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A Fortran IV computer program is documented,
implementing a Galerkin finite-element method for
solving the non-linear shallow-water equations on a
limited domain. The resulting ordinary differential
equations are integrated using a finite-difference
discretization method in time. A time-extrapolated
Crank—Nicolson numerical integration scheme is
employed to quasi-linearize the non-linear advective
terms. The three equations constituting the shallow-
water equations are coupled at each time step, making
it possible to use larger time steps. The output of the
program includes a line printer plot contouring the
height field. A compact storage scheme is provided in
which advantage has been taken of the sparsity of the
global matrices.

A Gauss-Seidel iterative procedure is employed to
solve the linear systems of algebraic equations at each
time step. Program options include the determination
at each time step of the numerical integration of two
of the integral invariants of the shallow-water
equations.

Stable long-term runs were achieved using a 30-
minute time step.

INTRODUCTION

The shallow-water equations are used in studies of tides
and surface water run-off; they can also be used to study
large-scale waves in the atmosphere and ocean if terms
representing the effects of the earth’s rotation (Coriolis
terms) are included. Galerkin finite-element techniques
have been applied to the shallow-water equations by the
following workers, to cite but a few: Baker!'%, Cullen® "8,
Brebbia and Partridge, Connor and Brebbia®, Smith and
Brebbia®, Wang et al.!® and Hinsman'!. Only very few
finite-element programs, however, have been published
that are aimed at making it possible to practically apply
the method to solve the shallow-water equations.

In the first part of this paper, illustrated by a test
problem, a Galerkin finite-element application to the
system of the shallow-water equations is described.

The second section is devoted to a description of the
finite-difference method employed for the time integ-
ration, the impiementation of boundary conditions in the
finite-element model (fe.m.) and a description of the
different types of element matrices required for assembl-

ing the global matrices. A compact storage scheme is also
briefly described, for which advantage has been taken of
the sparsity of the assembled global coefficient matrices,
and which makes it possible to reduce core storage to a
minimum.

The remainder of the paper contains a detailed de-
scription of the program FESW and specifications for its
use.

DESCRIPTION OF THE MODEL

Shallow-water equations

The shallow-water equations model can be written as
follows:

= +u~—+v—5y+‘x——fv:0 (1a)

(1b)

o)+ 5, (00)=0 (1¢)

t>0

where L and D are the dimensions of a rectangular
domain of area 4=LD.

Here u and v are the velocity components in the x and y
directions respectively; ¢ =gh is the geopotential; & is the
depth of the fluid; g is the acceleration of gravity; and f'is
the Coriolis parameter, required when we consider a fluid
in a rotating frame of reference.

The Coriolis term f'is given by:

f=l+By=D2)  B=; 2)

with fand f§ constants.

Periodic boundary conditions are assumed in the x
direction while in the y direction the boundary condition
is:

vx, 0, ty=vix, D, t)=0 3)
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With these boundary conditions and with the initial
condition:

wix, ¥, 0)=o(x, y) (4)
where
w=(u,r, @) (5)
the total energy
L2
E=;J J (u2+v2+<p)£§dxdy (6)
00

is independent of time.
Also the average value of the height, which is pro-
portional to the total mass:

is independent of time.

Test problem

The test problem used here is the initial height field
condition no. 1 of Grammeltvedt!?:

x, v)=H,+H, tanh (%L/ZD: Y’)

9 D / — 17 i_
+H256Ch2(('"é%"\)>sin<%\> o

The initial velocity fields were derived from the initial
height field using the geostrophic relationship:

ch Ch
u=—(g/f)= , v={(g/f) 5 9)
Cy X
The constants used were
L =4400 km g=10 m/s
D =6000 km H,=2000 m 10
F=10"%s"" H, =220 m (10)
B=15x10""s"'m ' H,=133 m

The time and space increments used were
Ax=Ay=400 km
Ar=1800 s (11)

Formulation of the finite-element model

We approximate the shallow-water equations model
equation (1), by the Galerkin fe.m. The rectangular
domain is subdivided into triangular elements forming a
regular grid.

