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CHAPTER 10 

CONSERVATION LAWS IN FLUID DYNAMICS AND THE ENFORCEMENT 

OF THEIR PRESERVATION IN NUMERICAL DISCRETIZATIONS 

I. M. Navan 

l. INTRODUCTION 

The existence of conservation laws for fluid dynamics pl'oblems has been 

recognized to be of vital importance to the understanding of basic physi= 

cal and mathematical properties of problems of interest. Almost all the 

equations describing fluid dynamics problems can be interpreted as the 

laws of conservation of mass, momentum and energy. In this short lecture 

note we will adopt two different approaches which essentially cha.racterize 

different lines of thought as far as conservation laws are concerned. 

The first is the 'theoretical' approach whereby one considers what is 

a conservation law and the problem of obtaining conservation laws in the 

sense of physics from a system of equations as an integrability problem 

on a manifold (Eiseman and Stone 1980 [lJ). 

In this approach we are also concerned with the preservation of conserva= 

tion laws under coordinate transformations. One then might ask how many 

conservation laws are contained in a system of partial differential equa= 

tions describing some fluid dynamic phenomenon. This brings us to the 

Korteweg-de Vries equations which possess an infinity of conservation laws 

and to other similar equations. This can be connected with .other types 

of conservation ·laws recently found for the KdV equation by Wahlquist 

and Estabrook [2]. For another excellent survey on this topic see Manin 

[3]. This topic is also related to the inverse scattering problem. 
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For the discretized non-linear partial differential equations of fluid 

dynamics the author has preferred to bring examples from numerical weather 
' prediction and the accent was put mainly on finite difference schemes. 

Here conservative spatial finite difference discretizations . were frequently 

used in order to reduce the tendency towards non-linear instability 

(~ary [4], Kalnay de Rivas et al [5]). 

There is still a controversy if the use of a conservative spatial approxi= 

mation will totally avoid non-linear instability (Gary [4J). However in 

atmospheric sciences and numerical weather prediction it is coillnon ex= 

perience that enstrophy conserving schemes and quadratically or energy 

conserving schemes provide a more accurate approximation to the spectrum 

and avoid the unbounded growth associated with catastrophic non-linear 

instability. 

It should be stressed that in any numerical model, the 6~n-l.te 4e.6o.tut.ion 

.impo.&e.6 an Mti6.i.cia.t 'unll' a..t the .&ho4t-unve end· 06 the .6pedltum, in= 

ducing an excessive accumulation of energy in the shortest waves (Kalnay 

de Rivas et al [5]). This problem is worst in non-conservative schemes 

but it appears even in alias-free, energy and enstrophy conserving spectral 

models. This justifies using besides the conservative finite-difference 

schemes some parametrization of the unresolved subgrid eddies to withdraw 

energy from the smallest resolved scales (Kalnay de Rivas et al [5]), 

(Gary [4J). 

In this lecture-note we have stressed only some aspects of finite diffe= 

rence conserving schemes. A survey of 'a posteriori' methods for enforcing 

conservation in discretized finite difference models is also provided. 

Two small sections are dedicated to the conservative properties of . spectral 

and finite element discretization methods. 
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Finally it should be mentioned that we are far from having exhausted the 

fluid-dynamics conservation laws (see Mobbs (6)). 

We have also not treated systems of non-linear ·hyperbolic partial differen= 

tial equations in conservation law form (see Lax [7J), the entropy cona i= 

tion, shock-waves, rarefaction-waves and contact discontinuities. The 

interested reader is referred to Liu [8J • . [9J, Glium, [10] and Glium 

and Lax [llJ. 

1. THE THEORETICAL APPROACH TO CONSERVATION LAWS 

1.1 The Basic Equations 

Ve6-i.nltlon 1. A conservative law on a manifold is defined exactly as 

any exact differential 1-form e whose image h6 under a linear operator 

h, is also exact. 

Ve6~n<.,ti.on 2. The rate of change of a quantity U in a volume M is classi= 

cally expressed as the negative sum of fluxes F(U) of a quantity U across 

a boundary aM. 

~t f UdV = f F(U)dS 
M 

where dV and dS are volume' elements on M and aM respectively. Using 

(1) 

Stokes theorem and the fac:t that M was arbitrarily° chosen, we obtain finally 

the partial differential equation 

au + 'ii • F(U) = o at 

in cli.ve.JtgelUCe 6oJtm or in conservation law form. 

Ex.ample 1 

(2) 

The divergence form of a heat conducting viscous 'fluid is given by the 

continuity equation 

289 

*+'i/· (pV) = 0, (3) 

the energy equation 

~+ 'i/ •JEV - K'i/T + [-rJ·V} = 0 (4) 

K thermal conductivity E total energy 

p density v velocity vector 

T temperature [T] the stress tensor 

a the tensor product, 

and the momentum equation 

a ar(pV) + 'i/ • {pV a v + [T)}= 0 (5) 

(6) • 

where E is the internal energy, and E the total energy . The stress-tensor 

for a Newtonian fluid is: 

[T] = (p ~ :W•V)[IJ • 2µ[0] (7) 

where 

p is pressure 

A,µ viscosity coefficients 

[I] the identity dyadic 

[0) the deformation tensor 

For an ideal gas the equation 

where 

of state is 

p = pRT 

cp specific heat at constant pressure 

R the gas constant 

E internal energy = CvT 

a is the tensor product 

given by: 

(8) 

CV specific heat at constant 
volume 

R = Cp - CV 
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The conservation law fonn of the fluid dynamic equations is important for 

the numerical computation of certain flow fields. This is particularly 

true for flows with shock waves where in fact the Rankine-Hugoniot condi= 

tions can be satisfied by a· mesh adjustment. 

1.2 Fluid dynamic equations in curvilinear coordinates 

Following the approach of Eiseman and Stone [lJ let x1 , ... ,xn be fixed 

Cartesian coordinates and let y1 , •.. ,yn be curvilinear coordinates. The 

local vector fields {a/ax1 , ••• ,a/axn} fonn the basis of Rn while 

{a/ay1 , ••. ,a/ayn} are an alternate basis related to the first by 

(9) 

using the Einstein sunmation convention. 

We assume the Jacobian J = det(axi/ayj) to be different from D and we 

denote 

ei = a/ayi • i=l,2, .. . ,n. (10) 

A metric on the vector fields is an _inner product < ·, ·>. By applying 

the metric to the basis elements ei we get 

axa axa a a 
gi. =< e.,e. >= :-,- < - , 3 > 

J 1 J ay ai axa ay 

axa axa axa axa 
= - - cS = - -, summation on a. 

ay1 ayJ aa ay1 ayJ 
(11) 

The differential element of arc length ds can be obtained from the rela= 

tionship: 
a a 

(ds) 2 = cS 
0 

dxa dxa = cS 0 ~ ~ dyw ay0 • g, __ d-:,fl dy0
• (12) 

o., ap ayw ayo ~ 

If A is the Jacobian transfonnation axi/ayj we have gij = AAt; then 

g ~ det(gij) = det AAt = (det A) 2 
• J 2 (13) 
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i.e. (gij) is non-singular if J;O i.e. the matrix gij has an inverse which 

will be denoted by (gij). 

