A NUMEROV-GALERKIN TECHNIQUE APPLIED TO A FINITE ELEMENT SHALLOW-WATER EQUATIONS MODEL WITH EXACT CONSERVATION OF INTEGRAL CONSTRAINTS

I. M. NAVON

National Research Institute for Mathematical Sciences, CSIR. Pretoria 0001, South Africa

INTRODUCTION

In a recent research by Cullen and Morton on finite-element evolutionary error it was suggested that a promising technique for achieving high accu-racy in wave-propagation problems would be to combine the Galerkin product with high order difference approximations to derivatives.

In the present work a high-accuracy two-stage Numerov-Galerkin scheme is used for advective terms in a finite-element shallow-water equations model with a fairly standard test problem in a channel on the rotating earth. An augmented Lagrangian constrained optimization approaches used to enforce an 'a posteriori' conservation of the shallow-water equation integral invariants of mass total energy and enstrophy.

In the first section the Galerkin finite-element model of the shallow-water equations is presented.

In section 2 the two-stage Numerov Galerkin approach is detailed along with the required boundary conditions.

Only the advective terms in the momentum equations are treated by the two-stage Numerov-Galerkin method.

In section 3 an augmented Lagrangian technique using a constrained optimi=zations approach is used for enforcing the conservation of the integral invariants of the shallow-water equations.

Finally, in section 4 some numerical results are presented. More numerical results will be presented at the Conference.

1. THE SHALLOW-WATER FINITE-ELEMENT FORMULATION

The equations describing divergent barotropic motion in an incompressible inviscid fluid with a free-surface are often called the shallow-water equations.

Using a Cartesian coordinate system (see Navon 1979a 2 and Navon and Müller 1979b 3) the shallow-water equations can be written as follows

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial \phi}{\partial x} - fv = 0$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial \phi}{\partial y} + fu = 0$$

$$\frac{\partial \phi}{\partial t} + \frac{\partial (\phi u)}{\partial x} + \frac{\partial (\phi v)}{\partial y} = 0.$$
(1)

$$0 \le X \le L$$
, $0 \le y \le D$, $t \ge 0$

where L and D are the dimensions of a rectangular domain of area $\overline{A} = LD$.

Here u and v are the velocity components in the X and y directions respectively; φ = gh is the geopotential h is the depth of the fluid; g is the acceleration of gravity; and f is the Coriolis factor in a rotating frame of reference.

Using linear piecewise polynomials on triangular elements the resulting Galerkin finite-element equations can be written as

$$M(\varphi_{\mathbf{j}}^{n+1} - \varphi_{\mathbf{j}}^{n}) = \frac{-\Delta t}{2} K_{\mathbf{l}} (\varphi_{\mathbf{j}}^{n+1} + \varphi_{\mathbf{j}}^{n}) = 0$$
 (2)

where M is the mass-matrix

$$M = \iint_{A} V_{j} V_{i} dA \qquad (3)$$

and

$$K_{1} = \int \int_{A} V_{j} V_{K} u_{K}^{*} \frac{\partial V_{i}}{\partial x} dA + \int \int V_{j} V_{K} v_{K}^{*} \frac{\partial V_{i}}{\partial y} dA$$
 (4)

where V are the basis functions and

$$u^* = u^{N + \frac{1}{2}} = \frac{3}{2} u^N - \frac{1}{2} u^{N-1} + O(\Delta t^2)$$

$$v^* = v^{N + \frac{1}{2}} = \frac{3}{2} v^N - \frac{1}{2} v^{N-1} + O(\Delta t^2)$$
(5)

which is a quasi-linearized second-order time-discretization procedure.