Linear piecewise polynomial interpolation functions
were employed, to save computing time and also for the
sake of simplicity. Over a given triangular element, cach
variable was represented as a linear sum of the in-
terpolation functions, i.e.
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0, = 2 u il (12)

i1

where ujr) represents the scalar nodal value of the
variable u at the node j of the triangular element, and 1} is
the basis function (interpolation function) which can be
defined by the coordinates of the nodes.

Galerkin’s fe.m. is a particular weighted-residual me-
thod in which the trial functions are the same as the basis
functions used for representing the variables.

For instance, given the system of equations:

L{u)—f=0 X€EA (13)
with the boundary conditions:

Suy=p xe€S (14)

and an approximating function:

N

u= ) wV, (15)

k=1
which satisfies the boundary conditions (14), the residual
e=L{Za,V,)—f (16)
1s orthogonalized with respect to the trial functions V,

A

JJ[L(Zaka)—f]V,.dAzo, i=1,2.....N (I7)

4

and this relationship can also be written:

e, Vi>=0 i=1,2,...,N (18)

The notation of equation (18) defines the inner product.

Relation (18) holds also for an arbitrary subdomain or
clement of the whole domain and we may focus our
attention on individual elements, provided the basis
functions V; guarantee the interelement continuity nec-
essary for the assembly process.

We have a set of equations such as (17) for each element
of the whole domain. The next step in the Galerkin f.e.m. is
to assemble the equation for the whole domain following
well-known assembly rules. The complete system of
equations thus assembled is next solved for the time-
dependent coefficients of the basis functions. The advan-
tage of the Galerkin f.e.m. is that it enables us to proceed
and derive a finite-element model even in the absence of a
classical variational principle.

Let us now start with the continuity equation which is
the first to be solved during a time step.

Writing it following the Galerkin f.e.m. we obtain:

-~

G YO+ G lom VDG on V=0 (19)
ct “X oy

where by the notation of the inner product of each term
with the trial function we mean:

~

Sx, ), Vo= f JJ Ax, y)Vidxdy=J J Sx, )V dxdy

clement global (20)



where M is the number of c¢lements in the integration
domain.

The advection terms in the continuity equation are
usually integrated by parts (using Green’s theorem) to
shift from derivatives of the variable to derivatives of the
basis function. This permits the use of basis functions with
lower-order interelement continuity and often offers a
convenient way of introducing the natural boundary
conditions that must be satisfied on some portion of the
boundary. This integration gives:

av,
dy —(ou), a—‘> +

oo
<a , V>+j(q>uV

D
fovV) | dx—{(ev), (‘;—1;5 =0 (21)

y|0

Taking into account the cyclic boundary conditions in the
x direction and the boundary condition on v, the com-
ponent of velocity in the y direction, the second and fourth
terms of equation (21) vanish.

The final expression for the continuity equation is:

0 av, oV

(G Vo —<lou), a0 oo, 6—y£> =0 (22)

Following the Galerkin fe.m., the momentum equa-
tions (1a) and (1b) are written as:

ou ou Ou 137
<'(§[” Vi>+<u5§, Vi>+<v§j}’ V> —<f, V.'>+<5;, Vi
=0 (23)
v ov ov 0
<5{> Vi>+<ué—;, Vi>+<va—};9 Vio+<{Fu, V>+ <7, V>
=0 (24)

We assume that over an element the same basis functions
V apply for the u, v, @ unknowns, i.e. that:

3
ux= ) ufnv;
ji=1

(25)

3
v Y o)V
j=1

where @ (t), u(t), v/(t) are the time-dependent nodal values
of the varlables @, u, v respectively.

Upon substltutmg these expressions into equations
(22)-(24) one obtains:

0Q; oV, ov;
< J Vjs Vi>_<(pjuijVka “a;>"<¢jkaij, 6—y'>=0

(26)

A A

(7u ov; av;
a V>+<Ukauja Ty

< Vie Vid < V= Vi) —

av
oV Vo + <¢’k§k’, Vi>=0 (27)

P

v, ov; 6V
<(T i V>+<ukaLj p Vi) +<{u V= i LY+

oV
AV, Vi + <<pk‘7y’f, V=0 (28)

IMPLEMENTATION OF THE GALERKIN f.e.m.

