couple implicitly u and ¢.
‘ The proposed scheme is then written as

n+1 _ .n _ n+1 n n+1
b5 ¢ij”AtA</>(Uij s Vigs B3

n+1 _ o n _ 4, n+1 n ,n+1i
] uij——AlAu(ul-j Vi i)

n+1 __ n _ n+1 n+1 n+1
Vij Vij = AtAv(uij Vi ¢ij ).

The same semi-momentum space discretization as in Equation (3) applies here.

Let u$ now perform a stability analysis of this scheme by considering again the perturbed linearized ‘
Equation (15) and implicitly coupling u and é.

By using the same procedure as in Section 3(a) we obtain

X—1 sinkAx ., isinkAx
X-1 . isinkAx e SinkAx
AL ij+UXTuij~fvi'}+1XT 3—0
XA—;J VI +UX ‘—SZ{AX VA + Xful = 0,

Again requiring the determinant of Equation (37) to vanish for non-trivial solutions of ®,u and v we

obtaijn
o) e
x@%{éﬁ (%‘—HUX“ZIX&) ~f =0
0 Xf | < %:J +UX %)

Expansion of the determinant (38) yields the following cubic cquation in the amplification factor X:

X-1 isinkAx\ sin®kAx X-1 isinkAx
(At + UX Ax ) fUXT +fX(T+UXT)

.2 _ ..
+X2531n kAx (X 1 isinkAx X)=O.

——— +
Ax? At Ax
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For f=0and U=0, (39) simplifies to

L -1 BX-1Y-+X2¢§§;shﬁkAx] (40)
{he roots of which are X; = 1 and
1+i l@% sin?kAx
X2,3 = Al ’ (41)
1+¢ Z;—z— sin“kAx .
ie. IXl= = At21 . (42)
1/,1 +¢ o sin?kAx
At?

As¢ sin’kAx is always positive, we obtain |X|< 1, i.e. unconditional stability.

Ax2
For small values of U and f the unconditional stability is preserved. The algebraic manipulation is
cumbersome and will not be reproduced here.

The result obtained is due to a property of the shallow-water equations shown most clearly when they
are written in the form given by Equation (11).

Note that only (u, ) are coupled in the x-direction, whereas only (v, ) are coupled in the y-direction.
Preparations are in progress for numerical experiments with this scheme.

The stability calculations derived in this Section serve only as indicators for the full non-lincar shallow-
water equations. A similar stability analysis can be performed for a (v, ®) implicit coupling using a
modified linearized version of the shallow-water equations.

¢} Frequency analysis of the partly implicit scheme

Considering again the system of linearized shallow-water Equations (25) and applying to it the
partly implicit scheme, and assuming ¢, u and v to be represented by

F - Foeik(x - Ct)

(43)
one finds
F(t+At)—F(t) , OF
xS @
Using Equation (43) we obtain
oF .
Y ikcF (45)
but
Ft+At)—F(t) ¢ (ikeat)
A = F. (46)
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Combining the results we have

. - e‘*lkCAt — 1
ikcFS' = ( At ) F
ie.
, 1 . e—-ikcAt
T kAt
2 sin K41
IS'I=\/§V1~COSkCAt _ 2 <1
kcAt kcAt ’
Also

F(t+At)=c'F(1)

¢=evikeAt oy

Applying those operators to the linearized Equations (25) one obtains

,a¢ 1a¢ —du

S P + Uc 3y fOv + ax—O
. ou , du , 09
Sat + Uc ox fv+cax =0
' v ' Qv "o
Sat+Ucax+fcu 0.

so that by denoting by Ce the phase speed of the computed physical modes we obtain
ik(Uc'~S'Co) ¢ + ikpu — fUv = 0 ‘

ikc'e — fv + ik (Uc' ~ SCHu=0
fe'u +ik(Uc' -~ S'C.v =0

Expanding the determinant of the coefficients of the above equations (which must vanish for a solutior
we have a cubic frequency equation for the computed phase velocities. Assumung ¢ >> (Uc' — S'C )%
obtain the approximate root for the metcorological mode given by ,

, 3 U _ U
SCCI - 1 f2¢' 1 f2
4 C =
k2c¢'¢p k2¢

Next, by assuming C, >>U (and neglecting the term ikf2 ¢'? U) we obtain the two approximate root
the gravitational mode which are

' ’ - f2¢ ' 1= 2\
S'Cepy = U % 1/c5+ 55 = e £/ (¢+i;) .