The u and v momentum equations are written as

$$M(u_{j}^{n+1} - u_{j}^{n}) + \frac{\Delta t}{2} K_{2}(u_{j}^{n+1} + u_{j}^{n}) + \frac{\Delta t}{2} (K_{21}^{n+1} + K_{21}^{n}) + \Delta t P_{2} = 0$$
 (6)

$$M(v_{j}^{n+1}-v_{j}^{n})+\frac{\Delta t}{2}K_{3}(v_{j}^{n+1}+v_{j}^{n})+\frac{\Delta t}{2}(K_{31}^{n+1}+K_{31}^{n})+\Delta tP_{3}=0 \tag{7}$$

where the matrices are defined as follows

$$K_{2} = \int \int_{A} u_{K}^{*} v_{K} v_{i} \frac{\partial v_{j}}{\partial x} dA + \int \int_{A} v_{K}^{*} v_{K} v_{i} \frac{\partial v_{j}}{\partial y} dA$$
 (8)

$$K_{21}^{n+1} = \int \int_{A} \varphi_{K}^{n+1} \frac{\partial V_{K}}{\partial x} V_{i} dA$$
 (9)

$$P_2 = \int \int_A f v_K^* V_K^{V_i} dA \qquad (10)$$

$$K_{3} = \int \int_{A} u_{K}^{n+1} V_{K} \frac{\partial V_{j}}{\partial x} dA + \int \int v_{K}^{*} V_{K} \frac{\partial V_{j}}{\partial x} dA$$
 (11)

$$K_{31}^{n+1} = \int \int_{A} \varphi_{K}^{n+1} \frac{\partial V_{K}}{\partial y} V_{i} dA; \quad P_{3} = \int \int_{A} f u_{K}^{n+1} V_{K} V_{i} dA$$
 (12)

2. THE TWO-STAGE NUMEROV-GALERKIN SCHEME

The two-stage Galerkin method (see Cullen and Morton) applied to the advective term $u\partial_x v$ is achieved by calculating an intermediary approximation Z to $\partial_x v$ (i.e. the closet piecewise linear approximation) before incorporating it into the Galerkin final approximation to $u\partial v$.

As shown by Cullen and Morton , if we denote by Z the intermediate approximation to $\frac{\partial v}{\partial x}$ we obtain

$$\frac{1}{6} Z_{j-1} + \frac{2}{3} Z_{j} + \frac{1}{6} Z_{j+1} = \frac{1}{2} h^{-1} (V_{j+1} - V_{j-1})$$
 (13)

The second and final stage is (where $W = u \frac{\partial v}{\partial x}$)

$$\frac{1}{6} W_{j-1} + \frac{2}{3} W_{j} + \frac{1}{6} W_{j+1} = \frac{1}{12} (U_{j-1} Z_{j}^{+U} J_{j-1} Z_{j}^{+U} J_{j}^{-1} J_{j}^{-1} J_{j}^{+U} J_{j}^{-1} J_{j+1}^{+U} J_{j+1}^{-1} J_{j+1}^{-1} J_{j+1}^{-1} J_{j+1}^{-1} J_{j+1}^{-1} J_{j}^{-1} J_{j}^{$$

Cullen and Morton proved that the truncation error associated with the two-stage Galerkin is almost six-times better than the single-stage Galerkin in the asymptotic limit.

2b. The Two-stage Numerov-Galerkin Scheme for Advective Terms in the Shallow-Water Equations

In this approach we combine the two-stage Galerkin product concept with high order compact implicit (hence the name Numerov) difference approximations to the derivatives. The compact implicit finite difference approximation to the first derivative has a truncation error of $O(h^{4x})$ and employs only 2k+1 grid points. (See Schwartz and Wendroff⁴). We found that in order to improve the accuracy of advective terms of the form u $\frac{\partial u}{\partial x}$ in the two-stage Galerkin method it is necessary to use an intermediate approximation to $\frac{\partial u}{\partial x}$ of the order $O(h^8)$ or k=2 for the Schwartz-Wendroff symbol.

The concise expression of the intermediate compact finite difference approximation to $\frac{\partial u}{\partial x}$ of order $O(h^8)$ is given by

$$\frac{1}{70} \left[\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)_{i+2} + 16 \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)_{i+1} + 36 \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)_{i} + 16 \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)_{i-1} + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right)_{i-2} \right] =$$

$$= \frac{1}{84b} \left[-5\mathbf{u}_{i-2} - 32\mathbf{u}_{i-1} + 32\mathbf{u}_{i+1} + 5\mathbf{u}_{i+2} \right]$$
(15)

which necessitates the solution of a pentadiagonal matrix with the entries:

