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ABSTRACT

The adjoint Newton algorithm (ANA) is based on the first- and second-order adjoint techniques allowing one
to obtain the ‘‘Newton line search direction’’ by integrating a ‘‘tangent linear model’’ backward in time (with
negative time steps). Moreover, the ANA provides a new technique to find Newton line search direction without
using gradient information. The error present in approximating the Hessian (the matrix of second-order deriv-
atives) of the cost function with respect to the control variables in the quasi-Newton-type algorithm is thus
completely eliminated, while the storage problem related to storing the Hessian no longer exists since the explicit
Hessian is not required in this algorithm. The ANA is applied here, for the first time, in the framework of 4D
variational data assimilation to the adiabatic version of the Advanced Regional Prediction System, a three-
dimensional, compressible, nonhydrostatic storm-scale model. The purpose is to assess the feasibility and ef-
ficiency of the ANA as a large-scale minimization algorithm in the setting of 4D variational data assimilation.

Numerical results using simulated observations indicate that the ANA can efficiently retrieve high quality
model initial conditions. It improves upon the efficiency of the usual adjoint method employing the LBFGS
algorithm by more than an order of magnitude in terms of both CPU time and number of iterations for test
problems presented here. Numerical results also show that the ANA obtains a fast linear convergence rate.

1. Introduction

Four-dimensional variational data assimilation (Zu-
panski 1993b; Thépaut et al. 1993; Yang et al. 1996;
Zupanski and Mesinger 1995, etc.) is widely acknowl-
edged as one of the most promising approaches for im-
plementing real-time analyzed data into an operational
weather forecast system. In this approach, the numerical
procedure attempts to generate both a close fit to the
data and consistency with the dynamic model over a
period of time. With present computer power, the only
practical way to carry out 4D variational data assimi-
lation is through an appropriate use of the so-called
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adjoint of the assimilation model, which is used to cal-
culate the gradient of the cost function with respect to
control variables. The computational cost to operation-
ally implement 4D variational data assimilation is still
very expensive due to the computer power, the required
large storage size of meteorology problems, and the
inefficiency of large-scale unconstrained minimization
algorithms. Therefore, it is very important to improve
the existing algorithms or to develop new ones. While
proper scaling and preconditioning (Zupanski 1993a,
1996) may significantly improve the efficiency of a
large-scale unconstrained minimization algorithm, they
are not the focus points of this work. This paper studies
the application of the adjoint Newton algorithm (ANA)
to 4D variational data assimilation problems using the
Advanced Regional Prediction System (ARPS), a three-
dimensional, compressible, nonhydrostatic storm-scale
model.
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The second-order adjoint technique provides infor-
mation that is related to the Hessian (the matrix of sec-
ond-order derivatives) of the cost function with respect
to the control variables. One integration of the second-
order adjoint model yields a Hessian vector product
(Wang et al. 1992), which can be used to improve the
efficiency of the truncated Newton algorithm (Wang et
al. 1993; Wang et al. 1995a). The application of the
second-order adjoint technique may also be used to de-
rive the Newton descent direction, which leads to an
adjoint Newton algorithm (Wang et al. 1997), which
will be applied to the ARPS.

The adjoint Newton algorithm requires integrating a
tangent linear model backward in time (Wang et al.
1997). We follow the approach of Pu et al. (1997) and
approximate the integration of the tangent linear model
backward in time by running the tangent linear model
(TLM) with a negative time step, but reversing the sign
of friction and diffusion terms, in order to avoid the
computational instability that would be associated with
these terms if they were run backward. Pu et al.
(1996a,b; 1997) also show that the backward integration
of a TLM can be used to improve the future forecast
skill using past forecast error. They found that the fore-
cast improvement obtained by the quasi-inverse linear
method (integrating the TLM backwards in time) is con-
siderably better than that obtained with a single adjoint
integration and similar to the one obtained using five
iterations of the adjoint method.

The diffusion process and the equation that describes
it are irreversible. But it is not true that the solution of
the diffusion equation cannot be reversed in time. Just
as a film showing the diffusion process may be reversed
in time, the equivalent numerical trick may be found to
produce the same effect (Smolarkiewicz 1983). His
technique (not used in this paper) may be used in the
future.