Time integration

The time-extrapolated Crank—Nicolson method was
used for integrating in time the system of ordinary
differential equations resulting from the application of the
Galerkin fe.m. to the shallow-water equations model.

In this method, previously used by Douglas and
Dupont'? and Hinsman'!, an average is taken at time
levels N and N+1 of expressions involving space de-
rivatives, while the non-linear advective terms are quasi-
linearized by estimating them at time level N -+ using the
following second-order approximation in time:

oN*Hi=p* = 3pN

N+ O(AL?) (29)

At each time step the shallow-water equations system was
coupled, ie. the solution of each equation after one
iteration at a given time step was used to solve the other
two equations for the same iteration for the same time
step.

Upon introducing time discretization in the continuity
equation (26), which is the first to be solved at a given time
step, one obtains:

@i =V, Vi —

aov;
[<‘Pf“ Ve e . S J

oV,
|:<(pl ;‘kV Vk’ ‘1 >+<(P1LI?V Vks '« >:|=0 (30)

By defining the following matrices:

M=[{VVda

¥ av, C v,
Klz“ VoV dA+JJ ViVt Gida o0
A A
the continuity equation can be written as:

At
- Ki(o] " +0h)=0

M(}™! —o?) 5 (32)

Introducing time discretization in the same way into
the momentum equations (27) and (28), one obtains:
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AR T N YR

Al oV ; oV,
5 (:<ui+ Yk, b;’. Vo + <) tof Vk(T“’, Vi +

n*l“l/ /
(‘o (1 I/>

[(u u;’fV LV v, «I{,j Vi + <ok, V*I‘ V,->:|—

At(foifVi, Vi) =0 (33)

and

<(Ln+1 ")Vj, V. >+

At 1 oa+1 EVJ +1,.% aVJ
— P n - . i ) —L, V.
2[<LJ Uy Vk axv Vl>+<Lj Ui Vk a), 1>+

v
(p:-*-l k V>]
dy

Y1 - . v, OV,
5 [<UjukaFx]a Vi + oot Vr(q}l’ Vi>+<(ka}T9 Vi>:|+

At fl VL, V> =0 (34)
Using the following matrix definitions:
M= J J V,Vda
4
[ v, " v
1<2=JJu;*VkV,. a;d%“ﬁvkvi 4
A
(35)

P,=— J qu;f v,V da

A4

the u-momentum equation becomes:

At
M(uj ™! — )+ LK )+ 5 (K57'+ K50+ AP,
=0 (36)
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while by defining:

i o, i
K3:J UZ?IVI( (;;J’ VldA+JJL2<

4 4

v da
k (’T."

oV
K31=“<pk‘-gi‘VdA

4

(37)

P3—JJ)‘u "y vda
4

The v-momentum equation becomes:

M@t -+

J

At At
5 Ky T+ (KT K )+ AP
=0 (38)

Element matrices

Using linear basis functions over triangular elements
and introducing the well-known natural or area coor-
dinates'* one can obtain exact integrations using the
following formula for area integralslgz

~

J J LiL% L5dxdy =

alblc
(a+b+c+2) (39)

A4

(a, b, c integers), where L{i =1, 2, 3) are the basis functions
for the triangular linear element as well as the natural
coordinate variables.

The natural coordinates in terms of the Cartesian
coordinates for a given triangle are:

1
Ly —(a;y+bx+c,)

i=1,2,3
34 i=l1, 2, (40)
where
1 Xy Yy
24= |1 X, Y2l =2area of triangle 1-2, -3) (41)
1 X3 V3
a;= V= Vi, bi=x,—x;, =XV —vy; (42)
for instance
ay=y2—Vs, by=x3-x, ¢ =x,3—X3), (43)
i, j, k cyclically permuted (i, j, k=1, 2, 3).
The derivatives of the shape functions L; are:
oL; b, oL .
i CioS ioy2,3 (44)

ox 24° &y 24

There are basically four types of element (3 x 3) matrices
required in the Galerkin fe.m. of the shallow-water
equations, as follows:



AN

(@) M=JJ VVdA  ij=1,23 45)
A

The integration formula (39) yields:

B 211
A
JJ vvaa=Slt 2 (46)
y P12
- e OV,
v, f
(®) JJ V.Vida or J J Ve @)
A A

The use of integration formula (39) in conjunction with
equation (44) yields, for instance,

roov, b, b, b,
JJVka—di=JJV,‘2—AdA=2A~-6~ﬂ——6 (48)
A A
ie.
b, b, b
“V W"dA-l b1 b2 b3 49
|[naat=glpe & ) @
bl 2 b3

" ov.; C ov,

(©) J J Vb, 52 VA or J J Vi, 5LV (50)
A A

where p; stands for either uj, v; or ¢;.

