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A transfer function analysis is used to analyze the Turkel-Zwas explicit large time step 
scheme applied to the shallow-water equations. The transfer function concept leads to insight 
into the behavior of this discretization scheme in terms of comparison between continuous 
and discrete amplitude, phase, and group velocity coefficients. The dependence of the 
distortion increases with the increase in the time-step size taken for the Turkel-Zwas 
scheme, which depends on the ratio between a coarse and a tine mesh. A comparison with 
earlier results of Schoenstadt (Naval Post-Graduate School Report NPS-53-79-001, 1978 
(unpublished)) shows the Turkel-Zwas scheme to give reasonable results up to time steps 
three times larger than the CFL limit. 0 1989 Academic Press, Inc. 

1. IN~~oDLJCTI~N 

The transfer function approach introduced by Schoenstadt [7,8] has been used 
by him to study the behavior of the semi-discrete shallow water equations dis- 
cretized with different staggered and unstaggered finite-difference grid arrangements 
for dispersion and geostrophic adjustment properties. 

The use of the transfer function approach leads to important insights into the dif- 
ferences caused by various discretization schemes, differences that do not directly 
emerge from phase propagation considerations alone. 

In the present paper we apply the transfer function approach to the Turkel-Zwas 
explicit large time-step scheme for the shallow-water (S-W) equations (Navon and 
de Villiers, [6]). 

This scheme proposes treating terms associated with the fast gravity inertia waves 
on a coarser grid (but to a higher accuracy) than the terms associated with the slow 
Rossby waves. The relationship between the coarse and tine meshes is an integer 
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p > 1, thus allowing with little additional work time steps nearly p times larger than 
those allowed by the usual explicit stability criteria for the shallow water equations. 

The particular model we shall use is based on the linearized l-dimensional 
shallow water equations model without mean flow, which is the same model used 
by Schoenstadt [8], Arakawa and Lamb [l] and others. 

Our analysis of the Turkel-Zwas discretization of space derivatives will study the 
effect of transients introduced by the particular discretization used and their effects 
for different coarse-to-fine mesh ratios in comparison with the differential case. In 
the next section we first present the salient features of the Turkel-Zwas scheme as 
applied by Navon and de Villiers [6] in the Cartesian P-plane case of the S-W 
equations (see Appendix B for definitions). In Section 3 we detail the transfer 
function analysis of the semi-discrete, finite-difference Turkel-Zwas scheme as well 
as that of the (continuous) differential case, and the amplitude coefficients of the 
discretized approximate filters are derived. 

In Section 4 the numerical and graphical results of the transfer function analysis 
of the Turkel-Zwas scheme are compared to the transfer functions analysis of the 
differential model in as far as amplitude coefficients of the discretized approximate 
filters, phase, and group velocities. The effect of distortion between the continuous 
and discrete case for various wavelengths and time steps determined by the coarse- 
to-line mesh ratio p and their implications for numerical modeling will be also 
discussed. In Section 5 the process of geostrophic adjustment (Haltiner and 
Williams [4, pp. 45-521) (see also Appendix B) for the Turkel-Zwas scheme will be 
discussed. 

Finally in Section 6 some topics of further research are discussed. 

2. THE TURKEL-ZWAS EXPLICIT LARGE TIME STEP SCHEME 
FOR THE SHALLOW-WATER EQUATIONS 

We shall deal only with the Cartesian case of the shallow-water equations in a 
channel on a rotating earth, i.e., 

24, + uu, + vu, + gh, - fv = 0, 

v,+uv,+vv,+gh,+fu=o, (1) 
h, + (hu), + (hv), = 0, 

where u and v are the velocity components in the x and y directions, respectively; 
f is the Coriolis parameter given by the /?-plane approximation 

f =~+P(Y-D/2), (2) 
where D is the width of the channel with p and p constants, h is the depth of the 
fluid, and g is the acceleration of gravity. Here 0 <x <L, 0 < y <D, t 2 0, where L 
is the length of the channel. For a description of the boundary conditions see 
Navon and Riphagen [22]. 
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The Turkel-Zwas scheme, which is a space-splitting scheme takes the form of the 
following generalized leapfrog method (see [9 ; 61) 

u:,i"= 24;;’ -A u;j(u~+,,j-u~- 
I 

l,j)+"Zj(u;j+I-u;j-l) 
L 

-!I~-,~) +2Atf (l-a)v:j+~(u~+P,j-~~PP,j 1 [ 
v;i' '= V;J'- u;j(v~+l,j-v;~l,j)+o",j(v;j+l-v;j-l) 

