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1.   Introduction 

Proper Orthogonal Decomposition (POD) methodology is one that provides a 
very efficient way to perform reduced modeling via the identification of the 
most energetic modes in a sequence of snapshots from a time-dependent system 
and subsequently providing a means for obtaining a low-dimensional 
description of that system’s dynamics (see [1]). The method of snapshots that 
was first proposed in Ref. [2] for a flow system was a very effective and easy to 
carry out approach for obtaining POD basis sets. The POD method was 
originally introduced by Karhunen in 1946 (see [3]) and Loeve in 1945 (see 
[4]), and the method has been extensively used in research within recent years 
and has been successfully applied to a variety of fields, both in conjunction with 
experimental efforts (see [5, 6, 7, 8]) and other numerical studies (see [9, 10, 11, 
12]), including thermal convection, shear layers, cavity flows and external 
flows.   

In recent years, our understanding of the tropical ocean has increased 
dramatically. There is a vast and growing amount of literature based on the 
design of ocean models focused on the discretization of partial differential 
equations for physical systems. Such models are often hard to solve due to the 
high order systems that are needed to describe the state. So, the reduced-order 
modeling is derived by using the POD method to approximate the full modeling 
(see [9]). In order to improve the prediction of ocean and atmosphere, the data 
assimilation is a kind of effective method, 4D-VAR is a kind of data 
assimilation methods. However, a basal difficulty in the use of 4DVAR for 
realistic general circulation models is that we need to run the full model 
repeatedly, and the computation cost is very expensive. How to reduce 
computation cost and computation time is a very valuable work in solving the 
actual problem. EF method can be employed to solve this difficulty effectively. 
Another major difficulty in the 4D-VAR is the dimension of the control space, 
which is generally equal to the size of the model-state variable and is typically 
on the order of 107-108. Current ways to obtain feasible implementations of 
4DVAR consist mainly of the incremental method (see [14]), check-pointing 
(see [15]) and parallelization. However, each of these three methods has their 
obvious shortcomings. POD provides a potential technique that can dramatically 
reduce the computation and memory burdens associated with 4DVAR (see 
[19]). In the aforementioned works, we can obtain a low-dimensional dynamics 
system directly from the Galerkin projection of the governing equations on the 
POD modes. However, it is well known that the reduced systems resulting from 
the truncated Galerkin projection may result in spurious asymptotic states (see 
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[20]) and may be difficult to obtain the explicit form of the right-hand-side 
(RHS) of the equation, which consists of POD coefficients of the evolution 
equations.  

The equation free (EF) POD-assisted method was first used to resolve the 
above questions within incompressible flows (see [21]). The basic process is as 
follows (see Fig. 1): First one must devise and implement short-time numerical 
experiments with “the best available microscopic model, and the subsequently 
estimate quantities (derivative) that are required for numerical computation of 
the unavailable macroscopic equations for the coarse-grained system behavior 
(see[28,29]) by using the numerical results of aforementioned microscopic 
computations. Since ocean forecasting is very important for human activity, the 
topic we are investigating is more complicated and significant than a two-
dimensional flow past a circular cylinder. In this paper, we apply the EF POD-
assisted method to the simulation of the upper tropical Pacific Ocean model 
based on the POD model. Thus, we can estimate the closures that are required to 
obtain explicit macroscopic equations on demand and perform numerical 
analysis by running the microscopic simulations directly. This framework has 
been applied to solve many types of problems, such as bifurcation analysis of 
complex systems and homogenization of random media (see [22, 23, 25, 28, 30, 
and 31]). 

The paper is organized as follows: In section 2 the upper tropical Pacific 
Ocean model is described. The POD technique, its mathematical properties and 
EF POD model are presented in section 3. In section 4 we analyse the 
convergence and accuracy of the method. In section 5, the numerical 
calculations using EF POD method in the context of simulating the upper layer 
thickness and currents in this ocean model, as well as comparisons with the full 
model and POD model are discussed. We summarize the results we obtained in 
section 6. 