For instance

nn a N

v, b,
JJVkpja—xf VdA= JJ Vib; 2% VA
A A
1 s
2 1 | 2 1 1
1 A ]
2 L1 2

(51)
o av, C T v,
) “ ViV S ldA or JJ Vil g da (52)
A A
For instance

([ v, ob,
JJ VipiVs Gy dA= JJ VipiVisgdA=

A4 A

bif& A 4
24 > Tz'Pj"’ng

j¥k
i=1

n

(2p,+p2+p3)by (2py+p2+p3)by (2pi+p,+Ppi)bs

=34 (p1+2p,+p)by (py+2p,+p3)by, (P +2p,+p3)bs
(py+p2+2p3)by (Pr+p2+2p3)by  (py+pa+2p3)bs

(53)

Implementation of the boundary conditions

After the assembly process we obtain a global N x N
matrix K, and the system of linear equations to be solved
has the form:

K X R
(nxn) (nx1) (nx1) (54)
In order to implement boundary conditions in the
Galerkin fe.m. we have here adopted an approach
suggested by Payne and Irons'® and mentioned by
Huebner!’. This approach consists in modifying the
diagonal terms of K associated with the specified nodal
variables by multiplying each term by a large number, say
10! (chosen by consideration of the significant number of
digits for the given computer and the size of the field
variables), while the corresponding term in R is replaced
by the specified nodal variable multiplied by the same
large factor times the corresponding diagonal term. The
procedure is repeated until all prescribed boundary nodal
variables have been treated.

After having made these modifications one can then
proceed to solve the set of equations using the modified
matrix K and the modified vector R.

For instance if in the matrix K we wish to implement
the boundary condition:

X, =P, (35)

— a9 - =

k11\ ki, kin X, R,

\ X, R,

\
\
\
\
\
\
\

\\ .

k., k,, k,10'® k.n X, Bk, 10
'\
\
\
\
\
\
\ . .
\\
Ko ks kyw Xn Ry

— -t e - -

(56)

If the rth equation is considered, it can be observed that
the desired boundary condition has been imposed as:

krlXI +kr2X2+ +krr.1016Xr+"' +k!'NXN=ﬁrkrr.1016
(57)
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1 2 4 5 6 7 & 9 10 11 4
1 2z22z2222ee 11111 000 399 bobBbbBBY
2zg222é2e 1111 602 999 bybsBB8BE
222222222 11111 000 999 uby8888
4 222222222 11111 000 99 88u88E88
222222222 1111111 c¢eo0v 99 88bBBE88
222222222 111111 000 99 bsbuBB8a
3 2c222222¢ 1111111 00 49 BHB88b8
Qcez2aeeled 1111111 00 99 Eb5H888
2222222222 11111 0 99 848888
4 2222222222 11 00 999 88868888
2222222222 111 00 999 db8U6886
ea2gzz2z2z2222 111 00 %S9 BH88888
5 22z2r22222 111 00 999 688688
cee2222222 11 00 9939 5438888
2222222222 1111 00 99 5488884
6 22g222222¢2 111111 0 99 s8888848
222222222 111111 00 59 8888888
222222¢22¢e 1111111 00 969 B566888
7 222222222 1111111 00 99 88BB8888
c2erazezee 111111 Ggoo0 99 868686068
22eélzede 111111 00V 39 88868888
& cegazzzéeée 11111 0v 999 886588888
222222222 1111 00 399 88s58888
cezlzzaeee 11111 000 9999 88uu8bBA8
Y er2222z222 1111 000 5-~- Bea3b8888
222222222 1111 009 399 8481,884888
2elaelee 1111 00 999 Bs8»0388888
10 éc2elez?e 111 000 999 BaBuos8uLB8
2ecccedée 1111 00 999 Banbtosb888
géeeezzaee 1111 00 999 LR EE-REY-1-1-1-1-]
11 2e222élee 1111 00 9%9 888nKbBBBKBA
2caaecézae 1111 0 999 bl3bH568bbLBLEE
garrzéeea 111 0 999 B8B8sBABRnHBHEABESE
12 2czéeezze 111 0 99 BBoBBBsoB83E3888
e2z2rzcedee 111 0 9y 3388888858b00d68
2a2z2a2ce2ze 111 VI HodREB8885368888
13 2z2ageedee 111 0 9599 bbsBEEBABEHBEHBHASE
2a2zr2ez22ee 1111 00 399 888888808588
222zgezeéad 1111 00 99 18888588888
le ¢daidcade 1111 00 999 8u8888888uH
2rzgacélee 111 00 9979 86888888888
222222222 1111 00 99 CELLLL LT
15 ecezeédee 1111 00 5999 BEBsBLBLEE
¢e2cz2eee 1111 v 9999 8ssub8888
ceéazeceadeéc 1111 P 9999 sasysbE8s
16 2g2azeeee 11111 000 999 88888888