+$ (j",j+p -htj-,,) 1 [ -2 Atf (1 -a) Uyj+i (U;j+p-U;j-p 

(3) 

U”,j(hl+,,j-hl_,,j)+V;j(h;j+,-h;j~1) 

where 

u; j = u(i Ax, j Ay, n At), I,=d’=d’ 
Ax Ay’ 

and p > 1 is an integer which defines the relationship between the coarse mesh on 
which terms associated with the inertia-gravity waves are treated and the fine mesh 
on which terms associated with the slow Rossby waves are discretized. 

It has been proven (see Navon and de Villers, [6]) that the stability criterion for 
this scheme is 

d’< 1 

Ax’ I4 + I4 + JmP 
(4) 

and, since for typical atmospheric conditions, 

&%>(lul + Ivl), (5) 

one can use time steps nearly p times larger than allowed by the CFL condition for 
the usual explicit leapfrog scheme. 

In (3) we use a = f, which gives a compact fourth-order accurate finite-difference 
approximation for the terms of the coarse mesh (see [6]). 

The Turkel-Zwas scheme has been applied by Turkel and Zwas [9] on both 
Cartesian and spherical grids while Navon and devilliers [6] have applied it to a 
real data hemispheric barotropic model with constraint restoration. Jespersen [S] 
has applied a similar scheme. As this method is the counterpart of the split-explicit 
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method of Gadd [2; 31 there is considerable interest to study its impact on the 
geostrophic adjustment process in the S-W equations as well as to be able to 
assess the effect of this discretization on the amplitude and phase distortion 
characteristics. 

3. A TRANSFER-FUNCTION ANALYSIS OF THE TURKEL-ZWAS SCHEME 
APPLIED TO THE SHALLOW-WATER EQUATIONS 

We will use here the transfer function approach applied to the linearized, 
l-dimensional shallow-water equations with no mean flow, in an infinite region 

g-fv+g$O, 

g+ fu=O, 

ah al+Hg=o, 

(6) 

where u denotes the perturbation velocity in the x direction, u the perturbation 
velocity normal to the x direction, H and h the mean and perturbed heights of the 
free surface, respectively, g the acceleration of gravity, and f the Coriolis parameter. 

For the continuous analysis we will refer to the results of Schoenstadt [7; 81. 

3.1. The Transfer Function Analysis of the Turkel-Zwas Scheme 

The discrete form of the Turkel-Zwas scheme is 

aui 
z=-&(hi+,-hi-p)+f (l-~)ui+q(~i+p+ui-~) 1 9 

aui 
at= -f”i, 

ah. -H 
7&=2pdx t”i+pAui--p)* 

If we Fourier transform this system using 

s 
+CO 

u(x + Ax, t) emikx dx = eikdxii(k, t), 
-a’ 

where we denote Fourier transforms by an overlying hat we obtain 

(7) 

aa -8 h(k, t)[eikpAx _ e-ikpA* -=- 
at 2p Ax 

I+f~[(l-~)+~(eikPA”+e-ikPAx I] (9) 
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or 

afi 
df=&X(k, t)2isinkpdx+ji?[(l-cr)+o!coskpdx] 

Finally, the Fourier transformed system is 

a&i- 
at - -igor;, +fpe,, 

C%Ti ar= -fii, 

c?hi 
at= -iHati,, 

where 

fS= 
sin kp Ax 

PAX ’ 

2+coskpAx 
P= 3 * 

While (10) refers to a general ~1, (13) assumes a = f. Let 

= ivt e 

by substituting (14) into (11) we obtain 

iutio - pfio + igah, = 0, 

fiio + iv??, = 0, 

iHd,, + id, = 0. 