Following Eiseman and Stone [lJ, we note that to express the system (3)-(5) 

of fluid dynamic equations in curvilinear coordinates we need to define 

a dual basis {e\ .. ,l!n} by 

< Lej >= o~ 
1 1 

(14) 

where 

(15) 

Then the gradient is defined as_ 

'V = ek 3 Dk (16) 

and the divergence 'V is defined by replacing the tensor product in 'V by 

a dot product. To obtain the dot product one applies the· metric to ek 

and the first component of the tensor on the right. 

Furthennore if IQ= IJI the absolute value of the Jacobian is independent 

of time, each equation can be multiplied by lg and lg can also be brought 

under the time derivative. 

The continuity equation then becomes 

a a · 
at(plg") + --,(pv1/9) = D • 

ay 

The energy equation becomes 

}i-(E/9) + 4(Evi-gijK aTJ + g . Tij vr)/gJ = O 
ay ay rJ 

and the momentum equation is given by: 

where 

(17) 

(18) 

(19) 
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_i gja agai agak agi k 
l":k = --,.- { ---,.;-- + ~ - - } 
, ~ ay~ ay, aya 

(20) 

is the Levi-Civita tensor, designed to be compatible with the metric 

(21) 

while 

(22) 

In the curvilinear coordinate system the continuity and energy equations 

remain in conservation law form wh.lie .the momentum equ.a.tlon m.l.16e.o th.-i.6 

6oJun due to .the 6oU/lee-.ii.h.e teJun sir r{r· To transform it into a censer= 

vation law form one has to rewrite the momentum equations in a way that 

absorbs the source-like term. By using the work of Anderson, Preiser 

and Rubin [12] and implementing the method of integrating factors, one 

obtains momentum equations in conservative form: 

~t(pvs lg axm) +_a_ (Bij ~) = 0 m=l,2, .. . n . (23) 
axs ai' ay1 

The conservation law form of the fluid dynamic equations is important for 

the numerical solution of flow fields. In particular this is true for 

flows with shock-waves ·where the Rankine-Hugoniot conditions can be sa= 

tisfied by a mesh-adjustment. 

1.3 Conservation law forms from Stoke's theorem and differential forms 

In a region M of an M-dimensional Euclidean space a quantity U is con= 

served as a function of time if the rate of change of U in M is equal to the 

negative sum of the flux w of quantity U across the bounda~y aM. Usi~g 

Flanders [13] notation of exterior differential forms, the conservation 

of U is given by 
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~t f U 0 dV = - f w 
M oM 

(24) 

for a positively oriented n-form dV as a volume element on M and for some 

(n-1) form w which is some function of U that describes the U-flux through 

aM. If x1 ,x2
, .•• ,xn are Cartesian coordinates ordered in such a way that 

dV = dx1 
11 dx 2 

11 ••• 11 dxn the flux can be expressed as 

n 
w = r (-1) 1 F1 (U) 0 dx1 

11 •• • 11 dxi-l 11 dxi+l 11 •• • 11 dxn 
i=l 

(25) 

where Fi is the flux in direction xi. 

When U is a vector then Fi are vectors in the same space and w is a (n-1) 

vector form. Using Stokes theorem we obtain 

au a n aFi f at 0 dV = at f U 0 dV = f. w = f dw = f ( r ~) 0 dV 
M M oM M M i=lax, 

(26) 

Remembering that the region M is arbitrary, we obtain the conservation 

law form 

au · n ~-
at + E 1 - O • 

i=l ax 
(27) 

An alternative definition of a conservation law is any pde in n indepen= 

dent variables {x1 , ... ,xn} .and p dependent variables {y1, ... ,yP} which 

has the form: 

n a1/Ji 
E ~= 0 

i=l ax 

where 1jJi are functions of y1 , •.• yP. 

hample 2 

(28) 

The equations describing an inviscid ideal fluid in general curvilinear 

coordinates are given by the system 

(29) 



where 

and 
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r 
P = (y-1) [E - W: {1L} 2 )p] 

r P 

aj - are contravariant coefficients 

y = cp/cv 

1.4 Expression of a system of pde's in~enns of conservation laws 

Consider the conversion of a system of the fonn 

a a ···· 
at(u) + (h) ax (u) s o 

where (u) is a column vector 

(h) is a square matrix with entries depending only on (u) . 

(30) 

(31) 

(32) 

(33) 

Can we find a suitable nonsingular matrix depending only on (u) to obtain 

a system of conservation laws. 

(34) 

where U and V are column-vectors depending only on (u)? 

Example 3 

Let us take the equations of one dimensional time-dependent, nonisentropic, 

adiabatic fluid flow: 

2!15 

= 0 (35) 

p, u, p, y - are density, velocity, pressure and adiabatic constant .res= 

pectively. 

If S is entropy and p=p(p,S) and one assumes y > 1 then (35) is equivalent 

to the system 

where p = yp/p = c2 > O. 
p 

(36) 

Note that the eigenvalues of the 3x3 matrices which appear in (35) or 

(36) are distinct. These are u-c, u, u+c, and their corresponding eigen= 

vectors are (O,pc2 ,-c),(c2 ,0,l) and (O,pc2 ,c). If p > 0, which is the 

physical case, we can premultiply the system (35) by the nonsingular 

matrix 

(37) 

to obtain the following system of conservation laws 

[

pu j 
pu 2+p = 0 . 

pu3+ 2y pu 
Y-T 

(38) 
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1.5 Conservation laws and variational principles (Noether's theorem) 

Let us take again the form 
n a,1,i 
i: =... = 0 

i=l ax1 
(39) 

The functions wi may themselves be in the form of derivatives . Let f be 
. a j . 

a function of yJ, ~and x1
, j=l, •. . ,p and i~l, ... ,n. 

ax 
Let 

Y~. - ¥rj i 
- , X = [X ] 

1 ax 
(40) 

We consider the n-fold integral f fdx where R is a closed bounded region 
R 

and we assume that the integral is invariant under a family of transfor= 

mations with an arbitrary finite number of parameters. Further we suppose 

that f does not explicitly depend on then independent variables xi which 

can then be taken as parameters. 

If we now look for a stationary value for f fdx we obtain p Euler varia= 
R 

tional equations, which are: 

n a 
fyj 2 i: ~,fi = O . 

i=l ax Yi 
(41) 

"Noether's theorem is a means of associating a conservation equation with 

an infinitesimal transformation having an action integral invarfant. 