292



we compared our results with the true phase velocities given by

/~a t 4 U
¢; =U+279/ = cos <~—+~Tr>% 2

3 3 °3 1+—f
‘ /—a t i '
c2 =U+2'11 T3 c0sy ~U+]/¢: Tz (56)

where

1
2 2 S 42t )P
a=~’};-2‘ “?(b,b:"“f—’g t = tan 1[—&&— ] (57)

(sec THOMPSON (1961), KURIHARA (1965)), and with the semi-implicit computed phase velocities which
are

! 12 f2
Co (T gy 0 SCaa =U2)e7 4 69

!

(see KWITZAK (1970)). ¢'(semiimplicit) = cosk CoAt.

It was found that for the meteorological mode the ratio of the partly-implicit computed mode to the true
mode is 1.

The semi-implicit scheme on the contrary accelerates the meteorological mode.

For the gravitational waves there is a certain deceleration over the true phase speeds but this is considerably
less than the corresponding decleration caused by using the semi-implicit time differencing scheme.

This Ieads to the conclusion that the proposed partly-implicit time-differencing scheme can be useful in
simulating the geostrophic adjustment process.

A similar conclusion was reached by JANJIC and WIIN-NIELSEN (1977) who state that unless very short

‘f’ time-steps are employed, the semi-implicit scheme is not adequate for simulating the process of geostrophic
. adjustment. Experiments by MCPHERSON and KISTLER (1973) also verified the delayed damping of the

3 pravity waves by the semi-implicit scheme.

4 Numerical Results

a) Computations with coarse-mesh data

A limited-area integration was performed u sing time-dependent boundary values derived from
coarse-mesh model data defined on a rectangular of grid 22 X 30 points. The space increment of the
coarse-mesh model was Ax = Ay =400 km and the initial conditions of Section 4(b) were used.

The limited-area integration region was a rectangular domain with dimensions 4400 km X 6000 km,

with Ax = Ay = 200 km, contained within the coarse-mesh domain.

Noting that the shallow-water equations constitute a hyperbolic system, the number of boundary
conditions to be prescribed at a given point of the limited-area boundary should equal the number of
characteristics passing into the region at that boundary point. In this experiment the boundary
conditions adopted were those applied by ELVIUS and SUNDSTROM (1972) and which have been shown
by OLIGER and SUNDSTROM (1977) to be well-posed. 293
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The boundary conditions are that both the value of the combination
Vo 2\/‘}:

and the value of Vtang are specified at inflow points of the boundary (v, < 0), while only the value of
Van = 2V§ is specified at the outflow points of the boundary (v, > 0). A time-step of At = 2700 s was
used. The initial height field and the height fields at different times are shown in Figures 2 to S.

the total energy and the mean height
> and are an indication of the well-posedness of the boundary conditio

b) Two space-dimensional channel Computations ,
We use the initial condition employed by GRAMMELTVEDT (1969) describing a westerly jet ﬂqg;
with north-south perturbations of different wavelenghts and amplitudes al 3

This initial condition was also employed by GUSTAFSSON (1971) and FAIRWEATHER and NAVON ( 19'
and thus provides a basis for comparison.