(11) 

(12) 

(13) 

(14) 

(15) 

By solving the determinant of (15) we obtain three eigenvalues 

v=o (16) 

and 

v= +JpTxgT. (17) 

By an eigenvalue/eigenvector approach, we get the eigenvectors corresponding to 
these eigenvalues. 
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It is easy to see that 

- ifP - 2~2 (14, + ipft, + gal;,) e- iy’, 

h =f> h _ ipfHa ^ - u. - (vii, - ipfi?, - goho) 2 eiv’ 
2v2 O v2 

(18) 

+ $ (~22, + ipffi, + go&) eCiy’, 

where r&,, 8,, and ho are the Fourier transforms of the initial condition, 

v=f&Tm (19) 

A2 = gH/f* = L;, (20) 

where I-L, is the Rossby radius of deformation (see, e.g., [4, pp. 45-521 and 
Appendix B). 

Collecting terms we find, finally, 

ri=G,cosv*+-tTosinvt-E Pf ho sin vt, 
V V 

1 gHa* 
fi +@I;,-fpli sinvt+p2fZB cosvt u=JT- 0 v2 v 0 

v* O 

ibwf - - v2 h,, cos vt, (21) 

so that Eq. (21) tends to Eq. (11) in Schoenstadt [7]. 
Each transform field can be written as the sum of a steady-state part (denoted by 

s subscript) and a transient part, see [4, p. 493. In this case the steady part is 
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The steady-state solution in the continuous case is given by (see [7]) 

ii, = 0, 

1 I H f2 hs=ho-ff,+k2gH &[~o+o]a 

(22) 

(23) 

Comparison of (21) and (19) with the continuous differential case (see [S]) 
shows that the main changes of the Turkel-Zwas semi-discretization are: 

1. The filter coeficients l/v, k/v, and k2/v2 are replaced respectively by p/v, 
u/v, and c2/v2. 

2. The filter coefficient l/v2 is replaced by p2/v2 except in one case where we 
have p/v2. 

3. The filter coefficient k/v2 is replaced by pa/v2 except in one case where we 
have a/v2. 

4. The phase velocity f ,/m/k is replaced by f JpT-;z’iT;z/k. 

Note that 02/v2 and p2/v2 are squares of filter coefficients and will not be plotted. 
In order to get the semi-discrete steady-state solution in the physical space we 

have to calculate inverse transforms. It is useful for this purpose to employ the 
convolution theorem which may be written 

& l:m ~(K)d(k)ei’xdk=[+m F(x’)G(x-x’)dx, 
a3 -co 

where E and G are the transforms of F and G. 
It is easily shown that 

(24) 

~l;o-pBo=f - 
{ 

g h(x + p Ax, 0) - h(x - PAX, 0) 
.f 2p Ax 

+(x,0)-~[u(x+pAx,O)+u(x-pAx,O)] (25) 
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where 9 denotes the Fourier transform. Let 

gh(x+pAx,O)-h(x-pAx,O) -- 
f 2p Ax (26) 

denote the initial geostrophic departure analog for the Turkel-Zwas scheme (i.e., 
the departure from geostrophic balance) defined analytically as 

d(x, r)=u(x, t)-gf-‘$x, 1). (27) 

Thus if we can invert ia/(p + 1%~~) and l/(p +IZ2a2) (see Appendix A), then the 
steady-state solution would be available by convolution, 

%(X1 = 0, (28) 

u,(x)=o(x,O)-PAX f se 
--BII~nP~xl/~ 1 1 e -Lw~P~xl/J. 

d(x - 2np Ax, 0), 
n= -cc sinht, 8+2-e sinht, 1 

(29) 

h,(x)=h(x,o)-y =E {’ 

--8112n~Axlll e-i3212~~A~ll~ 

-e + 2-8 I 
d(x - 2np Ax, 0), (30) 

n a, 

where 

and tr, t2 are given in Appendix A. 
Clearly (28~(30) tend to the corresponding steady-state solution given by (13) 

in [7] as Ax + 0. 
The effect of the Turkel-Zwas discretization on the process of geostrophic adjust- 

ment is similar to the one obtained by Schoenstadt [7; 81 and Haltiner and 
Williams [4], i.e., 

(a) The geostrophic departure d(x, t) is converted to a finite-difference 
measure which depends on the coarse-to-fine mesh ratio p. 