The changes in the Galerkin finite-element formulation of the w and v momentum equations are in the advective terms which now take the form:

$$\widetilde{K}_{2} = \left[\langle \left(u \frac{\partial u}{\partial x} \right)_{j}^{*} \nabla_{j}, \nabla_{i} \rangle + \langle \left(v \frac{\partial u}{\partial y} \right)_{j}^{*} \nabla_{j}, \nabla_{i} \rangle \right]$$
(17)

$$\widetilde{K}_{3} = \left[\langle (v \frac{\partial v}{\partial y})^{*}_{i} v_{j}, v_{i} \rangle + \langle (u \frac{\partial v}{\partial x}) v_{j}, v_{i} \rangle \right]$$
 (18)

where <> is the inner product or

$$M \left[\left(u \frac{\partial u}{\partial x} \right)_{i}^{*} + \left(v \frac{\partial u}{\partial y} \right)_{i}^{*} \right]$$
 (19)

and

$$M \left[\left(v \frac{\partial v}{\partial y} \right)_{j}^{*} + \left(u \frac{\partial v}{\partial x} \right)_{j}^{*} \right]$$
 (20)

2c. Implementation of the Boundary Conditions

For the particular rectangular channel on a rotating earth periodic boundary conditions are assumed in the x-direction while in the y direction rigid boundary conditions are imposed i.e.

$$v(x,0,t) = v(x,D,t) = 0$$
 (21)

This implies that some extraneous boundary conditions are required for the Numerov derivative and Z_1 , Z_2 , Z_N and Z_N are replaced by $O(h^4)$ one-

sided approximations of the derivative i.e. say for $\frac{\partial \mathbf{v}}{\partial \mathbf{v}}$

$$Z_1 = (-25v_1 + 48v_2 - 36v_3 + 16v_4 - 3v_5)/12h$$
 (22)

$$z_2 = (-3v_1 - 10v_2 + 18v_3 - 6v_4 + v_5)/12h$$
 (23)

$${}^{Z}N_{y-1} = (v_{N_{y-4}} + 6v_{N_{y-3}} - 18v_{N_{y-2}} + 10v_{N_{y-1}} + 3v_{N_{y}})/12h$$
 (24)

$$Z_{N_y} = (3v_{N_{y-4}} - 16v_{N_{y-3}} - 36v_{N_{y-2}} - 48v_{N_{y+1}} + 25v_{N_y})/12h$$
 (25)

For the values of v and v one uses a cubic extrapolation i.e. y+1

$$v_{N_{y+1}} = 4v_{N_y} - 6v_{N_{y-1}} + 4v_{N_{y-2}} - v_{N_{y-3}}$$
 (26)

Similar formulas are used for $\frac{\partial u}{\partial y}$.

For the solution of the pentadiagonal system a generalization of the Thomas algorithm is used and for the cyclic boundaries the resulting cyclic pentagiagonal matrix is solved by a generalization of the Ahlberg-Nielson-Walsh algorithm.

3. AN AUGMENTED LAGRANGIAN PENALTY METHOD FOR ENFORCING DISCRETE CONSERVA-TION OF INTEGRAL INVARIANTS

The shallow-water equations have three main integral invariants namely total mass

$$H = \int_{0}^{L} \int_{0}^{D} \frac{h dx dy}{A}$$
 (27)

total energy
$$E = \frac{1}{2} \int_{0}^{L} \int_{0}^{D} (u^{2} + v^{2} + \phi) \frac{\phi}{g} dxdy \quad \phi = gh$$
and potential energy (28)

and potential enstrophy

$$Z = \frac{1}{2} \int_{0}^{L} \int_{0}^{D} \left(\frac{Q^{2}}{h} \right) dxdy = \frac{1}{2} \int_{0}^{L} \int_{0}^{D} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} + f \right)^{2} h^{-1} dxdy$$
 (29)

Some 'a posteriori' methods were described by Navon (1981)⁶. Here we propose an augmented Lagrangian multiplier and penalty method. Our augmented La= grangian takes the form

$$L_{r}(x) = f(x) + \frac{1}{2r} |e(x)|^{2}$$
 (30)

or

$$L_r(x,u) = f(x) + u^T e(x) + \frac{1}{2r} |e(x)|^2$$
 (30a)

where

$$f = \sum_{i=1}^{Nx} \sum_{j=1}^{Ny} \left[\alpha(u-\tilde{u})^2 + \alpha(v-\tilde{v})^2 + \beta(h-\tilde{h})^2\right]_{ij}$$
(31)

