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INTRODUCTION

In a recent research by Cullen and Motton] on finite-element evolutiomary
error it was suggested that a promising technique for achieving high accu=
racy in wave-propagation problems would be to combine the Galerkin product
with high order difference approximations to derivatives.

In the present work a high-accuracy two-stage Numerov-Galerkin scheme is

used for advective terms in a finite-element shallow-water equations model
with a fairly standard test problem in a chammel on the totating earth. 4An
augmented Lagrangian constrained optimization approaches used to enforce an
'a posteriori' conservation of the shallow-water equation integral invariants
of mass total energy and enstrophy.

In the first section the Galerkin finite-element model of the shallow-water
equations is presented.

In section 2 the two-stage Numerov Galerkin approach is detailed alomng with
the required boundary conditioms.

Only the advective terms in the momentum equations are treated by the two-
stage Numerov-Galerkin method.

In section 3 an augmented Lagrangian techmique using a constrained optimi=
zations approach is used for enforcing the conservation of the integral
invariants of the shallow-water equations.

Finally, in section 4 some numerical results are presented, More numerical
results will be presented at the Conference.

1. THE SHALLOW-WATER FINITE-ELEMENT FORMULATION

The equations describing divergent barotropic motion in an incompressible
inviscid fluid with a free-surface are often called the shallow-water
equations.

Using3a Cartesian coordinate system (see Navon I979a2 and Navon and Miller
19795”) the shallow-water equations can be written as follows
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0<X=<s1L, 0<sy=<pD, tz0
where L and D are the dimensions of a vectangular domain of area A = LD,
Here u and v are the velocity components in the X and y directions respec=
tively; v = gh is the geopotential h is the depth of the fluid; g is the
acceleration of gravity; and f is the Coriolis factor in a rotating frame

of reference,

Using linear piecewise polynemials on triangular elements the resulting
Galerkin finite-element equations can be written as

n+l n, =it n+l n
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('PJ «oJ) > 1(“’3 J) (2)
where M is the mass-matrix
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where V are the basis functions and
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which is a quasi-linearized second-order time-diseretization procedure.

The u and v momentum equations are written as
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where the matrices are defined as follows
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2. THE TWO-STAGE NUMEROV-GALERKIN SCHEME

The two-stage Galerkin method (see Cullen and Morton]) applied to the advec=
tive term ud v is achieved by calculating an intermediary approximation Z
to oV (i.e. the closet piecewise linear approximation) before incorporating
it into the Galerkin final approximation to udv .

%
As shown by Cullen and Mortonl, if we denote by Z the intermediate approxis
mation to %Y we obtain
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Cullen and Mortonl proved that the truncation error associated with the two-
stage Galerkin is almost six-times better than the single-stage Galerkin in
the asymptotic limit.

9b, The Two-stage Wumerov—Galerkin Scheme for Advective Terms in the Shallow-
Water, Equations

Inthis approach we combine the two-stage Galerkin product concept with high
order compact implicit (hence the name Numerov) difference approximations
to the derivatives, The compact implicit finite diffeience approximation
to the first derivative has a truncation error of 0(h%") and employs only
20+1 grid points. (See Schwartz and Wendroff4), We found that in order to
improve the accuracy of advective terms of the form u £ in the two-stags
Galerkin method it 1s necessary te use an intermediate approximation to BE
of the order 0(h8) or £=2 for the Schwartz-Wendroff symbol. *

The concise expression of the intermediate compact finite difference a ToxXi=
%u P PP

mation to 5% of order 0(h8) is given by
1 gu du du du du _
75 LG4y + 160G, + 368G, 186Gy *+ G0 = (15)
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which necessitates the solution of a pentadiagonal matrix with the entries:
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The changes in the Galerkin finite-element formulation of the w and v momen=
tum equations are in the advective terms which now take the form:

~ du * _a_u ¥
Ky = [ gdi Vi vy >4 < (v gt v,v, > (17)
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where <>> is the inner product or

Juy ¥y (19)
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and

ov ® av *
M [(v ﬁ?)j + (u ﬁi')j] (20)

2c. TImplementation of the Boundary Conditions

For the particular rectangular channel on a rotatlng earth periodic boundary
conditions are assumed in the x-direction while in the y direction rigid
boundary conditions are imposed i.e.

v(x,0,t) = v(x,D,t) =0 (21)

This implies that some extraneous boundary conditions are required for the
Numerov derivative and Z], 22, ZN and ZN are replaced by 0(h%) one-

y-1 ¥

sided approximations of the derivative i.e., say for %§
ZI = (-25vI + &8v2 = 36v3 + ]6v4 = 3V5)/]2h (22)
22 = (-3v| = IOV2 + 18V3 = 6v4 + VS)/IZh (23)
Z = —
Ny—] = (VN + 6vN leN + IOVN + 3vN Y/ 12h (24)
y=4 y-3 y-2 y-1 y
Zy = (3VN - IGVN - 36vN -48vN + ZSVN y/12h (25)
y y-4 y-3 y-2 y-1 y
For the values of v, and vy one uses a cubic extrapelation i.e.
y+1
v = 4v._ - Gv + 4v - v (26)
N N, N1 N, N
Similar formulas are used for %%.