2.   Reduced-gravity Model of Upper Tropic Pacific 

2.1.   Description of the physical model 

A reduced-gravity model with a constant-depth surface layer was used in this 

paper, which was used in the study of ocean dynamics in tropical regions (Cane 

1979; Seager et al..1988). The model is a reduced-gravity, linear transport 

model, consisting of two layers above the thermocline with the same constant 

density (Fig. 1). 



 4 

 
Figure 1. The vertical structure of the reduced-gravity model. 
 It is assumed that below the thermocline, the ocean is higher in density, which 

is sufficiently deep so that its velocity vanishes and there is no density 

difference across the base of the surface layer.  That is, we regard the surface 

layer as part of the upper layer. The equations for the depth-averaged currents 

are: 
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where ),( vu  are the horizontal velocity components of the depth-averaged 
currents, h  is the total layer thickness, f  the Coriolis force, Ĥ  the mean 
depth of the layer, 0ρ  the density of water, A  the horizontal eddy viscosity 
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coefficient and α  is the coefficient of friction. The wind stress was calculated 
via the aerodynamic bulk formula, 

2 2( , ) ( , )x y
a D wind wind wind windc U V U Vτ τ ρ= + , 

Where aρ  is the density of air, Dc  the wind-stress drag coefficient and 

( , )wind windU V  are the components of the wind velocity. 

2.2.   Numerical Scheme 

The dynamical model equations [eq. (2.1a)-(2.1c)] are governed by wave 
dynamics. In addition, the model domain ranges were chosen to cover the region 
from 29 S ~ 29 N, 120 E ~ 70 W. This chosen model domain allowed all 
possible equatorially trapped waves to be excited by the applied wind forcing 
(Moore and Philander 1978). We chose the spatial interval for the dynamical 
model to be 5.0=Δ=Δ yx  and the time step to be 100=Δt s. This 
temporal-spatial resolution allowed all possible waves to be resolved and 
rendered the model integration numerically stable. The model was driven by the 
FSU (Florida State University) climatological monthly-mean winds (Stricherz et 
al..1992). Through a linear interpolation, the data were projected onto each time 
step and then into each grid point. In Table 1, the values of the numerical 
parameters that were used in the model integration are listed. 
 

Table 1. Values of the model parameters used for the full-model calculations. 

Parameter Value Remarks 

'g  
2107.3 −×  

Reduced gravity 

DC  3105.1 −×  
Wind stress drag coefficient 

Ĥ  
150 m Mean depth of upper layer 

aρ  1.2 kg m
3−  Density of air 

0ρ  1025 kg m
3−

 
Density of seawater 
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A  750 m2 sec-1 Coefficient of horizontal 

viscosity 

α  5105.2 −×  
Coefficient of bottom friction 

 
 It takes about 20 computational years for the model to reach a periodic constant 
seasonal cycle.  At that time, the computation has successfully captured the 
main seasonal variability of the dynamical fields. The currents and the upper 
layer thickness of the 21st year were saved for the process. 

The model was discretized on the Arakawa C-grid, and all model boundaries 
were closed. At these solid boundaries, we applied the no-normal flow and no-
slip conditions. The time integration used a leap-frog scheme, with a forward 
scheme every 10th time step used to eliminate the computational mode. On 
every integration day, a mass-compensation was carried out. 

3.   Computational Formulation of EF Method 

A Simple Introduction to POD 
In order to express the premise of the POD method, we will introduce the POD 
method in a continuous case. Since the basis for both the continuous and 
discrete cases are the same, we will describe the continuous case, despite having 
carried out the numerical experiments using the discrete case. 
Let )(xUi ( Ni ,,2,1 …= ) denote a set of N  observations (also called 
snapshots) of some physical process taken at position ),( yxx = .  The average 
of the ensemble of snapshots is given by, 

)(1
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xU
N

UU
N
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i∑

=

>==< .                                          (3.1) 