Current popular methods for large-scale unconstrai-
ned minimization are

1) limited memory conjugate gradient method (Shanno
and Phua 1980; Navon and Legler 1987);

2) quasi-Newton-type algorithms (Davidon 1959; Gill
and Murray 1972; O’Leary 1983);

3) limited-memory quasi-Newton methods such as the
LBFGS algorithm (Nocedal 1980; Liu and Nocedal
1989); and

4) truncated-Newton-type algorithms (Nash 1984a,b,
1985; Nash and Sofer 1989; Schlick 1992a,b; Navon
et al. 1992b,c; Wang 1995a).

All those methods find the descent direction using the
gradient of the cost function. The adjoint Newton al-
gorithm provides a new approach to find the Newton
descent direction by integrating a tangent linear model
backward in time (with negative time steps). In section
2b, we will introduce the adjoint Newton algorithm,
which is illustrated using a simple example in appendix
B. If the tangent linear model can be accurately inte-

grated backward in time, the adjoint Newton algorithm
has a quadratic convergence rate. For completeness, the
theory of the adjoint Newton algorithm will be provided
in appendix A. In the process of the proof of the adjoint
Newton algorithm, we derive a relation between the
first- and second-order adjoint variables. The ARPS as
well as its adjoint will be briefly described in section
3. Also in section 3, different issues of backward in-
tegration of tangent linear models will be addressed.
Cost function, weights, and scaling factors are addressed
in section 4. Numerical results for different experiments
are shown in section 5. There the ANA is compared
with the usual adjoint method employing the LBFGS
algorithm of Liu and Nocedal (1989) in terms of both
CPU time and quality of the retrieved fields. Since the
backward tangent linear model of the ARPS is not well
posed and a modified version of it is used, the adjoint
Newton algorithm achieves just a fast linear conver-
gence rate (appendix C) for our test problems. Sum-
mary, conclusions, and limitations as well as topics for
further research are presented in section 6.

In the general framework of 4D variational data as-
similation, there are observation errors and/or model
errors. Our first experiment (section 5) uses simulated
(model generated) observations without error, while the
second experiment uses simulated observations with
random errors. Therefore the first experiment is not truly
a 4D variational data assimilation problem but is carried
out in a setting closely related to 4D variational data
assimilation. Since this work represents the first step in
the application of the adjoint Newton method using a
three-dimensional model, we proceed by assuming that
the model is perfect.

2. Method

a. Definitions

Of interest is the large-scale unconstrained minimi-
zation of a functional assuming the following form:

t f1
o Tmin J(U) 5 min [CX(t) 2 X (t)]E52U U t0

o3 W[CX(t) 2 X (t)] dt . (1)6
Here X: t . X(t) is the state variable that is a function
from [t0, tf] into n-dimensional Euclidean space Rn. The
operator C: Rn . Rm represents a projection from the
space (Rn) of the model solution X to the m-dimensional
space (Rm) of observations. The linearity in C is assumed
for simplicity but is not required. The superscript T
indicates a tranpose. The components of X are values
of the various model fields (wind, temperature, pressure,
etc.) at each of the model’s grid locations. The number
of components of X is denoted by n, and m represents
the number of observations at any given time. In gen-
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FIG. 1. Schematic presentations of adjoint and tangent linear ap-
proaches in finding descent directions. Here Unew, Uold, a, and d denote
the new and old estimates for U, step length, and descent direction,
respectively. The update step, Unew 5 Uold 1 ad, is not a part of the
process of finding descent direction, but for completeness it is shown
here.

eral, n is not equal to m. Here, [t0, tf] denotes the as-
similation window where t0 and tf are the initial and
final time and W is a positive definite and symmetric
weighting function, which will be defined later. The cost
function J(U) is the weighted sum of squares of distance
between the model solution and available observations
distributed in space and time. The observation variable
Xo: t . Xo(t) is a function from [t0, tf] into Rm. The
control variable U ∈ Rn and the state vector X satisfy
semidiscrete model equations, that is, a set of ordinary
differential equations (usually nonlinear):

dX
5 F(X), (2)

dt

X(t ) 5 U, (3)0

where t is the time and F is model vector function of
X. For simplicity, F is assumed to be at least twice
differentiable. The control to state mapping (from Rn to
Rn) is given by U . X(t, U).