 α and β are weights, $(\tilde{u}, \tilde{v}, \tilde{h})$, are the predicted variables at the n-th time-step of the integration of the shallow-water equations while (u, v, h). are the adjusted values by the constrained optimization method enforcing the conservation of integral invariants. We consider the problem

minimize
$$f(\underline{x})$$

subject to $e(\underline{x}) = 0$ (32)

where

$$\underline{\mathbf{x}} = (\mathbf{u}_{11} \dots \mathbf{u}_{N_{x}, N_{y}}, \mathbf{v}_{11} \dots \mathbf{v}_{N_{x}, N_{y}}, \mathbf{h}_{11} \dots \mathbf{h}_{N_{x} N_{y}})$$
(33)

and $e(\underline{x})$ are the nonlinear equality constraints given by

$$e(\underline{x}) = \begin{cases} E^{n} - E^{0} = 0 \\ Z^{n} - Z^{0} = 0 \\ H^{n} - H^{0} = 0 \end{cases}$$
 (34)

where the superscripts n and o stand for the time $u\Delta t$ and the initial time respectively.

In eqn (30a) r is a penalty parameter and \underline{u} a Lagrange multiplier vector.

For updating the multipliers and the penalty parameters we follow the

Bertsekas 7 , method and use the following updating formulas

$$u_{k+1} = u_K + r_K^{-1} e(x_K)$$
 (35)

for the Lagrange multipliers

and

$$r_{k+1} = \begin{cases} \beta r_{K} & \text{if } |e(x_{K}, u_{K})| > \gamma |e(x_{K-1}, u_{K-1})| \\ \\ r_{K} & \text{if } |e(x_{K}, u_{K})| \le \gamma |e(x_{K-1}, u_{K-1})| \end{cases}$$
(36)

with $\beta = 0.1$ and $\gamma = 0.25$.

NUMERICAL RESULTS

The Test Problem

We solved the shallow-water equations in a channel of width D = $4400~\rm km$ and periodic in the x-direction the initial conditions are derived from a height field condition N = 1 of Grammeltvedt⁸ given by

$$h(x,y) = H_0 + H_1 \tanh(\frac{9(D/2-y)}{2D} + H_2 \operatorname{sech}^2(\frac{9(D/2-y)}{D}) + \sin(\frac{2\pi x}{L})$$

The initial velocity fields were derived from the initial height field using the geostrophic relationship

$$u = (\frac{-g}{f}) \frac{\partial h}{\partial y} \quad v = (\frac{g}{f}) \frac{\partial h}{\partial x}$$
 (38)

while the parameters here are:

$$H_0 = 2000 \text{ m}$$
 $H_2 = 133 \text{ m}$ $f = 10^{-4} \text{sec}^{-1}$
 $H_1 = 220 \text{ m}$ $g = 10 \text{ m sec}^{-2}$

We used a grid space of 400 km and the time-step was 1800 sec.

We compared our Numerov Galerkin two-stage technique with a single-stage Galerkin run and with a point multiplication scheme (PMG)(see Cullen and Morton).

For long-term runs the Numerov-Galerkin method remains very stable while the PMG method goes unstable after 5 days.

The Numerov-Galerkin technique turned out to be computationally economic, as it simplified quite a number of element matrices. This resulted in an economy of about 35% of the computational time spent on each time~step.

As far as accuracy is concerned there was only a marginal improvement over the usual single stage Galerkin method. More results on this issue will be presented at the Conference. All three integral invariants were well conserved for a 10 day integration with the Numerov-Galerkin technique (see Figs.1-3) and an increase in accuracy with the imposition of exact conservation via constrained optimization was obtained.

More specifically, when enforced conservation of enstrophy and mass was applied, combined with the application of a Shuman filter every 6 time steps, an improvement of 50% in accuracy (as defined in Navon⁵) was obtained by using the Numerov-Galerkin method as compared with the single-stage Galerkin after 2 days. This improvement increased to 100% after 4 days of numerical integration.