We now form a new ensemble by focusing on deviations from the mean as 
follows: 

 UUV ii −= .                                                 (3.2) 

We wish to find an optimal compressed description of the sequence of data 
using eq. (3.2). One description of the process is a series expansion in terms of a 
set of basis functions. Intuitively, the basis functions should in some sense be 
representative of the members of the ensemble. Such a coordinate system, which 
possesses several optimal properties, is provided by the Karhunen-Loève 
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expansion (see [35]), where the basis functions Φ  were in fact admixtures of 
the snapshots and are given by 

1
( )

N

ik i
i

V xβ
=

Φ = ∑ ,                                         (3.3) 

where the coefficients ikβ  are to be determined such that the value of Φ  given 
by eq. (3.3) will most closely resemble the ensemble { }N

ii xV 1)( = . More 
specifically, the POD seeks a function Φ  such that 
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that is subject to  

1||||),( 2 =Φ=ΦΦ ,                                        (3.5) 

which is maximized, where ( ⋅ , ⋅ ) and || ⋅ || denote the usual 2L -inner product 
and 2L -norm, respectively. 
It follows that (see, [36]) the basis functions are the eigenfunctions of the 
integral equation, 

)()(),( ''' xxdxxxC Φ=Φ∫Ω
λ ,                          (3.6) 

where the kernel is given by 
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Thus, we see that our problem from eq. (3.4) amounts to solving for the 
eigenvectors of a NN ×  matrix (see also [36]), where N  is the size of the 
ensemble of the snapshots as follows:  
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=
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N
                       (3.8) 

substituting eq. (3.3) into eq. (3.6), yields the following eigenvalue problem: 

' ' '

1
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N

i j j i
i

V x V x dx i N
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Namely, 
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,
1

N

i j j i
i

L η λη
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=∑ ,                                              (3.10) 

where,
1 ( , ),ij i jL V V
N

=  ( )ij N NL L ×= .We then may rewrite Eq. (3.9) in 

matrix form,  

λ=Cw w ,                                                    (3.11) 

where C  is a symmetric and non-negative matrix, 

' ' ' '
1 2 1 2

1 ( ) ( ) , [ , , , ] , [ , , , ]( 1, 2, , )ik i k N i i i iNV x V x dx i N
N

η η η η β β β
Ω

= = = =∫C w

, are the elements of the eigenvector corresponding to the eigenvalue of iλ . 

By using eq. (3.3), we can obtain the POD basis, , 1, 2,i i NΦ = . To 
achieve model reduction, one can define a relative information content to 
choose a low-dimensional basis of size ( )M N<< , by neglecting modes 
corresponding to small eigenvalues. We therefore define  
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and choose M  such that  

arg min{ ( ) : ( ) },M I k I k σ= ≥                                (3.13) 

where 0 1σ≤ ≤  is the percentage of total information captured by the reduced 
space 1 2span{ , , , }M

MB = Φ Φ Φ . The tolerance σ  must be chosen to be 
in the vicinity of unity, in order to capture most of the energy of the snapshot 
basis. The reduced model can then be obtained by the following expansion:  

1
( , ) ( ) ( ) ( )

M
POD

i i
i

U t x U x t xα
=

= + Φ∑ .                        (3.14) 

Assuming that the initial condition is unknown, for t =0, 
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1
(0, ) ( ) (0) ( )

M
POD

i i
i

U x U x xα
=

= + Φ∑  

Therefore, we obtained reduced control variables (0)( 1,2, , )i i Mα = . We 
can reconstruct the reduced order spaces and find the solution in such spaces. 
We can then use the Galerkin approximation to project the full model to the 
reduced order spaces spanned by POD basis functions, and then obtain the 
system of ODEs about coefficients. 
Supposing that the equations of the full order model have the following vector 
form: 

( ) 0U K U
t

∂
− =

∂
.                                         (3.15) 

the POD-reduced model equation can be denoted as, 

( ) 0
POD

PODU K U
t

∂
− =

∂
 .                                   (3.16) 

Substituting eq. (3.14) into eq. (3.16) yields the following ODEs about 
coefficients: 

1

( ( ( ) ), ) 0, 1,2, ,
M

i
j j i

j

d K U t i M
dt
α α Ω

=

− + Φ Φ = =∑  .     (3.17) 

where (0)( 1,2, , )i i Mα =  are given. 