(b) The transient disturbances due to initial imbalances, which excite short- 
wave gravity waves propagating away from the initial region of imbalance, die off 
exponentially away from the initial region neighborhood. The rate of such decay is 
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smaller than in the differential case. The rate of decay decreases as (~x)~/A~ 
increases. If the initial imbalance has a scale that is small in comparison with the 
scale of the region, the geostrophic adjustment process operates very efficiently. 
When those scales are comparable, the fields will oscillate for some time. 

The final state depends on (L/n)*. When the scale of the initial field L is small 
compared to the Rossby radius of deformation, L, the final state is determined by 
the rotational part of the initial wind field, wheras when L > L, the final state is 
determined by the initial pressure (mass field) (see also Appendix B). 

4. DISCUSSION OF NUMERICAL RESULTS 

In Figs. la-le the amplitude coefficients of the filter of the continuous differential 
model are displayed. As the solutions are band-limited to the region 

where k is the wavenumber, we display the results as a function kd/n where 
d = dx = h; i.e., the scale starts at long wave numbers and ends up at the shortest 
resolvable wave k = n/d or kd/n = 1. Since the filter coefficients determine how the 
energy in the initial disturbance is partitioned into the transient and steady-state 
fields, then the degree to which discrete filter coefficients resemble the continuous 
ones can be viewed as an indicator of the degree to which a particular discretization 
accurately portrays the continuous model energy distribution. 

The degree of discrepancy between continuous and corresponding discrete coef- 
ficients should be construed as representing a distortion between the continuous 
and discrete solutions. The amplitude distortion in system (21) is governed in each 
term by one of the three factors l/v, k/v, or k2/v2. The terms with coefficient kJv 
have their high frequencies least affected (high-pass filter) the terms with coefficient 
l/v have their low frequencies least affected (low-pass filter), and those with coef- 
ficient k/v* have their frequencies in some middle range least affected (band-pass 
filter). 
In the following table we list the filter weights for the Turkel-Zwas scheme as well 
as the continuous case. 

Scheme 

Continuous 

Turkel-Zwas p 

Notation a P 0 

E 1 1 k 

TZP 1 
2+cospk Ax sin kp Ax 

3 PAX 

581/81/2-4 



a / 

! 6 
1 

P 
V 

5- 

4- 

3, 

LEGEND 
q =E 
0 = T.Z. P=l 
a = T.Z. ?=2 
+ = T.Z. P=3 
x = T.Z. P=4 
0 = T.Z. P=5 

-1 I / I I 1  I I I / 
0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

K*D/PI 

LEGEND 
q =E 
0 = T.Z. P=l 
A = T.Z. P=2 
+ = T.Z. P=3 
x = T.Z. P=4 
0 = T.Z. P=5 

-1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

K*D/PI 

FIG. 1. (a) The amplitude coefficient p/v for the unstaggered Turkel-Zwas scheme for coarse/tine 
mesh ration p = 1 to p = 5 as well as the differential case as a function of kd/n. (b) Same as (a) but 
for amplitude coefficient u/v (low-pass filter). (c) Same as (a) but for amplitude coefficient u/v* (band- 
pass filter). (d) Same as (a) but for amplitude coeficient p/v*. (e) Same as (a) but for amplitude 
coefficient pu/v*. 
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C 
7-  

6-  

5-  

0 

"2 4-  

LEGEND 
q =E 
0 = T.Z. P=l 
A = T.Z. P=Z 
+ = T.Z. P=3 
x = T.Z. P=4 
0 = T.Z. P=5 

d 

-1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

K*D/PI 

-1 I I I I I I I 1  I I 
0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

K*D/PI 

FIG. l-Continued. 
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e 
‘1 

LEGiND 
q =E 
o = T.Z. P=l 
c. = T.Z. P=2 
+ = T.Z. P=3 
x = T.Z. P=4 
0 = T.Z. P=5 

-14 I I , I I I 1  I I t 
0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

KID/PI 

FIG. I-Continued. 