It is important to realize that the control variables
belong to a subset of the control space. To determine
the admissible set of control, one may use physical in-
formation about the control variable. For simplicity,
only initial conditions are taken as control variables in
this paper. However, our method holds when the control
variables are initial plus boundary conditions. It is not
clear whether parameters (Wang 1993) other than initial
and boundary conditions can be a part of the control
variables vector for the ANA. This topic is the subject
of further investigations.

Let X9 5 [DX(U)]U9, where U9 5 X9(t0) ∈ Rn be a
perturbation on the initial condition U in Eq. (3) and
DX(U): Rn . Rn be the derivative of X(U) with respect
to U. Then the tangent linear model is defined as

dX9
5 DF(X)X9, (4)

dt

X9(t ) 5 U9. (5)0

The first- and second-order adjoint models (Le Dimet
and Talagrand 1986; Wang et al. 1992; Wang et al.
1995a) may be defined, respectively, as

dP
T T o2 5 [DF(X)] P 1 C W(CX 2 X ), (6)

dt

P(t ) 5 0, (7)f

ˆdP
T 2 T Tˆ2 5 [DF(X)] P 1 [D F(X)X9] P 1 C WCX9, (8)

dt

P̂(t ) 5 0. (9)f

Here1 P and P̂ ∈ Rn are the first- and second-order

1 The definition of adjoint variable P differs from the definition in
some references by a sign. We think that this notation is more con-
sistent with our presentation.

adjoint variables; D2F(X): Rn 3 Rn . Rn denotes the
second derivative of F(X) with respect to X.

It can be proven (Le Dimet and Talagrand 1986; Wang
et al. 1992; Wang et al. 1995a) that

P(t ) 5 DJ(U), (10)0

2P̂(t ) 5 D J(U)U9. (11)0

b. Adjoint Newton algorithm

The current algorithms used to solve problem (1) first
find its gradient by integrating the adjoint Eqs. (6) and
(7) and then use the gradient to find a descent direction.
There are other alternatives to calculate the gradient,
such as the finite-differencing approach (although this
is not practical at all for meteorology problems).
Through the study of the first- and second-order adjoint
techniques, we found that the solution of a backward
integration of a tangent linear model with a ‘‘suitable
final condition’’ yields ‘‘a descent direction,’’ which is
comparable to the Newton descent direction. We will
call this direction the estimated Newton descent direc-
tion (Wang et al. 1997). This approach is schematically
presented in Fig. 1. Now we introduce the adjoint New-
ton algorithm here.

In the usual Newton algorithm (Berger 1977; Stoer
and Bulirsch 1976), the function J(U) being minimized
is approximated locally by a quadratic function, and this
approximated function is minimized exactly. Thus near
U we can approximate J(U) by the truncated Taylor
series (Luenberger 1984)

1
T 2J(U 1 d) ø J(U) 1 DJ(U)d 1 d D J(U)d, (12)

2

where d ∈ Rn is a descent direction. The minimum of
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the right-hand side of Eq. (12) will be achieved if d is
the stationary point of the right-hand side of Eq. (12),
that is, if d satisfies Newton’s equations

D2J(U)d 5 2DJ(U). (13)

Setting 5 2d, then Eq. (13) may be written asU9N

D2J(U) 5 DJ(U).U9N (14)

Our underlying assumption is that the Hessian matrix
D2J(U) is positive definite and Eq. (14) is uniquely solv-
able. That is, the hypotheses for the convergence of
Newton’s method hold (Berger 1977; Stoer and Bulirsch
1976). The ANA amounts to a reformulation of Eq. (14)
so that the estimated Newton descent direction is ob-
tained using techniques related to the adjoint and there
is no need to explicitly calculate or update the Hessian.