The initidl height field is

9(D/2 - 9(D/2 -
h(xa Y):I"Io +I'11 tanh (*(“/5*-12-> +stech2 (%J) . 2ux ]

=(§>§h
v f/ox-

The dimensions of the channel were

L=4400km and D = 6000 km
and the following constant values were adopted:

Ho = 2000 m, H; =220m, H, =133 m,

g=10msec™?, f= 1074 sec’ !, f=15X 10°1t sec’! m™!

where

- D
=1+ ——
f=f+p (y 5 )
is the Corioljs parameter.
The scheme was run with the resolution
Ax = Ay =200 km

and a time step of At = 3600 sec.
Periodic boundary conditions were assumed in the x direction

ux,y, t)= u(x+1L,y, t)
VLY, ) =v(x+L,y, 1) ‘ (64)

294




WIS IST [[EAISIUTUSINIUOY SB(] "}91qe5) 91ZuaISeq Sep Inf oYoH Iep plejsSuejuy 7 piid e
"W QS AI9A3 UMEID OIE SINOJUOD) "UTRWIOP BOIe POYIWN] 10§ Ploty 1ySIey U] ¢ oSty e

002

0002

008!

008!

1 1 1 1 ! 1 i i L !

Wy 002=V O ¥NOH LHOI3H

295




feURYQeIez uoa unzinuog 1ojun SUSTURIIOA U0}

Q;

STIPPOW uaSiyosewqod sap ao«moavcnd ;
9JTTH jrwt owmmHGSHO\/.COﬁGSpm YT € pug

1ZIdun ostomiro) sop

ooz

0oo0le

|
|
|

Wy002=v 2 HnoH LH9I3H

296



297

U 8y 1My yoopal ‘c piig I I\ b plid @
Y 8 103 Inq ‘¢ oInSrJ U SB oWes O], $ oIy @

] 1 1 i 1 1 i I_

wx002=v 8P YNOH LHOI3H




U TL M3 yo0paf ‘¢ piig ur opp ¢ Pig o
U TL 103109 ‘¢ amSyg UL Se swes oy, ¢ Aandiy o

T T I ] T

T

0ooi2

0002

0061

081

WY002=7 2. ¥NOH 1H9!3H

298



1 1 I ] 1 i 1 1 1 o

0 8 16 24 32 40 48 56 64 72
t (hours)
Figure 6 Total encrgy as a function of time for the limited-area domain (relative units). |
9 Bild 6 Gesamte Energie in Abhiingigkeit von der Zeit fiir das begrenzte Gebiet in relativen Einheiten §
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® Figure 7 Mean height as a function of time for the limited-area domain (relative units).

* Bild 7 Mittlere Hohe in Abhingigkeit von der Zeit fiir das begrenzte Gebiet in relativen Einheiten,
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f

and the single boundary condition

v(x,0,t)= v, D, t)=0

in the y direction. Note that no boundary conditions are necessary for u and ¢ at y=0,D.
Using those boundary conditions, the energy

L D

1 2 2 ) :

E W® +v? + ¢) pdxdy (5@-'

00 ’ 5

is independent of time (GUSTAFSSON (1971)). )

As may be gathered from Table I, ap almost perfect conservation of the tota] energy and mean height’%
obtained after a 48-hour integration, !

Table I Mean height and tota] energy using the partly-implicit scheme for 48-hoyr
forecast

Tabelle 1 Mittlere Héhe und gesamte Energie wie sie sich beij Benutzung des teilweise impliziten
Verfahrens fiir eine 48 Stunden—Vorhersage ergeben.

Total energy at different Integration timeg
(given by subscript in hours)

Ey = 5.616926 E + 20

Eyy = 5.617429 E + 29
E4g = 5.617067 E + 20

Mean height at differcnt integration times
(given by subscript in hours)

ho =2000m

hys =1999.98 ;m
hqg = 199999 m

dimensional channe] computation using the partly-implicit scheme with At = 3600 sec, while Figure 1
shows the height field after 48 hours using the GUSTAFSSON (1971) QN3 (M = 6) method with

At =3600 sec. and with the same inita] and boundary conditions. The results are very similar and sho;
that for short-range forecasts the partly-implicit scheme performs satisfactorily.

5 Conclusions

Numerica] experimentation g required to test the proposed absolutely stable time differencing schem
with the ful] non-linear barotropic mode] €quations.
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