So we can obtain the POD approximation of the full model by eq. (3.14) and eq. 
(3.17)  
The vector form of eq. (3.17) is, 

( ; ( ))d t t
dt

=
a Y a .                                                (3.18) 

It is very difficult or unavailable to know ( ; ( ))t tY a  in closed form, and to do 
so  entails a large difficulty in the application of the POD method. So, the EF 
POD-assisted method combines the EF method with the POD method to 
overcome the difficulty above. 
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3.1.   The EF POD Model 

The POD procedure extracts an empirical orthogonal basis using a modal 
decomposition from an ensemble of signals. So one can represent ( , )V t x  in 
the form,  

                   ( , ) ( )i i
i

V t x tα= Φ∑                                         (3.19) 

where 0{ ( )}i ix ∞
=Φ  is the basis extracted from the above eigenvalue problem 

(see eq.(3.3)-(3.11)) and 0{ ( )}i itα ∞
=  is the eigenvector corresponding to the 

eigenvalue. Since the basis functions are orthogonal, we can represent 
0{ ( )}i itα ∞

=  in the form,  

                     ( ) ( ( , ), ( ))i it V t x xα = Φ                                   (3.20) 

Here, we let ( ) { ( )}it tα=a ([21]) and we define a restriction operator ϒ , 
subject to, 

( ) ( , ) {( ( , ), ( )}, , }it V t x V t x x t W i= ϒ ≡ Φ ∈ ∀a ,            (3.21) 

and a lifting operator Ψ , subject to,  

( , ) ( ) ( ) ( ),i i
i

V t x t t x t Rα += Ψ ≡ Φ ∈∑a ,                     (3.22) 

where W  is a time interval, ϒ  and Ψ  are linear operators, and 
ϒ Ψ a= I a ≡ a, I is the unit operator. 

The whole method is often made of two levels, that is, an “inner” and 
“outer” simulator. The “inner” simulator is the microscopic, direct numerical 
simulation and the “outer” consists of many types of continuous mathematical 
methods at the macro scale level, such as finite difference, finite element and 
finite volume element optimization. The manner in which to link between macro 
and micro scales is the key problem.  
Here, the “inner” simulator is the fully-resolved, full-model numerical 
simulation for the tropical Pacific model. The “outer” (coarse) model is the 
unavailable, in closed form Galerkin sets of ODEs, which consist of coefficients 
of the evolution equations based on the first few low-POD modes. ( , )V t x  is 
regarded as the microscopic variable and the coefficient a( t ) is regarded as 
macroscopic variable, based on the POD reduced spaces. The process of the EF 
POD-assisted method was made up of the following steps (see Fig. 2):  Given 

( )n nT≡a a , 



 11 

1. Lifting: at nT T= , get ( , ) ( )n nV T x T= Ψa  
2. Microscopic variable computation: resolve the full model using eq. (2.1a)-
(2.1c) and obtain ( , )V T x  for a time interval *

n n nT T T T k t≤ ≤ = + Δ , 
where, tΔ  is the time step of the DNS of the full model, with k  being an 
integer. 
3. Restriction: compute the coefficients ( ) ( , )T V T x= ϒa  for 

*
n n nT T T T k t≤ ≤ = + Δ , and estimate the time derivative at *

nT T= . 
4. Projective integration: integrate eq. (3.18) to 1nT +  by the standard ODE 
techniques to obtain 1( )nT +a . 
5. Return to Step 1 until the final integration time is attained. 
 

 
Figure 2. Sketch of the EF POD-assisted method，

Na  is the time coefficient of the outer model, 
,k Nu  is the variable for the inner model. 