REFERENCES

- M.J.P.Cullen and K.W. Morton: Analysis of Evolutionary error in finite element and other methods. J.Comput. Phys. Vol.34, 1980,245-267.
- 2. I.M.Navon: Finite-element simulation of the shallow-water equations model on a limited-area domain. Appl.Math.Modelling, Vol.3, 1979a, pp 337-348.
- I.M. Navon and U.Müller: FESW a finite element FORTRAN IV program for solving the shallow-water equations. Advances in Software, Vol.1 No.2, 1979b, pp 77-86.
- B. Schwartz and B. Wendroff: The relative efficiency of finite difference and finite-element methods 1. Hyperbolic problems and splines. SIAM J. Numer. Anal. Vol. 11, No. 5, 1974, pp. 979-993.
- 5. H.H.Ahlberg, E.N. Nilson and J.L. Walsh: The theory of splines and their applications. Academic Press, New York, 1967.
- I.M.Navon: Implementation of 'a posteriori' methods for enforcing conservation of potential enstrophy and mass in discretized shallowwater equations models. Mon.Wea.Rev. Vol.109, No.5, 1981, pp.946-958.
- D.P.Bertsekas: Penalty and Multipliers Methods in "Nonlinear optimi= zation theory and algorithms., L.C.W.Dixon, E.Spedicato and G.P.Szegö Eds. Birkhäser Boston, 1980, pp. 253-278.
- Grammeltvedt, A: A survey of finite-difference schemes for the primitive equations for a barotropic fluid. Mon. Wea. Rev. Vol. 97, 1969, pp 387-404.

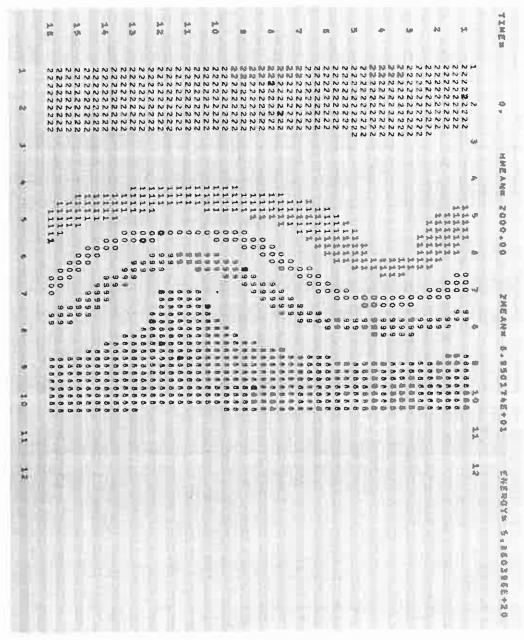


Fig.1: The initial distribution of the height field depicted by isopleths drawn at 50 m intervals. The initial values of mass (h mean) enstrophy (z mean) and total energy (energy) invariants are also displayed.