According to Eqs. (10) and (11), Eq. (14) implies
there exists a unique initial condition such thatU9N

P̂(t0) 5 P(t0), (15)

where P̂(t0) 5 D2J(U) . We seek an approximationU9 U9N e

to . It turns out that by integrating a tangent linear modelU9N
backward from a ‘‘suitable final condition,’’ one can obtain
just such an initial condition . Indeed, if the tangentU9e
linear model can be integrated backward in time,2 then
(proof is given in appendix A) the estimated Newton de-
scent direction is given by de 5 2Y9(t0) 5 2 , whereU9e
Y9(t0) is the solution of the following backward problem:

dY9
5 DF(X)Y9, (16)

dt
21 oY9(t ) 5 C [CX(t ) 2 X (t )]. (17)f f f

If Um is the minimum and

Um 5 U 2 U9, (18)

where U is the current estimate, then the following hold:
2\U9 2 U9 \ 5 O(\U9\ ), (19)N

2\U9 2 U9 \ 5 O(\U9\ ), (20)e N

2\U9 2 U9\ 5 O(\U9\ ). (21)e

Here C is assumed to be invertible and \U\ denotes the
Euclidean norm of U.

We present the following remarks.

1) From Eq. (18), we know that 2U9 is the step to the
minimum of J(U) while Newton’s direction 2 isU9N
the step to the minimum of the right-hand side of
Eq. (12).

2) Since is as good as in the sense of Eqs. (19)–U9 U9e N

(21), we will also call 2 the Newton descent di-U9e
rection.

3) Since we only reformulate the Newton’s equation,

2 The backward integration of a tangent linear model will be ad-
dressed in section 3c.

Newton method’s theoretical convergence rate
should remain the same. Its convergence proof can
be found in Luenberger (1984). A numerical con-
vergence analysis will be provided in appendix C
using the ARPS as an example.

4) For simplicity it is assumed that the tangent linear
model may be integrated backward in time. If the
nonlinear model is a mixture of hyperbolic and par-
abolic types, its corresponding tangent linear model
cannot be directly integrated backward in time. Mod-
ifications have to be carried out such that the tangent
linear model can be integrated backward in time.
This issue will be addressed in section 3c.

5) The final condition (17) denotes the ‘‘forecast error’’
at tf. The solution of the backward problem given by
Eqs. (16) and (17) at t , tf is an approximation to the
forecast error at t. That is, if the TLM can be accurately
integrated backward in time and if there is no obser-
vation error, Y9(t) ø C21[CX(t) 2 Xo(t)]. Hence under
these conditions, if the observations at t , tf are avail-
able, one may let Y9(t) 5 C21[CX(t) 2 Xo(t)] and then
continue to integrate Eq. (16) to the initial time. Clearly,
if the observations at t0 are available, setting de 5
2Y9(t0) 5 2C21[CX(t0) 2 Xo(t0)] the ANA will find
the minimum in one step since de 5 C21Xo(t0) 2 X(t0)
is the step to the minimum; that is, starting from an
initial guess U 5 X (t0), one obtains X(t0) 1 de 5
C21Xo(t0), which is the minimum.

In summary, it is assumed that all data are avail-
able at a single time t (t0 # t # tf) and that the
backward integration of the TLM starts from that
time.

6) The computational cost and storage for integrating
the tangent linear model backward in time is similar
to that required for integrating the first-order adjoint
model.

7) The second-order adjoint model is used to derive the
ANA but it is not used in the ANA. In the current
version of the ANA, the gradient is only used to
check the convergence criteria and line search con-
ditions [see (A44), (A42), and (A43) in appendix A].
Convergence criteria and line search conditions with-
out using the gradient information [such as golden
section search, etc. (Luenberger 1984)] are under
investigation. In other words, the next version of the
ANA will not use the gradient of the cost function
or the adjoint model.

8) The current ANA requires that the operator C be
invertible. In practice, it may not be invertible. For
instance, when the observations are incomplete, the
operator C is not invertible in the classic sense. In
the case of noninvertible C, the generalized inverse
of C (see remark 1 following Theorem 2 in appendix
A) may have to be used.