 
Remark: As discussed above, we can obtained the right-hand-side, 

Y( t ;a( t )) of eq. (3.18) from the eq. (2.1a)-(2.1c) by a Galerkin projection. This 
procedure may result in rather intricate forms and often suffers long-term 
dynamics, because not only we have to compute complicated ODEs but also 
POD model may diverge and will approach, after a long-time integration, 
another erroneous state (see [20, 32]). This “EF” approach can avoid these 
difficulties by using “just enough” full DNS simulations without requiring the 
explicit form of the RHS of eq. (3.18). 
Having obtained the POD time coefficients for *

n n nT T T T k t≤ ≤ = + Δ  in 
Step 3, we can obtain the time coefficients a ( 1nT + ) by using the following 
formula: 
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where 2I  is an integer, 
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where 1I  is the order of the approximation, 0{ }k
j jσ =  is a set of consistent 

coefficients, such that 1'
*( ) ( ) ( ),In

j j
dT T O t
dt

σ = + Δ∑ aa and the higher 

order derivatives of ( )tY  in eq. (3.23) are approximated by way of eq. (3.24). 
We call eq. (3.23) a projective integration scheme. 

4.   Convergence and Accuracy 

First of all, we consider the convergence of the EF POD-assisted method. 
We denote the finite-term POD expansion as, 

1
( , ) ( )

K

K i i
i

V t x tα
=

= Φ∑  ,                               (4.1) 

and correspondingly, the truncated restriction and truncated lifting 
operators as Kϒ  and KΨ , which are subject to, 

K K K KV I V V= ≡ Ψ ϒ                                   (4.2) 

We represent eq. (2.1a)-(2.1c) in vector form as follows: 

( , ) ( ; ( , ))t x t t x
t

∂
=

∂
U f U ,                             (4.3) 

here ( , )t xU  is a vector, consisting of ( , ,h u v ), and f is also a vector 
function. Let ,T tΔ Δ  denote the large-scale time step and short time step, 
respectively, ρ  is the maximum mesh interval and we applied a numerical 
scheme that was both consistent and stable. Let U  be the full-order 
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approximation and U  the reduced-order approximation resulting from the 
EF-POD method. A selected scheme of DNS is as follows: 

1( , ) ( , ) ( ; , , )k k kT x T x t T tψ ρ+ = + Δ ΔU U                  (4.4) 

Since the scheme was consistent and stable, we had the following requirements, 
at a given moment kT T= , 

, 0
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kT T T t T T TΔ → → Δ Δ = Δ − → , by virtue of eq. (4.5), 
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Let POD
K K KI= Ψ ϒ =U U U  be the numerical solution of the POD 

method, 

|| || ,POD zQ−− →U U  as Q → ∞ , 

where the real number 0z > denotes the convergence rate. By virtue of eq. 
(4.9), 
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We then consider the truncation errorθ , let 1 1( )N NT + +≡U U ,  
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+

++= − = = Δ + Δ + Δ −U U  

where 1 2( , )l lO tβ ρ= Δ  is the scheme truncation error of the full model. 
 So the final truncation error is, 
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1 2 1 21
1 2 ( ) ( ) (( ) ) ( , )I I l lz

kO Q O t O T T O tθ θ θ ρ+−= + = + Δ + Δ − + Δ . 

5.   Numerical results and Error analysis 

In this section, we present numerical results of the EF POD-assisted method for 
the upper tropical Pacific Ocean model. The number of snapshots was selected 
to be 12, 36, and 60, respectively. To quantify the performance of the reduced-
basis method, we used two metrics, namely the root-mean-square error (RMSE) 
and the correlation of the difference between the full-order and the reduced-
order simulations. 