For the solution of the pentadiagonal system a generalization of the Thomas
algorithm is used and for the cyclic boundaries the resulting cyclie penta;
diagonal matrix is solved by a generalization of the Ahlberg-Nielson-Walsh
algorithm.
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3. AN AUGMENTED LAGRANGIAN PENALTY METHOD FOR ENFORCING DISCRETE CONSERVA=
TION OF INTEGRAL INVARIANTS

The shallow-water equations have three main integral invariants namely total
mass

LD
B[ by (27
oo
total energy
LD 2 2 b
E=} [ [ = dxdy ¢=gn (28)
g
oo
and potential enstrophy
LD 2 LD
; P axdy - v _du, 2 -]
Z=1} £ £ Pdxdy = | £ g G 3y £)°h dxdy (29)

Some 'a posteriori' methods were described by Navon (I98I)6. Here we propose
an augmented Lagrangian multiplier and penalty method. Our augmented La=
grangian takes the form

LG = £60) + 3= e)|? (30)
or
L_(x,u) = f(x) + uT e(x) + —l[e(x)[2 (30a)
r 2r
where
Nx Ny 2 ) 2
fF= 1 T [o(u-u)" + a(v-¥)° + B(h-R) ]ij (31)

i=] j=l

o and § are weights, (u,v,R).. are the predicted variables at the n-th
time-step of the integrationlaf the shallow-water equations while (u,v,h)..
are the adjusted values by the constrained optimization method enforcing
the comservation of integral invariants. We consider the problem

minimize f(x) (32)
subject to e(x) =0
where
T S AT IR L SRR R (33)
Xy Xy xy
and e(x) are the nonlinear equality constraints given by
" - E° =0
e(i) ={z" - Zo =0 (34)
' - 1% =0

where the superscripts n and o stand for the time uAt and the initial time
respectively.

In eqn (30a) r is a penalty parameter and u a Lagrange multiplier vector,

For updating the multipliers and the penalty parameters we follow the
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Bertsekas7, method and use the following updating formulas

l
Ugel T Ug T elxy) (35)
for the Lagrange multipliers
and

Br if |e(xK,uK)[ > Y]e(xK_l,uK_l)]

Tt = (36)

Ty if Ie(xK,uK)l s Yle(xK_],uK_I)l

with 8 = 0.1 and v = 0.25.

NUMERICAL RESULTS
The Test Problem

We solved the shallow-water equations in a channel of width D = 4400 km and
periodic in the x-direction the initial conditions are derived from a height
field condition N = | of Grammeltvedt® given by

h(X,y) = HO + Hl tanh(g.gl:z)l)ﬁ_.z.) o+ Hz Sechz(g(g/z—z)) (37)

. sinczgi )

The initial velocity fields were derived from the initial height field using
the geostrophic relationship

- (B dh - (& 2h
u= (P gy v @i (38)
while the parameters here are:
H, = 2000 m Hy = 133 m £ =10 4sec”!
H =220 m g =10m sec:_2

l
We used a grid space of 400 km and the time-step was 1800 sec.

We compared our Numerov Galerkin two-stage technique with a single-stage
Galerkin run and with a point multiplication scheme (PMG) (see Cullen and
Morton).

For long-term runs the Numerov-Galerkin method remains very stable while
the PMG method goes unstable after 5 days.

The Numerov-Galerkin technique turned out to be computationally economic,
as it simplified quite a number of element matrices, This resulcted in an
economy of about 357 of the computational time spent on each time~step.

As far as accuracy is concerned there was only a marginal improvement over
the usual single stage Galerkin method. More results on this issue will be
presented at the Conference,
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All three integral invariants were well conserved for a 10 day integration
with the MNumerov-Galerkin technique (see Figs.1-3) and an increase in accu=
racy with the imposition of exact conservation via constrained optimization
was obtained.

More specifically, when enforced conservation of enstrophy and mass was
applied, combined with the application of a Shuman filger every 6 time steps,
an improvement of 50% in accuracy (as defined in Navon ) was obtained by
using the Numerov-Galerkin method as compared with the single-stage Galerkin
after 2 days. This improvement increased to 100% after &4 days of numerical
integration.
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Fig.2: A 4-day forecast of the height field using the two—-stage Numerogv-
Galerkin method.
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Galerkin method.

ig.3