In our notation Noether's · result asserts that n linear combinations of 

(41) which have the form of conservation laws can be found. I.e., there 

exist functions w~. 0 ,; k ,; n such that: 
1 

n a awk 
l: ~ f al=:-,+ 

i=l ax 1 Yi ax 

aw~ 
... n " o 

ax 
(42) 

where a~ is an (nxp) matrix and the range of summation on a is from 1 to 

p. 
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Other relations with similar form are 

a · a · ~ (ylk) + :-k (-y~) = 0 
ax 1 ax 1 

(43) 

The number of conservation laws which appear in (43) depends in general 

on the group of transformations which fixes f fdx. 
R 

Example 4 

We seek a stationary value for 

J = f f ( w2 + w2 )dx dy ( 44) 
R x . y 

where R is the unit disc. Here we have n=2, p=l. The conservation laws 

we can obtain from (44) have the form 

(45) 

The first of the above relationships is the variational equation 

wxx + wyy = t.w = O • ( 46) 

One observes that J is invariant under a one-parameter transformation 

group given by 

That is 

x• = x(cos e) + y(sin e) 
(47) 

y• = -x(sin e) + y(cos e) 

f f (w; + w~)dx dy = f f (w;. + w~.Jdx* dy* where R = R* . 
R R* (48) 

When the number of dependent variabl es is greater than two, the problem 

of obtaining conservation laws becomes more difficult. See Osborn [15]. 

For the existence of conservation laws on manifolds see Eiseman and Stone [1 
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fXlllllp,f.e. 5 

Conservative fonn of the time-dependent Navier-Stokes equations 

The Navier-Stokes equations for plane-flows are written in cartesian 

coordinates (x,y) as follows. 

au + aF + aG = 0 at ax ay 

The unicolumn matrice U,F and G have the following expressions: 

U = [p,pu,pv,pEJT 

while F and Gare split into 

or component-wise 

inviscid tenns viscous tenns 
(R,S) 

F = Fl (U) - R(W,oW/ax,aW/ay) 

G = G1 (U) - S(W,aW/ax,aWjay) 

H • [:J 
p = (y-l)pe 

lpv l puv 

pv2+p 

(pE+p)v 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

0 

R = 
'xy 
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s = 

0 

'yx='xy 

'yy 

ur:xx + vr:xy + c: ~~ 
K - thennal conductivity 

ur: + vr: + ...! ae 
xy yy cv ay 

q ·- KgradT 

r: = (>.+2µ) 2!:!_ + ). ~ xx ax ay 
Stress tensor r: _ (au + av) 

xy - µ ay ax 
r: = ). 2-!!. + (A+2µ) av yy ax ay 

).,µ - viscosity coefficients 

). : ).(T), µ =µ (T), K=K(T) 

3). + 2µ ~ 0, µ ~ 0 

(56) 

(57) 

(58) 

If one assumes local thermodynamk equilibrium one always makes use of the 

Stokes relation 

3). + 2µ = 0 (59) 

See also Viviand [16J and Vinokut [17]. 

1.6 The Korteweg de Vries Equation and its Conservation Laws 

We consider the equation 

(60) 

and its generalizations. 

In this context a conservation law associated with an equation such as 

(60) is expressed by an equation of the fonn 

(61) 
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where T the con6e1r.ved den6Lty and -X, the flux of T, are functionals of 

u. 

De.6.i.n.Ui.on. (Kruskal, Muira and Gardner [18J) 

Local conservation laws 

If Tis a loca.l functional of u, i.e. if the value of Tat any x depends 

only on the values of u in an arbitrarily small neighbourhood of x, then 

Tis a l.oca.l con6e11.ved dl'.n.6,i;ty, If Xis also local, then (61) is a 

local con6e11.va.tlon laM. If T is in particular a polynomial in u and its 

x derivatives are not dependent explicidy on x and t, then we call T a 

polynomial conserved density; if X is also such a polynat1ial we call (61) 

a polynomial conservation law. There .is a close relationship between 

constants of motion and conservation laws. 

For KdV equations (for a polynomial conservation law) T and X are each 
a0 a1 ai. 

a finite sum of terms of the form u
0 

, u1 , .. . ,ui. where 

and aj are nonnegative integers. 

_ aju 
uj - axJ (62) 

The rank is defined as the sum of the number of factors aj and half the 

number of x differentiations 

2. 
r1 z i: (1 + iJ)a . • 

j=O J 
(63) 

A polynomial of rank r is one whose terms are all of rank r. 

There is a polynomial conservation law with nontrivial conserved density 

Tr for each posi.tive integral rank r (and corresponding flux Xr of rank 

r+l). 

Historically it is to be noted that Korteweg and de Vries Cl9J chose to 
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exhibit their equation in conservation law fonn i .e. 

an - 1 .& a (! n2 + i an + ~ a a2n2l 
at - 2 2. ax ax (64) 

n surface elevation above equilibrium level 

a small arbitrarily constant related to the uniform motion of the liquid 

g gravitational constant 

a 

p liquid density 

T surface capillary tension 

The KdV equation describes the evolution of long water waves down a canal 

of rectangular cross-section. The KdV equation can be rewritten as 

(65) 

by the rescaling transformations 

t' = ir;I t , X' - Ta , u -ln-~a (66) 

where we have dropped the primes. 

The KdV equation is Galilean invariant. (Muira [20J). Conservation laws 

can be used for deriving 'a priori' estimates and to obtain integrals of 

the motion. Three first conservation laws for the KdV equation. are 

(67b) 

(67c) 

The first is the KdV equation in conservation law ·fonn. The second i s 

obtained by multiplying· by 2u and the third by multiplying by 3u2-uxx and 

algebraically manipulating the differentiations. 
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These conserved densities can be interpreted as mass, momentum and ·ener\l.)t 

conservations for some physical systems. The infinity of conserved densi~ 

ties beyond these first three do not seem to have any physical interpre~ 

tation. The proof of the existence of an infinite member of polynomial 

conservation laws was given by Kruskal, Muira, Gardner and Zabusky [18], 

Gardner [21] and Kruskal [22J. Muira [23] studied the polynomial censer= 

vation laws of a general class of KdV equations 

(68) 

This was also the starting point for the inverse scattering method for 

the exact solution of the KdV equations. 

1.7 Conservation laws for generalized KdV eguations 

If we consider the class of equations 

(69) 

(with all coefficients equal to 1, witnout loss of generality) Kruskal 

and Muira [22] obtained the following results: 

a) if r is even (Burger's equation p=l, r=2, then there exists only one 

polynomial conservation law i.e. the equation itself) 

b) If r is odd i.e. r=2q+l, q=O,l there exist always three conservation 

laws for any p ;,; 0 with the conserved densities given by 

(70) 

For q=O, we define a new variable v = uP+l to get the equation 
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(71) 

which always has infinitely many conservation laws. 