This was obtained by first taking twelve-month’s of full-order results along 
with the corresponding twelve-month’s reduced-order results and computing the 
error.  For example, for the variable h , 

2
1

1 | ( ) ( ) |N
hm m i m ii

RMSE h z h z
N =

= −∑  

where N  is the number of the node, the index m  denotes the month, mh  is 
the full-order approximation and mh  is the reduced-order approximation. The 
average RMSE is defined as, 

12 12
2

1
1 1

1 1 1 | ( ) ( ) |
12 12

N
h hm m i m ii

m m

RMSE E h z h z
N =

= =

= = −∑ ∑ ∑  

and the correlation is defined as, 

1

2 2
1 1

( ( ) ( ))( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

N
m i i m i ii

hm N N
m i i m i ii i

h z h z h z h z
CORRELATION

h z h z h z h z
=

= =

− −
=

− −

∑
∑ ∑

 

First of all, we considered snapshots in the case of 36, and others were similar. 
Let the large-scale time step be taken as TΔ =5 hours, while the short time step 
as tΔ =100 seconds.  We let 2I =1 in the projective integration scheme of Eq. 
(3.23), and we researched the effect on RMSE when k  changes in k k tT = Δ , 
where k  is the number of iterations in the full model during one large time step. 
From Table 2, we can find that the RMSE decreases when kT  increases.  
Table 2. The RMSE of , ,h u v  for different numbers of iterations, k ( kT k t= Δ ) in the full 

model using a large time step TΔ . 
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kT  h  u  v  

18
TΔ   

0.41024467 

 

0.00306552 

 

0.00173173 

9
TΔ  

 

0.40551540 

 

0.00302744 

 

0.00160071 

6
TΔ  

 

0.40461191 

 

0.00301344 

 

0.00153364 

To save computation cost, we select 
18k

TT Δ
= ( k =10), considering varied 

large time steps, TΔ . From Table 3, we find that it is appropriate for the large 
time step to be chosen as either 5 or 10 hours. That is, a better result is obtained 
when the ratio between large and short time steps is either 180:1 or 360:1.  

Table 3. The RMSE of , ,h u v  for different large time steps. 

TΔ  h  u  v  

5 hours 0.41024467 0.00306552 0.00173173 

10 hours 0.40536597 0.00302397 0.00157455 

1 day 0.61680775 0.00434816 0.00220632 

Let TΔ =5 hours, kT =
18

TΔ
, and we research 2I =1, 2, 3 respectively, using the 

projective integration of eq. (3.23). The RMSEs are shown in Table 4. 

Table 4. The RMSE for different 2I  using the projective integration scheme. 

 2I =1 2I =2 2I =3 

h  
0.40551540 0.40523764 0.40523800 

u  0.00302744 0.00302595 0.00302595 

v  0.00160071 0.00159335 0.00159336 

We also researched different snapshots for 12, 36, and 60 (see Table 5).  
Table 5. The RMSE of , ,h u v  for calculations using 12, 36, 60 snapshots, respectively. 
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 h  u  v  

12 0.42748689 0.00264911 0.00128677 

36 0.41024467 0.00306552 0.00173173 

60 0.41343936 0.00322827 0.00189658 

We compared the EF POD with the POD method, and found that the EF POD 
resulted in smaller RMSE (see Table 6).  
Table 6. Comparison between the full POD and EF-POD methods using the RMSE of , ,h u v  as 
the comparison metric. 

 h  u  v  

POD 0.89352083 0.00811650 0.00669807 

EF-POD 0.40551540 0.00302744 0.00160071 

The better correlations of the EF POD-assisted method were also obtained when 
compared with that of the POD in different month (see Table 7). 
Table 7. Correlation comparison between the full POD and EF-POD methods for (a) upper layer 

thickness h (unit: m), (b) zonal current velocity u (unit: m/s) and (c) meridional current velocity v  

(unit: m/s). 