l 2 3 4 5 6
MMEANS

Figure 1.

X, =B,

k,,<<k,-10'® i=1,2,...n i#k  (58)

Assembly and numbering of nodes

The element matrices relevant to the Galerkin f.e.m. of
the shallow-water equations are first set up according to
equations (45)-(53) and then assembled into global mat-
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7 8 9 10 11 12
ENERGY® 6,250402E920

Initial height field contours (every 50 m). Ax = Ay =400 km

rices. Each triangle has local element (3 x 3) matrices
which need to be scattered into global position in the
global coefficient matrices. An element connectivity table
is established which assigns the local (3 x 3) matrices to
their place in the (N x N) global matrix. Whenever a term
is assigned to a matrix location where another term has
already been placed, it is added to whatever value is there.

{'ms procedure is usually termed Boolean assembly. In
order to proceed with the assembly, it is necessary to
number the nodes and the elements. By labelling the



HMEAN= 199&,38 ™ ENERGY= 6,26]1339E+20
1 2 3 4 5 6 7 s 9 10 11 12

1 22222222 111 00 996 8Rr83861883888
ecrazzz2zee 1111 00 999 BLEBREHEBBBHB
ee2zeezee 1111 00 999 BRAKBLBUBRABA

2 e2z22e222e 1111 ¢ 99 REARLBRBEBEHE
22222222222 111 000 99 HutuBIEB0B88
222222222222 11 000 999 Bs888688868

3 222222222222 111 000 999 613868388888
22gz2e2222222 111 000 99 5888888868
222222222222 111 (Y 99 838588888

4 22222222222 1111 000 99 pyE838H8888
222222222222 111 00 999 888888888
22e22edecae’e 1111 000 99 888488888

) 22z2e22222222 111 00 G99 88888888
22eée2c2eaaéee 111 JQ 9939 863888388
cegerele22222 111 00 vosg 8BE8E8e8

6 222ecleleeed 111 00 99g5¢ 8888688
geleezaceee’2? 111 0069 994 8888886488
céceezeeed’ 111 00 Gy sebs8888

7 2z2222¢z2222 1111 00 99 vE8B388868
ecee2eeée 11111 00 599 38BLBEESH
cez22z2222 111111 9O Y99 bH5H8888BHE

8 ge2ezeee 111111 0wV 9996 RHBHBBBHE
22e2e222 111111 00 9999 85888R68
22z22222 11111 00 299G 886588888

S 22222222 11111 000 999 83888488
22222222 1111 000 9999 85888888
écceeelee 1111 000 999 B3888438343

10 2222222 1111 000 9999y 883888888
céeecaee 1111 0o 999 nBRE888888
eiez2ea2z22 11111 00 9999 88868488888

11 22222222 1111 00 999 bdBHERBHE586
22222222 1111 J0 959 RRRREBHABRBSA
22222222 111 0u 99 884383888888

12 2ee2e222 111 00 99 ABH0ELB8888
22222222 1111 00 999 BuBB88L8U8H8
22222222 111 00 999 LEBBHEBEARB

13 222222222 111 0 999 BElBEE88
222222222 111 00 9399 83AB88888
ceg2ee2z2e 111 00 999 HeBBBBLEB8