The phase speed in these notations is given by 

(33) 

The group velocity dv/dk can be computed easily as 

dv -f (dpldk + A*a(dc/dk))a - (p + A*o*)(do/dk) 
z- a’&TZT 

(34) 

Results for these schemes appear in Schoenstadt [S]. Figures 2a and b show the 
phase velocity and group velocity for the differential case respectively. 

In Fig. la we also display the variation of p/v for the Turkel-Zwas scheme on an 
A-grid (see, e.g., [ 1, p. 1811 and Appendix B) with coarse-to-fine mesh ratiop varying 
from 1 to 5 for a range of wave numbers starting with long wavelengths and ending 
with the shortest resolvable wavelength. Compared to the A2 case of [8], we get 
better results (i.e., less departure from the continuous filter) for the case p = 2, while 
the case p = 3 behaves like the second-order finite difference approximation of 
A-grid (A2). 

The same can be said for Fig. lb where we get better results than A2 for p = 2 
and comparable results for p = 3 for a/v. The deterioration always occurs at shorter 
wavelength scales. 



-11 

6 

b 7- 

dv 
--ii- 

LEGEND 
q =E 
0 = T.Z. P=l 

-1 I I I I / / , I 
0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

K*D/PI 

6- 

s- 

4-  

LEGEND 
q =E 
0 = T.Z. P=l 
A = T.Z. P=2 
+ = T.Z. P=3 
x = T.Z. P=4 
0 = T.Z. P=5 

, , , I I I I / 7  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

K*D/PI 

FIG. 2. (a) The phase velocity c = v/k for the Turkel-Zwas scheme with different coarse/fine mesh 
ratios p = 1, . . . . 5 (i.e., different time steps) as a function of kd/n, displayed against the differential 
solution of the phase velocity. (b) Group velocity dv/dk as a function of kd/n for the differential case. 
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For (T/V’ (Fig. lc), we again observe similar results to A2 for p = 2, but worse 
results than A2 for the Turkel-Zwas scheme with p = 3. 

Figure Id depicts the evolution of the amplitude coefficient p/v’. Again worse 
results than A2 occur for a coarse/line mesh ratio of p 2 3. 

Figure le depicts the evolution of the amplitude coefficient pa/v2 for a range of 
wave numbers starting with long wavelengths. Results equivalent to A2 occur for 
a coarse/fine mesh ratio up to p = 3. 

Figure 2a shows the phase v/k for the continuous coarse as well as for the 
second-order finite-difference Turkel-Zwas scheme with different p ratios. The case 
with p = 2 is similar to the A2 case while the cases for p = 3 to p = 5 show an early 
departure (i.e., occuring at longer wavelengths) from the continuous case but 
continue to show a rather acceptable behavior. 

Figure 2b depicts the group velocity dv/dk for the continuous case as well as for 
the second-order finite-difference Turkel-Zwas scheme with different p ratios. Again 
the case p = 2 is similar to the A2 case while for higher p ratios a more oscillatory 
behavior is observed and the departure from the continuous case occurs at longer 
wavelengths as a function of increasing p. 

To summarize, the phase velocities are less than the differential value and the 
error is largest for the shortest resolvable wave (p = n/d) and for the high values 
of p, mainly for p > 3. 

The group velocities are also too slow for the short waves and tend to become 
spuriously negative for p b 2, becoming more oscillatory for increasing values of p. 
Since the energy propagates with the group velocity our result means that short 
waves will propagate energy in the wrong direction giving a noisy forecast. A non- 
linear normal mode initialization (see [4, pp. 377-3851) can alleviate this problem. 

Gravity-inertia short waves may arise from geostropic adjustment after initializa- 
tion, from small-scale heating, from nonlinear interactions, or from mountain 
effects. 

As shown by Schoenstadt [8] and Arakawa and Lamb [ 11, the short-wave 
structure will be better simulated by staggered-grid arrangements of the dependent 
variables, in particular, by schemes B or C of Arakawa (see [ 1, p. 1811). To obtain 
similar small-scale short-wave structure with the unstaggered grid scheme A, a 
smaller grid size is required as well as additional smoothing. Our results for the 
Turkel-Zwas scheme show that reasonable results are obtained up to p = 3 using 
the Turkel-Zwas scheme with an unstaggered grid arrangement (the Arakawa A 
scheme). 