9) A search parameter a is introduced such that the
ANA can be used at points that are relatively remote
to the solution [see Eq. (A40) in appendix A and
Luenberger (1984)]. Near the solution we expect, on
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the basis of how Newton’s method was derived, that
ak ø 1. Introducing the parameter for general points,
however, guards against the possibility that the cost
function might increase with ak 5 1 (corresponding
to the pure ANA), due to nonquadratic terms in the
cost function (Luenberger 1984).

A simple example is provided in appendix B to il-
lustrate the process of implementing the ANA.

3. Model descriptions

a. Nonlinear model

The ARPS is a three-dimensional, compressible, non-
hydrostatic model developed for storm-scale prediction
(Droegemeier et al. 1995; Xue et al. 1995). It is for-
mulated in a curvilinear coordinate system that is or-
thogonal in the horizontal. The curvilinear coordinates
can be defined numerically as well as analytically, mak-
ing it more flexible than conventional terrain-following
coordinates. The governing equations are the result of
a direct transformation from the Cartesian system and
are expressed in a fully conservative form.

The current adiabatic version of the ARPS includes

the Coriolis force, artificial divergence damping, total
buoyancy, and subgrid turbulence mixing. The govern-
ing equations are discretized on an Arakawa C grid.
Since the model atmosphere described by the governing
equations is compressible, the meteorologically unim-
portant acoustic waves must be handled efficiently to
avoid unnecessary restriction on the time step. The
ARPS achieves this goal through the use of a splitting
time integration technique reported by Klemp and Wil-
helmson (1978). This technique divides a leapfrog in-
tegration time step into a number of small time steps
and updates the acoustically active term every small
time step while computing all the other terms only every
leapfrog (big) time step. These acoustically active terms
are the perturbation pressure gradient terms in the mo-
mentum equations and the divergence term in the pres-
sure equation.

In the ARPS, a base state can be defined as either
horizontally homogeneous or inhomogeneous. The ther-
mal energy and pressure equations are written as prog-
nostic equations for potential temperature and pressure.
The adiabatic version of the ARPS with periodic bound-
ary conditions is used in this study. Its governing equa-
tions are

](r*u) ]u ]u ]u ]( p̄J ) ]( p̄J )3 1c5 2 (r*u) 1 (r*y) 1 (r*W ) 2 1[ ] [ ]]t ]j ]h ]z ]j ]z

][J (p9 2 aDiv*)] ][J (p9 2 aDiv*)]3 1 1/2˜2 1 1 r* fy 2 r*fw 1 G D (22)u5 6]j ]z

](r*y) ]y ]y ]y ]( p̄J ) ]( p̄J )3 2c5 2 (r*u) 1 (r*y) 1 (r*W ) 2 1[ ] [ ]]t ]j ]h ]z ]h ]z

][J (p9 2 aDiv*)] ][J (p9 2 aDiv*)]3 2 1/22 1 2 r* fu 1 G D (23)y5 6]h ]z

](r*w) ]w ]w ]y ][p9 2 aDiv*]
c 1/2˜5 2 (r*u) 1 (r*y) 1 (r*W ) 2 1 r*B 1 r*fu 1 G D (24)w[ ]]t ]j ]h ]z ]z

](r*u) ]u ]u ]u
c 1/25 2 (r*u) 1 (r*y) 1 (r*W ) 1 G D (25)u[ ]]t ]j ]h ]z

1/2](G p9) ]p9 ]p9 ]p9 ]p̄ ]p̄
1/2 1/2 1/2 c 1/2 1/2 1/2 c5 2 (G u) 1 (G y) 1 (G W ) 2 (G u) 1 (G y) 1 G W r̄g[ ] [ ]]t ]j ]h ]z ]j ]h

1/2 1/2 1/2 c](G u) ](G y) ](G W )
22 2rc 1 1 , (26)[ ]]j ]h ]z

where
R variables with an overbar denote base-state quantities

that are functions only of height;

R u, y, w, and Wc are two components of horizontal
velocity, vertical velocity, and vertical contravariant
velocity, respectively;
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FIG. 2. Initial perturbation fields (reference fields) of y (top panel)
and p (bottom panel) at z 5 3.5 km. Zero contour lines are kept since
they clearly separate positive and negative contour lines.