	35 -25	9		4	1	più Latr	3,A		pub gub		7.0		(10		4		7		c	Mi		VP				Salt		ī	٥		pik	1 2 2 2 3 4
j.÷	2 2	Na Na Na Na Na Na Na Na Na Na Na Na	NI NI SI NI	NO A	E TAR I	U NU N	M Fa	Al N	N	4 1	14	Re P	W FAF	Par A	ji Na	PAP E	77 DA	143	Ra N	a rus	A)	NI I	0 V	NE NE	Marie Marie	3 F4 3 F4	16 F	医压力	a Fol a reli	No.	NI NI	5 GH 20 30 31
lo:	19 N	N N N N N N	N N N N	Po	74 P	4 14 6 4 14 6 4 15 6	5 19 6 %	Nº Nº	Pat (2 2 2 2 2	N 19 2	No Po	P Ro	をおりた	19 54 54			N 12	Na h	1 Page 1	Fig.	No 12 (12 (12 (12 (12 (12 (12 (12 (12 (12		22722	Rain Rain Rain Rain Rain Rain Rain Rain			000000		22222	N	00+
	Ru Ni Re		pult duti	fig. 3rd		نؤ شو ا				9 A 2 N A	13 13 14 15	No Pa No Pa No Pa Se Pa	33 140	PAR PA	F Pu							i	1912	2565		1 PA 2 PA 2 PA 1 PA	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 N 2 N 3 N	202	222	NJ NJ W	č
W	lind boy line and	کیم کیم کیم باس	p-à			th.	t pet ant no	pajo mit paik gali	10E to										مو ام	Que s	20 2 20 2	, ii p.	l suit	miji gan g gah as	di neli	ر الدو د	gai Lak Bir	h pud	100	-	# # # # # # # # # # # # # # # # # # #	2
48	F	\$ Q :	9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	000	0000	000	94 G	200	2 gal 2 gal 4 gal 4 gal	1121	all all girl proper	و شار د	e si		P 12	104 54 135 101 103		idi 949 20 940 40 941 40	368	0.0	9 0	9	Q.	4 000	96 1	pil gui	i pail	344 p4	5-jy 3 2-jy 3	al ale gli	0 0 0
ch	000	0 0	5	.0 m2 (4) (4)		10 HB		0 0	500	10 10	gun ir ir Qir ili	at gar an gar	و شو بر قبر و اللح د	ne pas ne pas ne pas ne pas ne me	100 to 10	16 940 10 940 10 940 10 940	gui gui		000	0000	() ()	1 10	90 90	900	000	000	90	000	000	000	27 dr 20 20 20	002
7	400		0 m	A 45		16-18	40	9 49	9 9 9		9 9	9 5 C) 0	90	90	9.0	100	900	3 6 3 3		12.1	0) d) d) d)	44	9	40 40	1 4 4 4	(1) (1) (1) (1)	400 P 400	8999			7	7
ón	ph.	an off a	of the S	H GE	P 05	OI BL	on 6	E Sn	-	-	700		10) 42-11 40-6	2 1/2	30 3	8 W.	100	o n	101		- 0	: 80	All A	lm 65s							0	
٠	31 ch 31 ch 31 ch 31 ch				20 05 20 05 20 05 00 06		対の日本の	90 10 10 10 10 10 10 10 10 10 10 10 10 10		GP G	# F	2 20 20	And 16.	Ī		i	alla a			0) (II)	100	en :	er ce in ci in ci	-	7 7	4 (0) 4 (0) 4 (0)	***		10 G	e di i	(3) 14 49 49 48
0	3 30 1 3 30 1	1				2 Gr					-	00	# 1 m	40	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0		9 6	8			- 196	のからなる	0	0	17 4 10 4	\$16 (10)	200 I	ille q ile e		i da	7567
mi gui												-	(0) 74 (= 4)	00	N 244	200	- 4	F (38)		OR 3	-	0						10.4	mir-		4.0	4
FAL III																															12	''A 22 17
																																8+6 = Asa
																																#3982262Q
																																400

 $\frac{\text{Fig.2:}}{\text{Galerkin method.}}$ A 4-day forecast of the height field using the two-stage Numerov-

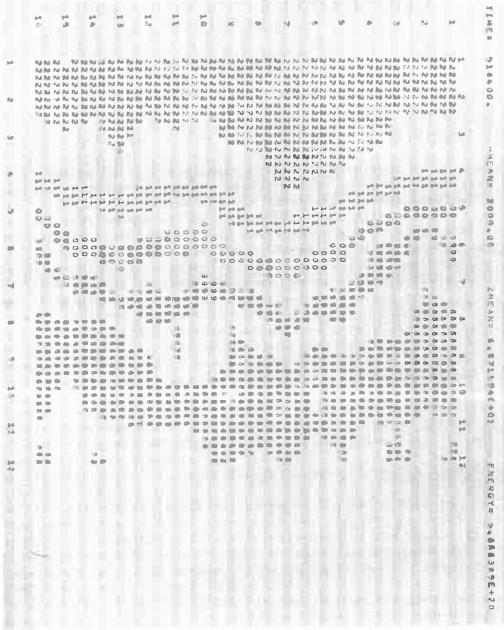


Fig.3: A 6-day forecast of the height field using the two-stage Numerov-Galerkin method.