16 22e222e22 11 0 9999 A04838838
eer2z22222 11 0 9993 CLERELEEL:
222222222 11 00 9999 LBEBERER8888

15 2eeezz22e 11 00 999 BH3BEB4B888
22222222 111 00 999g RBBHEHABBABL8
c2e2z2222 11} Q0 9999 BRKHNB058888

16 22222222 111 00 999 3858888888848

1 4 3 4 S 6 7 8 9 10 11 le

Figure 2. Height field contours after 2 days. Ax =Ay =400 km, At =1800 sec using Galerkin f.e.m.

nodes across the shortest dimension of the domain, it is
possible partially to minimize the bandwidth of the global
coefficient matrix. On the other hand, the numbering of
the elements does not affect the computational aspects of
the problem.

For sophisticated routines of node-ordering in order to
obtain a smal! bandwidth, see George'®, Felippa and
Clough'® and Desai and Abel'?.

Compact storage scheme for sparse matrices

The global (N x N) coefficient matrix generated by the
assembly process is very sparse, as the maximum number
of triangles incident on one point of six. Therefore each
row in the global N x N matrix has at most seven entries
and it is an advantage to store the matrix in a compact
manner to save fast-core storage. The overhead for
reducing an (N x N)matrix to an (N x 7) matrix is the need
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HMEAN= 1999,05 M

ENERGY= 6,252979E+¢

1 2 3 4 ) 6 ] 9 10 11 12

1 20222222222¢ 1111 ao 9999 8688888b838888L688888
2c2eeeeeeeee 1111 000 999 B88ABLBBBBLBELLBBLEB8
222z22222e22z2e 1111 ¢oo0 999 8aHBBHBBBBEB68880L888
c 222222222222 1111 00 5999 8HhBBEBLBBBEBBBBBEBB86
2cgz2e2eerzee 1111 00 599 8888858b68b686686H68838
222222222222 1111 000 9999 88B6588088888858688
3 ce2a2z2eeedde 1111 00 999 B8E888B8E3BBBB38888
22222222222 111 00 9999 8886868868888888686
c2_222222222 111 00 9999 88B888888888888888888
4 2222222222 1111 0 9999 88p8EB6B688868888888888
2222222222 1111 00 9999 88858868888888838888
2age22z22e2 1111 00 9999 888848888858888888
5 222¢¢222222 111 000 999 8 s8888888
2222222222 111 0000 9999 88846488
2222222222 111 000 99999 88880888
6 ccz2éeceazé 1111 0000 99999 6888888
2zazezzaeeze 1111 0000 99999999999 8868888
22cz2222222¢2 11111 0000 999999999 8884888
7 2eg22222222 11111 0000 99999 88888388
22222222222 1111 0000 96999 8886888
22222222222 11111 00000 99999 B8868838
8 22222222222 111111 00000 9999 88888888
cecszlezedde 111111 00000 9999 838388888
2Zeee2c22e2e 11111 000000 999 88888868888
9 222c22222222 1111 000000 999 88~388386888
2er2z2z2z22ee22 1111 00000 999 88868888568888
cl2zgzzeea2zaaae 1111 0000 99 868888888uB888
10 2cpeeazacedae 111 0000 999 bB8BEEBBBBBBBSE
2elraan22zecdze 111 0000 96999 88888868B868888
2z2z2r2c2e2222¢e 1111 000 96999 BB8xbBbBEBBLBBE
il 2Pzz2éclr2éeele 11i1 000 9999999 88868888888H88
220222222222 111 060 99998 g8Bb88BBEBLBLABESE
22z2z2ncz2eee 111 000 99 8888868 8818
| 34 2ec22222e 11 00 99 8886458888 688
222222222 111 00 99 588808888888888 88
222222222 111 0 99 88s88b8888888888 8