For the case p=O, the equation is linear and there are infinitely many 

conservation laws with conserved densities 

T = (anu/axn) 2 n=0,1,2, •.. (72) 

The cases p=l and p=2 with q=l correspond to the KdV equation or the modi= 

fied KdV equation respectively. All the other cases have only the three 

(polynomial) conservation laws. 

0 2 p "' 3 

0 00 00 00 00 

1 
00 00 00 

3 

q "' 2 I 00 3 3 3 

The results and concepts developed for the KdV equation like conservation 

laws have been extended. to other nonlinear pde's like the nonlinear 

Schrodinger equation 

(73) 

and the sine-Gordon equation (see Lamb [24J) 

uxt = sin u (74) 

or 

utt - uxx + sin u = O • (75) 
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1.8 Benney' s equations and their conservation laws 

These are fully nonlinear long-wave equations describing the motion over 

a flat bottom of a two dimensionally inviscid fluid with a free surface 

in a gravitational field in the long-wave approximation. 

The equations have the form 

y 

subject to boundary conditions 

ht + u0 hx - v0 = 0 ) 

y = 
p P

0 
= constant 

and v = O at y = 0. 

(76.1) 

(76 .2) 

(76.3) 

h(x,t) (76.4) 

The flat rigid bottom is denoted by y = 0 and the free surface by y=h(x,t) 

(Benney [25J). Here u and v are the horizontal and vertical components 

of velocity, p is density. 

- --- -
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[f one defines the following integrals 

h(x,t) 
A (x,t) = f u(x,y,t)ndy, n=0,1,2, • .. (A

0
(x,t) = h(x,t))(77) 

n o 

it was shown by Benney [25J that this system of equations possesses an 

infinite number of conservation laws of the form 

Tt + Xx = 0 (78) 

where T the conserved density and -X, the flux, are polynomials in the 

An n=0,1,2,... . Muira [23J proved that the fully nonlinear long-wave 

equations possess an infinite number of local conservation laws in the 

form 

(79) 

where T the local conserved densities and -X,-Y the loca l fluxes are 

polynomials in n·and the An. 

Eqn (76.1) is already in conservation form. Multiplying (76.1) by u and 

adding to (76.2) yields a second conservation law 

(80) 

To find the third conservation law multiply (76.2) by u giving 

(81) 

Using (76 . l} to replace vy by -ux and integrating the last term by parts 

and again using (76.1) we obtain 

(82) 

T.hese three conservation laws have the usual interpretation of conserva= 

tion of mass, momentum and energy respectively . 
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Benney (25) obtained the fo11ow.ing result for these equations: If u(x,y,t) 

and h(x,t) are continuous functions with continuous first-order partial 

derivatives for - 00 < x < + m • 0 s y s h, and satisfy (76.1)-(76.4) then 

(83) 

For other extensions see Muira [26J. 

2. DISCRETE APPROXIMATIONS OF CONSERVATION LAWS 

2.1 The Arakawa approach for an 'a priori' method for enforcing conserva= 

tion laws on the discrete approximation of a simple flu id-dynamics 

equation 

We shall introduce Arakawa's method [27] by considering the vorticity 

equation 

·~ 2 at+ v.v~ = o, ~ = v "' (84) 

where the velocity V is assumed to be nondivergent i.e. it can be ex= 

pressed as 

(85) 

where ljJ is a stream function and the vorticity is 

(86) 

i.e. 

(87) 

and substituting (86) into (84) . We obtain 

a 2 a 2 2 
~ V 1/J =at~= J(V ljl,ljl ) = J(~,ljl) = -J(ljl,V 1/J), (88) 

This equation gives the local change in vorticity as a result of advection 

by a two-dimensional nondivergent velocity. 
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If the Gauss divergence theorem is applied to (84) over a closed regi on 

and there is no flux at the boundaries or the region is closed, the right-

hand side of (84) vanishes. This means 

-~ = 0 at (89) 

where ~ means the integral over the region, so that we obtain that the 

total (or mean) vorticity is conserved. If (84) is multiplied by ~ we 

obtain 

(90) 

Application of the Gauss divergence theorem again shows that the total 

or mean square vorticity called e.n6-tlt.ophy is also conserved . 

Finally, multiplying (SB) by ljl, we obtain 

(91) 

Modifying each term as follows 

(92) 

ljJV·(~V) = V·(ljl~V) - ~V·Vlji (93) 

and substituting these expressions in (91) gives 

Vljl•V ~ = V· (ijJV ¥tJ + V· (ljl~V) - ~V·VijJ • (94) 

The term -~V·Vljl vanishes identically since 

V .l to Vljl . (95) 

Also 

(96) 

where Vi/J•Vljl i s twice the kinetic energy. When the Gauss theorem is applie 
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the rightchand side of (94} vanishes and we obtain 

a(''71ji·Vljl}/ at • o (97) 

which means that the mean k.lne.tic. eneJ!Sy is .conserved over a closed 

region. This means that for the vorticity equation (84) over a closed 

region, mean kinetic energy, mean vorticity and enstrophy are conserved. 

In a famous paper published in 1959, using the vorticity equatio.n, Phillips 

[28J showed that the leapfrog centred space-differencing scheme leads to 

nonlinear instability with a catastrophic 'blow-up' in kinetic energy in 

the short wavelenghts range. This is contrary to the results of Fj~rtoft 

(29) who has shown that, in the continuous case, total kinetic energy 

is conserved and also that there is no cascade of energy towards short 

wavelengths in the continuous case, i.e. the average unve numbeJt. .<.,o al.ho 

C!Onl>eJt.Ved. 

Phillips (28) found that a mere reduction in grid-size or time increment 

did not eliminate the nonlinear instability. The instability could how= 

ever be controlled by periodically removing wavelengths 4d and smaller. 

This was done either by the application of a space filter 

(98) 

or by an artificial diffusing term such as Dv2A, where ·o is the eddy­

diffusivity, or finally by using a selective finite-difference scheme. 

All these methods are not very satisfying as they distort the solution 

by affecting longer waves in the process of a long-term numerica~ inte= 

gration. 

Arakawa [27J sought to prevent a false cascade of energy and enstrophy 

by maintaining the conservation of mean enstrophy, kinetic energy and 

vorticity for the barotropic vorticity equation for a time-continuous space 

- ~-~ -
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difference discretization. He started with the barotropic vorticity equ< 

tion written in Jacobian form 

a~ ) at = - J(ljl.~ (99) 

by considering each of the products 

~J(ljl, ~ ) and ljlJ(ljl,~) (100 : 

with several different finite difference Jacobians to determine whether 

they conserve kinetic energy or enstrophy. · 

The essence of the Arakawa 'a priori' method will be exposed now. 