5. GEOSTROPHIC ADJUSTMENT FOR THE TURKEL-ZWAS SCHEME 

In the atmosphere a geostrophic balance exists between the Coriolis force and the 
pressure gradient force when the atmosphere is modeled by the meteorological 
primitive equations of which the shallow-water equations are a particular case. This 
balance is contained in a dispersive wave equation. 
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If imbalances occur in the initial conditions, the atmosphere modeled by the 
primitive equations reacts to the imperfect initial conditions by the dipersive wave 
mechanism and moves toward a geostrophic balance in a process referred to as 
geostrophic adjustment (see Appendix B). 

In fact, this adjustment process operates continually to keep the atmosphere in 
a state of approximate geostrophic balance. 

The steady-state solution Eq. (22) for the Turkel-Zwas scheme represents a 
distortion in a state of geostrophic balance with a new frequency given by Eq. (19) 
to be compared to the differential frequency 

v = (f* + k*hH)“* (35) 

as obtained in [7]. 

6. CONCLUSIONS 

We have used a transfer function approach to examine the shallow-water 
equations discretized by the second-order unstaggered space-splitting Turkel-Zwas 
scheme which allows the use of time-steps larger than those permitted by the CFL 

condition. 
The results show that for coarse-to-tine mesh ratios of up to p = 3, we obtain 

results similar to second-order finite difference scheme A results given in [7 ; 83, 
pointing to the fact that we can use the Turkel-Zwas scheme with time steps up to 
three times larger than the explicit CFL condition allows. The results point out dis- 
tortions in the process of geostrophic adjustment which increase with increasing p. 
The results of this l-dimensional analysis also show (see Fig. 2b) that the 
Turkel-Zwas scheme for p = 3 suffers a reversal in group velocity for kd/x > 0.3. 
These problems can be alleviated by either using a Shapiro filter to control the 
amplitude of short waves near the Nyquist cutoff or by periodic application of a 
non-linear normal mode initialization procedure (see Haltiner and Williams [4, 
pp. 392, 3773; Navon [21], Navon and de Villiers [6]). For Fig. 2b, this would 
imply a larger region of filtering outside the Nyquist cutoff region. As mentioned in 
Appendix B, in the 2-dimensional case this problem will be alleviated due to the 
faster geostrophic adjustment. 

The results obtained in [6] show that in practice, for the 2-dimensional non- 
linear shallow-water equations, the case p = 3 is still useful. This is due to several 
reasons such as two dimensionality, “a posterior? enforcement of the integral 
invariants conservation, and the use of the Shapiro filter. 

Further research should consider extending the transfer functions analysis to the 
2-dimensional shallow-water problem. 

The process of geostrophic adjustment is known to work faster in a 2-dimen- 
sional domain because the gravity-waves spread their energy into a much larger 
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region during the same time period (see Appendix B). One can also consider the 
Turkel-Zwas scheme with p > 1 for staggered grid arrangement of the dependent 
variables, i.e., the C scheme of Arakawa and Lamb [ 11. 

APPENDIX A 

Here we obtain the inverse Fourier transform of ia/(p + A2a2) and l/(p + ,I*o*). 
Following Schoenstadt [7] let us now consider: 

1 
5 I 

+m @x 
-& --m p+l*a* (Al) 

where 

P= 
2+coskpAx 

3 ’ 

I* = gH/j-*, 

W) 

(A3) 

644) 

The denominator given by 

sin’ kp Ax 

is an entire function of k in the complex plane. The zeros of Y are now more 
complicated than in [7] and satisfy the equation 

1+e 
coskpAx=-- 

25 ’ 
046) 

where 

Let 

o=ymmjTT, (A7) 

5 = 3(1/p Ax)*. (A81 

k = k, + ik,, (A9) 

so we have 

1+0 
cos(k, + iki) p Ax = L 

25 * 
(AlO) 
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And by separating real and imaginary parts we obtain 

293 

1+e 
cosk,pAxcosik,pAx-sink,pAxsinikipAx=- 

29 
(All) 

which can be written 

cosk,pAxcoshkipAx-isink,pAxsinhkipAx= 
1+e 
z = real. 