13 222222222 111 9 99 888888888888868888
222222222 111 0 39 88688888888888888 8
2222zec22e 111 00 99 8888858885888888888 8
146 22222222 111 00 999 BBBByHBBEEEE88888 88
crz2z2z2zzee 111 0C 9999 886u8688868E8868 88
c2g2e2z2z2eée 111 00 599 88888€E888888888 838
15 ccgcecz2lzeaae 111 00 9999 8888b888888888808688
cez2rz2z2ezeee 111 00 999 88888B88B88B8865888688488
cer2eezzezeze 1111 00 999 886888888688888888888
) caz2e2eeceee 1111 00 9999 s88H8886868888888888

1 2 3 L 5 6 8 9 10 11 12

Figure 3.

for a correlation matrix also of size N x 7, to tell us the
seven nodes involved in any one row of the coefficient
matrix. The correlation matrix is set up by searching the
global correspondence table for the six triangles contain-
ing the node i. The six triangles found are then compared
and sorted to produce the seven nodes interacting with
node i (this includes node i itself). The seven nodes are then
arranged in ascending order. Other efficient compact
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storage schemes for sparse matrices have been proposed
by George'® and Duff and Reid?°.

Solution of the linear system of equations

For solving the system of linear equations, the method
adopted in this program was the iterative one of Gauss-
Seidel®!-22 which has the virtue of simplicity.

If a direct solution is preferred. use can be made of the



frontal technique program of Irons?? as documented by
Hinton and Owen?*.

User-supplied S.O.R., ADI or conjugate—gradient me-
thods can be used if a reduction of the computing time is
desired.

COMPUTER IMPLEMENTATION

Description of main program

Main program FESW. The main program FESW
reads the only data card of the program and after some
preliminary calculations calls the subroutines NUMBER,
CORRES, INCOND and AREAA.

These subroutines set up the triangular elements,
number the nodes, determine the non-zero entries of the
global matrix, calculate the initial fields and finally
calculate the derivatives of the shape functions.

Next those of the element matrices which remain
invariant during the simulation period are calculated by
calling subroutine ASSEM. After finding the boundary
nodes the program enters the main do-loop, which is
executed once for every new time step. In this loop the
simulation time is adjusted and then the subroutines
ASSEM and MAMULT set up and assembie the different
global matrices. The global matrices are then added
following equations (32), (36) and (38).

Subroutine SOLVER is called upon to solve the linear
systems of equations thus obtained, first for the continuity
equation and then for the u and v momentum equations.

The new field values are updated as soon as obtained,
and used in solving the coupled shallow-water equations
system. After a predetermined number of time steps
subroutine OUT is called to print out the height and
velocity fields. Subroutine OUT in turn calls the output
subroutines LOOK and MAPPA to calculate and print-
out the total energy and the mean height invariants and to

obtain a line printer plot of the height field contours.

Input specifications. The input to the program con-
sists of only one data card, as follows: CARD I:
FORMAT (F5.0, 515) which contains the following six
parameters:

DT the time step in seconds;

NLIMIT total number of time steps;

MF a parameter controlling output operations of
the program, i.e. specifying that after MF time
steps subroutine OUT is to be called;

a parameter taking the value O or any integer
#0;IF NOUTU =0, the U field is not printed;
IF NOUTU=#0, the U field is printed by the
subroutine OUT;

a parameter taking the value O or any integer
#0; IF NOUTV =0, the V field is not printed,;
IF NOUTV=0, the V field is printed by
subroutine OUT;

a parameter taking the value 0 or any integer
#0; IF NPRINT#0, the global nodal num-
bers of each element, the indices of all non-
zero entries of the global matrix as well as the
coordinates of all the nodes are printed in
subroutine NUMBER; IF NPRINT =0, none
of the above-mentioned items is printed.

NOUTU

NOUTV

NPRINT

Output specifications. The constants used in setting up
the initial fields as well as the time step and the space
dimensions are printed by the main program FESW.

The initial height field and velocity fields are printed
out in subroutine INCOND.

Examples of output

Examples of FESW output are provided so as to
demonstrate the different options of the program. The
initial height field using a space resolution of Az=Ay
=400 km is shown in Fig. 1, while Fig. 2 shows the height
field contours after two days of simulation using a time
step of 1800 s, and Fig. 3 shows the height field contours
for a ten-day long-term integration using the same time
step and spatial resolution.
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