The analytic Jacobian can be expressed as 

( 101 ) 

Using the following 9 point stenci l 

6 2 5 

EE: 
we can obtain the following finite difference Jacobians 

(102) 

(103} 

(104} 

The superscript + or x denotes the points from which the finite differenc 

approximations for the derivatives of 1jl and ~ (in that order) are formed 
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A + symbol indicates use of the points (1,2 ,3 ,4) and the x symbol ind i= 

cates the use of points (5,6,7,8). All the Jacobians (102-104) are of 

the general bil-inear fonn 

-1,0,+l 
Jij(ip,i;;} = k,.e.:m,n ci,j,k,R.,m,n ljli+k,j+.e. i;;i+m,j+n • (105) 

The coefficients c can be determined so that the finite difference di s= 

cretization possesses as many of the conservation properties of the ana• 

lytic (continuous) differential equation as desired. If (99) is multi= 

plied by i;;ij the left-band side represents .the local rate of change of 
2 

l;ij' 

In this case the right-hand side may then be written as 

-1,0,l 
E a .. i j 1;. j 1; •• m,n l ,J, +m, +n i+m, +n i ,J · 

(106) 

The rate of change of 1;2 at the point (i,j) may be considered to be the 

consequence of interaction between the given point and adjacent points. 

Also the change of 1;2 at point (i+m,j+n) will receive a corresponding con= 

tribution from point 1;ij" A net change of mean square vorticity (i.e. 

non-conservation) may be avoided if the gain at the point (i,j) due to 

interaction with point (i+m,j+n) is exactly balanced by a corresponding 

loss at (i+m,j+n) due to point (i,j). This occurs if the coefficients 

a fulfil the condition 

ai ,j, i+m,j+n = -a i+m ,j+n, i ,j (107) 

Consider now the gain in square vorticity at point o due to the value at 

point 1 and vice versa. The results, excluding the term 4d 2 are 

(108) 

(109) 

- --- ----- - -
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Since the tenns do not cancel and no other opportunity for the product 

1;
0 

1;
1 

occurs over the grid, the sum i;;J++ cannot vanish in general and ~2 

will not be conserved i.e. 

Similarly 

+x 
l;o Jo - 1;0 1;5 (ip1-ip2) + . .. (110) 

1;5 J+x -
5 1;5 1;0(1j12-ljl1) + •.. (lll) 

and 

l; Jx+ - -
0 0 1;0 1;1 (ips-ipa) + ... (112) 

1;1 Jx+ -
1 1;1 1;o(ip2-ip'+) + . .. (113) 

Arakawa (27J found that J+x does conserve c2 since the contributions at 

adjacent points exactly cancel one another, while a comparison of terms 

comprising i;;J++ and 1;Jx+ shows that they are opposite in sign. So it is 

clear that 

(114) 

A similar examination of the finite difference approximation of ljlJ( ip , 1; ) 

shows that 

Jx+ + i (J++ + J+x) conserves K. (115) 

Sy combining (114) and (115) it is seen that the Arakawa Jacobian 

(116) 

conserves enstrophy ~ 2 , mean vorticity~ and mean kinetic energy R 
Arakawa [27) has shown that his Jacobian also conserves the me.an IA.tlve 

11W11bVL. As a result of these discrete conservation properties, the Arakaw 
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Jacobian prevents the continued growth of very short waves, which is charac= 

teristic of ~onlinear instability. Aliasing is still present in the form 

of phase errors but these also result from linear finite-difference trun= 

cation-errors. Lil.ly [30] has given a rigorous proof by spectral methods 

that Arakawa's quadratic conserving scheme eliminates the type of nonlinear 

instability demonstrated by Phillips [28]. The conservative properties 

of the Arakawa Jacobian have been established for the time continuous case, 

but not for time discretization. For instance when the time derivative 

is approximated with the leapfrog time differencing scheme and the Arakawa 

Jacobian is used, it follows that 

(117) 

Hence 

so,n so,n+l = so,n so,n-1 • (118) 

But this is not the correct conservation property for mean square vort i= 

city, which should be written as 

s~.n+l = ~~.n = s~.n-1 ' etc. (119) 

If the time differencing gives 

~o,n = (so,n+l + so,n-1)/2 (120) 

the above (119) property holds but th is requires a rather complicated 

implic.it scheme. We shall come back to this shortcoming in another sec= 

tion. It has been demonstrated by Jespersen [31J that the Arakawa Jacobian 

is a special case of a finite-element method using rectangular ·9-noded 

elements. 
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2.2 Generalization of Arakawa's scheme to the shallow-water equations 

(Gramme 1 tvedt [32J) 

We write the equations for a barotropic, frictionless, divergent flow 

with a free surface (shallow-water equations) as 

~ + u ~ + v ~ - fv + a¥' = o at ax ay . ax (12la) 

av + u av + v av + fu + a.p = 0 at ax ay ay (12lb) 

(121c) 

The velocities u and v are in the x and y directions respectively and 

¥>=gh is the geopotential of the fluid where g is the acceleration of 

gravity and h is the height of the free surface; f is the Coriolis para= 

meter. 

These equations conserve the integrals of mass, total energy and enstroph 

in the channel 0 s x ~ O , 0 s y ~ L, t ~ 0. In the following we will 

use a regular grid with horizontal spacing llx = lly = ll, and time increment 

llt. 

To derive the discretized finite-difference equations we will use the 

Shuman sum and difference operators 

(122) 

(123) 

(124) 

--x . 2 
Jxx = (~. x) = a + Tt; "xx l[ (x +•)~(x •)+2a(x )J ~ = • (l i '-' ~ i-u i • (125) 

A second and fourth-order finite-difference approximation to the first anc 



314 

second derivatives of a can then be written as 

(126) 

(127) 

(128) 

a~ ' - • i a - i a2x2x + 0(6 ) . ax2 ' xx 
(129) 

Now the Arakawa scheme for the two-dimensional vorticity equation describing 

frictionless, non-divergent flow in a closed domain is written in the 

Shuman notation 

(130) 

If we now use the vorticity components u and v in the x and y direction 

respectively, instead of the stream function ~ and the vorticity ~. by 

using the following relationships 

u = - ~~ and v = ~ (131) 

i. e. 

u ~ - ~y and v = ~x (132) 

and if we use second-order finite-difference approximations and ~ = vx-uy 

for the vorticity, Grammeltvedt [32J after some lengthy algebra derived 

the following generalization of Arakawa's scheme for the barotropic equa= 

tions (shallow-water equations). 
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+ 2vXY i1 + vx /} - fvXY + "' = 0 ( 133a) y y x 
--x y 

{2uxy vx + uY v + (vY vY) + i(v(v+n2V
2v)) + fuxy + 'l'y 0(133b x x y y 

and 

~tt + (~x u) + (~Yv) = 0 (133c) x y 

where 

'
2
u = u + u xx yy 

and the locations of u,v and"' in the grid are given by 

u u 
~ 

v b v V' 

"' II "' v v 

v 0 Vb V' 

II II 
v ·v 

"' "' 

(134) 

Fig.2 

For the non-divergent flow, the generalized Arakawa scheme will conserve 

mean kinetic. energy, mean vorticity and enstrophy. 