2 
6412) 

Thus 

Solving (A 13 ) yields 

or 

1+e 
cosk,pAxcoshk,pAx=-= 

25 ’ 
sin k, p Ax sinh ki p Ax = 0. 

k, = Ann/p Ax 

ki = 0. (~415) 

By substituting in the first equation of (A13) we obtain 

1+0 
coshk,pAx=(-l)“-=- 

2 
(AT 

or 

1+0 
cosk,pAx== 

2 . 
(A17) 

The only possible solutions of (A16)-(A17) are 

k;= f- l Cl 
PAX 

(n even), 

k;= f& 
PAX 

(n odd), 

6418) 

6413) 

(A141 
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1+8 4, =cosh-‘- 
2r ’ 

6-l 
&=cosh-I---. 

2r 

(A19) 

Thus all the zeros of the denominator lie off the real axis. However, the poles are 
not of the same imaginary part as in [7]. 

Since arc cash z is an even function, the poles are located as follows: 

. . 

. . 
-in ~.k? 
. . 
. . 

. k, 

. . . . . 

. .  .  .  l 

.  .  .  .  

271 -* 77 2: 

.  .  .  .  ,  

.  .  .  .  l 

7xrors of q(k) 

. L j&l 

. . &it2 
. 

3: 47~ k, 

. . -1 
PG (2 

. . &Cl 

At its zeros, it can be shown that all the zeros are simple and, moreover, 

Y’(k) = y sin h<, (n even), 

6420) 
ip Ax(2 - 19) 

Y’(k)= 3 sin ht2 (n odd). 

Consider the integral in Eq. (Al) which is an even function of x. Let x > 0. To 
ensure Re(ikx) ~0, we will need Im(k) >O, i.e., we will close the contour in the 
Im(k) > 0 half plane. 

As long as we route the contour in the Im(k) > 0 half plane to avoid all the poles, 
the integrand is exponentially decaying as lkl + co. By using the residue theorem 
for x>O, we obtain 

1 
ii 

+m eikxdk -i 
-co p+12a2 c R+g2) 

Im(k) B 0 
(A21 1 

where 
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fi=k:+ikl given by (A18) 

3 1 =- 
p Ax 8 sinh r1 

e --xtd~Ax 

6422) 

e2ninxlp Ax 
’ (~23) 

In a similar fashion, 

1 + CO ioeikx & 
-=i 1 ia eiLx 

271 -cc p+A2a2 Im(k)zO !F(R) ’ 

e-x(52-inY~Ax 

+ 
2-8 (~24) 

n= -al 

The summations in Equations (A23)-(A24) are not a convergent series in the usual 
sense. These series can be viewed as the Fourier series for the function S(x), 
periodic of period p Ax and given in the interval 

-PAx<~<PAx 
2 2 

by 

qx) = f Cne2ninklpAx, c,= 1. 
-cc 

But 

Thus 

S(t) = p Ax d(t) 

and its periodic extension becomes 

S(x) = p Ax +f 6(x - 2np Ax). 
-02 

(A25) 

V-1 

Vn. (~27) 

W8) 

(~29) 
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Thus, finally, 

1 e ~XSllPAX 1 

= 5 sinhc, +2-d (A30) 

Similarly, 

1 +CC iaeikx 

211 
~ dk 

-cl2 p+A2a2 

+ (~431) 

APPENDIX B 

In this Appendix several concepts pertaining to geophysical fluid dynamics 
referred to in the paper will be defined in order to make the presentation self- 
contained. 

B 1. The b-plane approximation 

The beta-plane approximation has to do with the spatial variation of the Coriolis 
parameterf: If one carries out a stereographic projection of points on the sphere, 
on a plane which is tangent at one of the sphere’s poles, then the expansion of the 
Coriolis term f= 2!J sin !P in terms of the Cartesian stereographic coordinate y 
about y = y,, yields 

f-h+-$v-vo)+ ... =/,+-$(2Gsin Y)(y-yO) 

=s,+2Qcos Y$(y-y,) 

=f0+ 2Qc;s Ycl (y-yo) 

where 

P= 
28 cos Y 

a ’ WI 
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where a is the radius of the earth, L2 the angular velocity of the earth, and Y is the 
latitude. 