(a) 
 1 2 3 4 5 6 7 8 9 10 11 12 

POD 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

EF-

POD 
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

(b) 
 1 2 3 4 5 6 7 8 9 10 11 12 

POD 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 

EF-

POD 
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

(c) 
 1 2 3 4 5 6 7 8 9 10 11 12 

POD 0.8 0.9 0.8 0.6 0.8 0.9 .08 0.9 0.9 0.9 0.8 0.8 

EF-

POD 
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
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The main difference between the EF POD and the POD methods is in the 
manner in which the time coefficient is obtained; here we also compared the 
time coefficient of both methods with that of the empirical orthogonal function 
(EOF). Since the first mode captures the majority of the energy, we only 
analyzed the first mode time coefficient about vuh ,, .  

From fig. 3-5, we can find the time coefficients based on the EF POD were 
very similar to that of EOF, with the EF POD method providing a more 
convenient manner of extracting them.   
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Figure 3. The first-mode time coefficient of h  over one year, which are from EOF, POD and EF-
POD respectively. 
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Figure 4. The same to the figure 3, the result is from the zonal velocity u. 
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Figure 5. The same to the figure 3, the result is from the meridional velocity v. 
A comparison between the full and reduced orders is displayed in Fig. 6 about 
the upper layer thickness and in Fig. 7 and Fig. 8 about the streamline figure of 
velocity. 
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                                                        (a) 

 
                                               (b) 

 
                                               (c) 
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                                                        (d) 
Figure 6. Upper layer thickness h in (a) January, (b) April, (c) July and (d) November for the case of 
36 snapshots. The number of the POD basis was determined by capturing 99% of energy produced 
by the full-model approximation. Black: full-order approximation; green: EF POD; blue: POD. 

 
(a) 

 

 
(b) 
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(c) 

Figure 7. Streamline figure of the velocity during June for the case of 36 snapshots. The number of 
the POD basis was determined by capturing 99% of the energy produced by the full-model 
approximation. (a): full-order approximation ;(b): EF POD; (c): POD. 

 
(a) 

 

 
(b) 
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(c) 

Figure 8. The same to the figure 7, the results are from the December. 
The modes that capture 99% energy are necessary to construct POD models, 

especially, if a satisfying result was obtained when the number of POD modes 
( 6M = for h) is employed ( Fig. 9). 
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(c) 

Figure 9. (a) The POD-modes capture energy, (b) the relationship between the mode number and the 
RMSE for the upper layer thickness, h and (c) the relationship between the mode number and the 
RMSE for the velocity u,v. 

Finally, to find the difference for the different number of snapshots, we 
show the upper layer thickness in June and December for the cases of 12, 36 
and 60 snapshots in Fig. 10. It is evident that the difference is very small. 
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(a) 

 
(b) 

Figure 10. Upper layer thickness during (a) June and (b) December for the case of 12, 36 and 60 
snapshots, using both the full-model approximation and the reduced-order approximation. Black : 
full-order approximation, red : 12 snapshots, green : 36 snapshots, blue : 60 snapshots 
 

6.   Summary 

We applied the EF POD method to the reduced modeling of a large-scale upper 
ocean circulation in the tropical Pacific domain. We discussed the convergence 
and accuracy, and we analyzed the factors that affect the results in the numerical 
experiment. To quantify the performance of the EF POD method, we used two 
metrics, namely the RMSE and the correlation of the difference between the 
full-order and the reduced-order simulations. The main findings are as follows: 
when the ratio between the large and short time steps was approximately 180:1 
or 360:1, we found that better results were collected via EF POD than with POD 
alone.  When we select the ratio between these two time steps to be about 180:1, 
the computation cost was reduced dramatically. We found that the modes that 
capture 99% of the energy were required to construct the POD models, and the 
number of POD modes ( 6M = for h ) was the best choice in this model. The 
RMSE for the upper ocean layer thickness was about 0.3% of the average 
thickness and the correlations between the upper layer thickness with that from 
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the EF POD model was around 0.99. The size of the RMSE of the velocity 
between the full model and the reduced model was about 310− , and the 
correlation was about 0.9. The results obtained above were all better than those 
that were obtained using the full POD method.  Another advantage for EF POD 
method was its ability to allow one to bypass the derivation of the RHS of the 
macroscopic evolution equation. 
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