2.3 Two general conservation laws for shal low-water equations 

If we consider the equations describing the motion in a homogeneous in= 

compressible fluid with a free surface having bottom topography, we obtain 

ii'.+ <1.!5. x V* + 'il·(K+~) " 0 (135) 

~ + 'il·V* = 0 (136) 

Here q is the potential vorticity and V* the mass flux defined by 
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q = (f+~}/h (137) 

v• = hV (138) 

where V is the horizontal velocity, t the time, f the Coriolis parameter, 

~ the vorticity, ~=k·VXV , !. is the vertical unit vector, V the horizontal 

del operator, h the vertical extent of a fluid column above the bottom 

surface, . K the kinetic energy per unit mass, iV2 , g the gravitation 

acceleration and hs the bottom surface height and 

(139) 

If we multiply (135) by V* and combine the results with (136),we obtain 

the equation for the time change of total kinetic energy 

~t(hK} + V· (V"K) + V*·V<ll = 0 , (140) 

If we multiply (136) by <II we obtain the equation for the time change of 

potential energy, 

(141) 

Summation of (140) and (141) yields the equation of the conservation of 

total energy 

(142) 

where the overbar denotes the mean over a finite domain with no inflow 

or outflow through the boundaries. The vorticity equation for this fluid 

motion is obtained from (135) and can be written as 

ft.(hq) + V· (V*q) = 0. (143) 

Subtracting (136) times q from (143) and dividing by h gives 
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2.9_ + V·"q = 0 
at ' • (144) 

Now hq times (144) plus lq2 times (136) gives the equation for the time 

change of potential enstrophy (Ertel's theorem [33)). 

(145) 

which leads to the conservation-law of potential enstrophy 

a--2-ar< lhq ) = D. (146) 

Arakawa and Lamb [34) derived, after a very lengthy algebra, a potential 

enstrophy and energy conserving scheme for the shallow-water (S-W) equa= 

tions with bottom topography for general flow. They have shown that their 

scheme suppresses the spurious energy cascade towards short-wave numbers 

and that the overall flow regime is.adequately represented. This potentia· 

enstrophy 'a priori' conserving scheme was generalized by Arakawa and 

Lamb to a spherical grid while K.Takano [34] of UCLA derived a fourth-order 

accurate version of the scheme, both for square and spherical grids. 

2.4 The global barotropic (S-W) equations and their conservation laws 

(spherical coordinates) 

These equations can be written as: 

(147a) 

av l a 2 2 at + Z</IU + a ae<"' + Hu +v ) ) 0 (147b) 

~ l a a _ 
at+ .a cos e <aA (<Pu) + 1i6 (<Pv cos e)} - o (147c) 

where 

z = {f + a c~s 0 (~~ - fe.<u cos e))l/<P (148) 
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is the potential vorticity. 

a - radius of the globe 

e - longitude 

A - latitude 

This system has the following conservation laws 

conservation of 'mass' 

a " 2" 2 a f f "' cos e a dhd0 = 0 
t 0 0 

!_ J1" __ l_ {av - !. (u cos e)} cos e a2dhde = o at 
0 0 

a cos e aA ae · 

conservation of vorticity 

a" 2
" 2 22 2 n;f f {;.+"'Hu +v )}a cos e dhde = o 

0 0 

conservation of energy 

a " 2" 2 2 TI: f f t "' a cos e dhd0 a 0 
0 0 

conservation of potential enstrophy. 

(149) 

(150) 

(151) 

(152) 

Sadourny (35] has shown that fonnal conservation of potential enstrophy is 

more important than fonnal conservation of total energy, in that potential 

enstrophy conserving models of the S-W equations are inherently more stable 

and maintain more realistic energy spectra. 

In this case we choose to conserve mass. vorticity and potential enstrophy. 

Away from the poles such a finite element discretization is (Burridge 

[36J) 

(153) 
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(154) 

""' 1 at = - acose (\ u + o8(v cos 0)) (155) 

where the zonal and meridianal mass fluxes are given by 

u = ~Au, V • ~9v respectively (156) 

and 
4 

e = l(u2 + co! 9 (v2 cos 9) (kinetic energy) (157) 

-.a 
z = A 9A{f cos 0 + oAv - o9(u cos 0)} 

"' cos 0 
(158) 

and oh, 08 are the two-point · centred derivatives acting on i11111ediate 

neighbours along 9 or A directions. These finite differences used with 

the regular staggered grid illustrated in fig 2 conserves total mass, 

vorticity and the potential enstrophy, apart from boundary fluxes at or 

near the poles. 

Although energy is not conserved formally by these finite difference fonns 

it turns out that the model conserves energy very accurately. Near the 

poles a special form of finite differences is required to enforce the 

same conservation laws. Details can be found in Burridge (36]. 

2.5 Conservation laws for baroclinic primitive equations models 

The equations for a dry adiabatic version of a baroclinic model are in 

the normalized vertical pressure coordinate o 

(160) 
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a~ = -RT (hydrostatic equation) (162) 

where the vertical coordinate is a and is defined by 

a = p/ps a = da/dt (163) 

where Ps is the surface pressure. 

At the surface p=ps hence a=l and o=O; at the top of the atmosphere 

p=O hence a=O and cr=O. 

1 1 av a 
z = Ps f + acose [TI - as (a cos e)J (164) 

(165) 

(166) 

Here 

T - i s the temperature 

R - gas constant for air 

cp- specific heat at constant pressure 

The boundary conditions are 

(167) 

(168) 

('no flux' conditions). 

For this baroclinic model we require mass and total energy conservation. 

Integration of the continuity equation gives 
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(169) 

I 
The divergence tenn in (169) integrates to zero over the globe which means 

that the total mass is conserved. 

A 'kinetic' energy equation can be derived from the momentum equations 

in the fonn 

(170) 

Using the continuity equation (159), (170) can be written as 

In order to construct the total energy equation the pressure gradient 

terms must be expressed in another .form. Using the continuity equation 

(159) we have 

Combining (171) and (172) we have 

(173) 

Now 

(174) 

Addition of the kinetic energy equation and the flux form of the thermo= 

dynamic equation and integration from a=O to 1 gives 

- - - -- . 
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(175) 

This equation expresses the energy conservation for the a system (159)­

(163). The divergence term integrates to zero over the whole globe - i.e. 

we have that the total energy, potential plus kinetic, is conserved. 