Since we treat disturbances of scale L, it is reasonable to restrict the variation of 
f so that 1 y- yOl 6 L. Since in mid-latitudes /?-flu, the second term in (Bl) is 
bounded by 

(B3) 

and, for geophysical applications, L/a - 0.1, so it is consistent to use f = fO, except 
where f is differentiated and then we use Eq. (2). 

The B-plane approximation was recognized by Rossby [17] as being sufficient to 
represent the effect of the variability of the Coriolis parameter. 

B2. Geostrophic Adjustment 
A major observed feature of atmosphere flow is the approximate balance in the 

horizontal plane (normal to gravity) of the Coriolis and pressure-gradient forces. 
The issue of geostrophic adjustment is concerned with the mechanism whereby 

unbalanced lields of geopotential (mass) and momentum (wind) adjust or adapt to 
an ultimate state of geostrophic balance (Rossby [lS], Obukhov [14], Blumen 
[ll], Phillips [1X], Cahn [16]). 

In essence, the process of geostrophic adjustment takes place by means of wave 
propagation from local regions of initial imbalance, leaving behind a steady semi- 
geostrophic balanced flow, where 

(B4) 

h is the height field, and u and v are the zonal and meridional components of the 
velocity field. It has been shown by Cahn [16] that a sudden perturbation caused 
by an addition of momentum will cause the disturbance amplitude (from 
geostrophic balance) to first grow linearly with time, followed by a transition into 
an asymptotic state described by 

as t -+ co. Here f. is the Coriolis parameter assumed constant, t is the time, and &, 
denotes the zeroth-order Bessel function. 

This is due to the fact that the initial imbalance excites short inertia-gravity 
waves that carry energy away from the initial region of imbalance. 
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Cahn [16] has shown that the disturbance energy propagates with the shallow- 
water speed 

c=&Z u36) 

where H is the depth of the fluid and that the preexisting equilibrium state of the 
source region is reestablished in a period T = 2u/c, where 2a characterizes the 
dimensions of the region. 

In two dimensions, Obukhov [14] has shown that the geostrophic adjustment 
solution is having the same qualitative asymptotic behavior as (B5); since the wave 
dispersion is isotropic, the disturbance amplitude 4 tends now to zero as t-i, (i.e., 
faster), as a consequence of the extra degree of freedom, i.e., two dimensions. 

B3. Rossby Radius of Deformation 

The Rossby radius of deformation is basically the horizontal scale at which rota- 
tion effects become as important as buoyancy effects in the rotating fluid called 
atmosphere. At small-length scales compared with the Rossby radius of deforma- 
tion, the adjustment is the same as in a non-rotating fluid system; i.e., the pressure 
gradient is very large and gravity dominates the behavior of the system. For scales 
of length comparable to the Rossby radius of deformation, the Coriolis acceleration 
force becomes just as important as the pressure gradient term and thus rotation 
causes a response of the fluid-markedly different from the non-rotating case; i.e., 
it does not adjust to a state of rest, but rather to a state of geostrophic equilibrium. 
For the atmosphere the Rossby radius of deformation 1= L, is given by 

&-m-m 300 
f f 1.10-4- - = 3.106m = 300 km, 

1o-4 (B7) 

where g is the acceleration of gravity and H is the depth of the fluid (see Gill [ 121, 
Pedlodsky [ 131). 

B4. Staggered-Grid Systems 

Grid-staggering is a procedure whereby discrete variables of different fields are 
located at alternate adjacent grid locations. The A-grid is a grid where all the 
variables are defined at the same grid location. 

Grids B and C refer to different ways of distributing velocity and geopotential 
fields at adjacent grid locations. 

Winninghoff [20] found that simulation of the geostrophic adjustment process 
with a finite difference scheme is highly dependent on the manner in which variables 
are distributed over the grid points. 

For more detailed discussions see Arakawa and Lamb [ 11, Mesinger and 
Arakawa [19], and Haltiner and Williams [4]. 
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