2.6 The discretized version of the baroclinic primitive equations which 

maintains conservation of energy and mass (Burridge [36J) 

The vertical grid (see Fig.3) is such that the primary variables V and T 

are carried at integral levels, while the vertical velocity a and the 

geopotential 'P are carried at half integer levels. The variable vertical 

grid spacing 6ok is defined by 

Vertical grid 

Index 

------------- 0=0,op; o=o~=O 

---------------------------------- V,T,w; o=o1 

------------- a,ip; a:a3 
2 

2 ----------------------------------

k ---------------------------------- V,T,w; o=ok 

k+~ 
' '· : 

N ---------------------------------- V,T,w; o=oN 

N+! 

(176) 

! 
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2.6.1 I~~-~g~~~iQ~_Qf_£Q~!i~Yi~~ 

The vertically discretized continuity equation takes the form 

ap 6(p a) 
~ + Vo•(psVk) + ti~k k = 0 . 

Multiplying (177) by 6ok and summing (instead of integration) from 

k=l,2, .•• ,k gives 

(as Ps~~ = O) . 

For k=N we have 

a~ N N 
....-- = - E v ·(p Vk)tiok = - v • r v ·(p Vk)tiok 
•• k=l a s a k•l a s . 

(177) 

(178) 

(179) 

This equation is the finite-difference analogue of . (169) which obviously 

conserves the total mass of the model atmosphere. 

The vertically discretized finite-difference momentum equation is 

(180) 

where 

(181) 

The finite difference kinetic energy equation is 
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aek {pscrk+tvk+t"vk-psok-tvk·vk-1l 
Ps at+ t llak 

ll(p O->k 
• t Vk•Vk l>a~ + PsVk·Vaek + PsVk•{Va"'k+R\Vl.nps} = o. (182) 

This equation. may be rewritten in flux form by using the ·finite difference 

continuity equation 

where 

For the hydrostatic equation· we write 

l>aop 
(X'"lncr)k • -RT k 

and we obtain a finite-difference analogue of (172) 

PsVkVaopk = Va·{psVkopk} - opkVa·(psVk) 

. aps lla(Psa)k 
= Va·{psVkopk} + opk{ at+ l> } 

ap ak s . 
lla(op(a at+ psa)) 

= Va·{psVkopk} + l>a 
k 

-(llaop)k •Ps • •Ps · 
~ [Sk(a at+ Ps0 lk+t + ak(a at+ Ps0 >k-lJ 

ak + sk • 1 

as 

(183) 

(184) 

(185) 

(186) 

(187) 
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If we require total energy conservation then the fonn of the last term in 

(186) is a constraint in our choice of the w term 

(188) 

in the thermodynamic equation whose discretized form is 

ark ok+t(\+l-Tk)+ok-t(\-Tk-1) 
Ps at+ PsVk·VaTk + Ps H lla } 

k 

_ _l [RTwJ = 0 cp a k ' (189) 

If the w-tenn is chosen so as to maintain energy conservation we have 

(190) 

The term [llfn:illa]k can be interpreted as a definition of (l/ak) for the 

baroclinic model. 

Our remaining degree of freedom is in the choice of the weights ak and Sk 

subject to ak+Sk=l. The ECMWF operational model uses ak=Sk=t. 

More about this topic can be found in an article by Arakawa and Lamb [37] 

describing the UCLA general circulation model. 

Mesinger [38] developed a series of enstrophy and energy conserving fin i te­

difference schemes for the horizontal advection. An explicit potential 

vorticity conservation by finite-difference schemes framed in generalized 

vertical coordinates was developed by Bleck [39J . 
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3. 'A POSTERIORI' METHODS FOR ENFORCING CONSERVATION LAWS IN DISCRETIZED 

FLUID-DYNAMICS EQUATIONS 

All the 'a priori' numerical schemes modelling the discrete conservation 

laws result in rather complicated finite-difference schemes that are 

difficult to generalize to fluid-dynamics problems of interest. 

A different approach is to enforce the conservation relationships expli= 

citly by modifying the forecast field values, at each time step of the 

numerical integration.Sasaki ([40J, [41J, [42J) proposed such a variational 

approach and applied it to conserve total energy and mass in one and 

two-dimensional shallow-water equations models on a rotating plane. 

Bayliss and Isaacson [43J, Isaacson and Turkel [44) and Isaacson [45J 

presented a simple method of making any finite difference scheme conser= 

vative with respect to any qua.ntity. In their approach the conservative 

constraints were linearized about the predicted values by means of a 

gradient method for modifying the predicted values at each time step of 

the numerical integration. 

Isaacson et al [46J and Isaacson et al [47) have implemented the same 

technique in terms of simultaneous conservation for the shallow-water 

equations over a sphere, taking into account orography effects • . 

Their approach has been tested by Kalnay-Rivas et al [48J with enstrophy 

as the conserved quantity. Ka·lnay-Rivas [48), [49J found that the use 

of an enstrophy conserving scheme can be successfully replaced by using 

a fourth-order quadratically conserving scheme on a global domain, com= 

bined with the periodic application of a 16th-order Shapiro filter re= 

moving waves shorter than four times the grid size before they attain 

finite amplitude. 
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Navon [50] has shown that it is possible to achieve stable long-term 

integrations of the shallow-water equations using the above mentioned 

techniques. In these lecture notes a modified Sasaki variational approach 

to enforce conservation of total mass and potential enstrophy will be 

developed and then a modified Bayliss-Isaacson technique also designed 

to enforce conservation of potential enstrophy and total mass, will be 

described. 

A new approach based on viewing the problem of enforcing conservation 

laws in discretized models as a nonlinearly constrained optimization 

problem solved by an augmented Lagrangian penalty method will be men= 

tioned (Navon-de Villiers [51]). 

3.1 Formulation of the modified Sasaki variational method for enforcing 

conservation of potential enstrophy and mass 

3.2 The numerical variational algorittun 

3.3 The Bayliss-Isaacson algorithm 

[Ec:lU01t.'.i 110,te: As this material has already been published elsewhere 

([50], §2~§4), copyright restrictions do not allow its repetition. It 

should nevertheless be regarded as an integral part of the present survey, 

and for that reason the paragraph headings have been retained.] 

4. INTEGRAL CONSTRAINTS FOR THE TRUNCATED SPECTRAL EQUATION 

We shall illustrate in brief the properties of the spectral method by 

using the barotropic nondivergent equation 

~~ = -V-V(~+f) 

with the usual meaning for all symbols. 

(191) 
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For a non-divergent flow on the spherical globe we obtain 

~ = !•V x V = V2$ (192) 

where $ is a scalar stream function. We write 

V = (U,V) (193) 

where 

u = cos 6 ~ and V = .!. ~ · a aip a a:1. (194) 

Equation (191) is written in spherical polar coordinates as 

(195) 

where ip,:I., a and n denote respectively, latitude, longitude and the · earth 's 

radius and rotation rate. 

Using an expansion of $ in orthogonal surface spherical hannonics, a 

truncated expression for the stream function is 

(196) 

(197) 

where p~(sin <P) is the associated Legendre polynomial of the first kind 

nonnalized to unity, and the truncation parameter J denotes a rhomboidal 

wave number truncation, while m denotes a planetary wave number and 1-m 

denotes a meridional wave number. 

The nonlinear advection term is written as 

and 

c • -=--"-­
a2 cos <P 

~ ~ -

(198) 
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C~ = t E EE E {12 (12+1)-11 (11+1)}$~1$~2L(11 ,12 ,1;m1 ,m2 ,m). (199) 
m1 \ m2 12 1 2 

Here 

(200) 

Lorenz [58J proved that as a consequence of the non-aliased truncation, 

the integral invariants of the non-divergent barotropic vorticity equation 

(191) are also valid for the solution to the truncated spectral equa= 

tions. Lorenz [58J proved this for plane geometry using a representa= 

tion in terms of double Fourier series, while Platzman [59J did the proof 

for spherical geometry. Merilees [60] explicitly illustrated the result 

that the truncated set of spectral equations retains as invariant the 

domain integral of kinetic energy via conservative redistribution of energy 

within each individual interaction. For an extensive review on this 

issue see Machenhauer [61J). 

While spectral approximations conserve the gross characteristics of the 

energy spectrum and a systematic energy cascade towards higher wavenumbers 

is not possible, a certain btoc.IUng of energy in the highest wavenumbers 

occurs. In actual numerical integrations the integral constraints are 

of course only approximately valid due to time truncation and round-off 

errors. 

For three dimensional models the property of the spectral approximation 

of non-aliased truncation of the non-linear terms implies quasi-conser= 

vation of energy in adiabatic, friction-free numerical integrations. 

(Merilees [60J). Weigle [62] has made a detailed study of the conserva= 

tion properties of a spectral shallow-water equations model while for 

more general sigma-levels models Bourke [63J and Hoskins and Sirrmons [64) 

found that energy is very nearly conserved during adiabatic, friction-free 

integration. 

- -
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The blocking phenomenon resulting from neglecting interactions involving 

components outside the truncation limits was observed by Gordon and Stern 

[65J and Bourke [63J. 

In long-term low resolution spectrally truncated models the amplitudes 

of small-scale components will grow unrealistically large and a scale­

selective damping parametrization is required. 

5. CONSERVATION LAWS AND FINITE-ELEMENT DISCRETIZATION 

Here we will only refer to the Galerkin finite-element method. This 

method (see Cullen [66J) has a property of satisfying certain.conserva= 

tion laws. 

If we set 

w = au 
ax (201) 

and express w = twnXn(x,y) where Xn are basis functions, the Galerkin 

method gives 

f (w - ~)X = 0 
0 ax n (202) 

using the basic functions as test functions. 

If we multiply the n-th member of the system (202) by un and sum over n 

we get 

so that 

exactly. 

f(w - ~)u = O ax 

(203) 

(204) 

In many problems, this equation expresses conservation of energy or mo= 

mentum. 
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In general, any conservation law which can be expressed by multiplying 

the differential equation by one variable and integrating will be satis= 

fied exactly in the Galerkin method. Raymond and Garder [67] however 

find that conservation is a disadvantage on irregular grids. 

The two-stage highly accurate Galerkin method does not conserve 'energy' 

(Cullen [68J). It is likely that this is because the aliasing effect 

is removed in this finite element integration and that instability is 

less likely. Lee et al [69J considered the Boussinesq inviscid problem 

by finite-element discretization and found out that a method which con= 

served the quadratic quantities was most stable in terms of time integra= 

tion, whereas the standard advective form, which does not conserve any 

of the three quantities conserved by the Boussinesq equation namely total 

energy (E), total temperature (T) and total temperature squared (T2), 

performed very poorly in time integrations. 

5. 1 Conservation properties of the Boussinesq equation for finite-elemen 

discretization 

The equations for an inviscid Boussinesq fluid in a two dimensional regio 

o, with boundary r are: 

au 
p [at + .!!_·li'.!!.J = -li'p - PiYT in 0 (205a) 

li'•u = O in o (205b) 

aT at+ .!!_•li'T = 0 in O (205c) 

where p is density, .!!. the velocity, p the pressure, g the acceleration 

due to gravity,ythe volumetric coefficient of thermal expansion and T 

the temperature. 

For the case of a contained flow the boundary conditions are 
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!!"!! = o on r (206) 

where!! is the outward pointing unit normal vector on r . 

From (205c) we have 

~ T" + u·VTn = o at - (207) 

so that 

c& f Tn = f if = - f !!•VT" = - f V• (!!_Tn) = - f (!!•!!)Tn = O. (208) 
fl fl fl fl r 

Thus any integral of T is conserved. 

From (205a) we find 

(209) 

so 

Now 

(210) 

where.!:. is the position vector. 

From (206),(208),(209) and (210) we get: 

(211) 

This equation expresses the conservation-law of the total energy of the 

fluid . 

In a breakthrough paper Cliffe [70] found a particular Galerkin discreti= 

zation (using two parameters a and B and different finite-element inter= 
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polation spaces for pressure and temperature) such that the total energy 

E, the total temperature f and the total temperature squared (f2) were 

conserved. He used an eight-noded quadrilateral serendipity element 

for the pressure field, while for the temperature field a standard four­

noded element was used. The weights were a=S=i· 

5.2 The effect of time-discretization and other errors on conservation 

laws (Cliffe [70), Sanz-Serna [71J). 

We will first examine the effect of time-discretization. A semi-discrete 

equation can be written as 

y = f(y) . (212) 

To preserve the discrete conservation law we require a non-dissipative 

method of integration for (212). The simplest is the trapezoidal rule 

(Crank-Nicolson) leading to 

(213) 

Lee et al [69Jas well as Sanz-Serna [71J have observed that whilst (213) 

wi 11 preserve the conservation properties of 1 inear quantities, for 

quadratic quantities which are conserved in the semi-discrete equation 

(213) the conservation properties are lost. 

A second-order non-dissipative method, the midpoint rule, does however 

preserve the conservation properties of quadratic quantities i .e. 

(214) 

Other sources of error are the solution of nonlinear systems of equa= 

tions. In exact arithmetic, linear conservation properties are preserved 

at each iteration while for quadratic quantities, conservation properties 

are only preserved in the limit of convergence. 

. - ---- - ~ 
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If the region is not regular then .isoparametric transfonnations of the 

boundary finite-elements lead to integrals which have to be evaluated 

by Gaussian integration schemes introducing quadtuLtu!Le eJULo/UJ. Finally, 

all conservation properties are affected by rounding-errors, which are 

usually quite small. 
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