R G1/2 (Droegemeier et al. 1995; Xue et al. 1995) is the
determinant of the Jacobian matrix of the transfor-
mation from (j, h, z) system to (x, y, z) system; J1,
J2, and J3 are the nonconstant Jacobian of the trans-
formation from (x, y, z) to (j, h, z);

R r* 5 G1/2 , and is the base-state density;r̄ r̄
R p9 and p̄ denote the perturbation and base-state pres-

sure, respectively;
R aDiv* is an artificial divergence damping term

designed to attenuate acoustic waves;
R f 5 2V sin(f) and f̃ 5 2V cos(f), where V is the

angular velocity of the earth and f is latitude;
R Du, Dy, Dw, and Du are subgrid-scale turbulence mix-

ing;
R B is the total buoyancy;
R u is potential temperature; and
R c̄ is the sound speed.

The control variables of the cost function for our
numerical tests are the perturbation variables at the ini-
tial time, defined as

u9(x, y, z, t ) 5 u(x, y, z, t ) 2 ū(z)0 0

y9(x, y, z, t ) 5 y(x, y, z, t ) 2 ȳ(z)0 0

w9(x, y, z, t ) 5 w(x, y, z, t )0 0

¯u9(x, y, z, t ) 5 u(x, y, z, t ) 2 u(z)0 0

p9(x, y, z, t ) 5 p(x, y, z, t ) 2 p̄(z). (27)0 0

For simplicity, we drop the prime in subsequent dis-
cussion.

b. Model initialization

In this paper, the base state used follows that de-
scribed by Weisman and Klemp (1982) and is horizon-
tally homogeneous, hydrostatic, and time invariant. The
computational domain extends 10 km in both the east–
west and north–south directions, and 5 km in the ver-
tical, with horizontal and vertical grid spacings of 1 km
and 0.5 km, respectively. Convection is initiated with
five buoyant thermal disturbances (‘‘bubbles’’) placed
in the boundary layer. The maximum amplitude of these
‘‘bubbles’’ is 3 K. The centroid locations of the bubbles
are (xc, yc, zc) 5 (5 km, 5 km, 1.5 km), (3 km, 3 km,
1.5 km), (7 km, 3 km, 1.5 km), (7 km, 7 km, 1.5 km),
and (2 km, 7 km, 1,5 km). Above the ground, horizontal
and vertical radius are (xr, yr, zr) 5 (3 km, 3 km, 1.5
km). The bubbles overlap. Starting with this initial con-
dition, we integrate the ARPS for 15 min and use the
output at this time as the initial conditions to obtain the
model-simulated ‘‘observations’’ at the end of assimi-
lation window (17 min). The initial fields at z 5 3.5
km of y and p are shown in Fig. 2. All fields of y and
p and difference fields between reference and retrieved
fields will be shown at z 5 3.5 km and we will mention
this no more. The assimilation window extends from 15

to 17 min. The simulated observations are available only
at the end of assimilation window. The simulated ob-
servations at the initial time will be used only to check
the retrieved fields. The length of assimilation window
is 2 min for our test problems since it is about the
optimal assimilation length, which is obtained by look-
ing at the graph (not shown) of rms errors between the
retrieved and reference fields for different assimilation
lengths. Sun (1992) discussed in detail the optimal as-
similation length for a model similar to ours.
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FIG. 3. Initial sensitivity fields of y (top panel) and p (bottom panel)
at z 5 3.5 km obtained by integrating the modified TLM backward
in time.

c. Tangent linear model and its backward integration

A TLM describes the evolution of perturbations in a
forecast model. It uses approximations that are linear
with respect to perturbations of the model fields. It is
called a tangent model because the linearization is
around a time-evolving solution, and, therefore, the co-
efficients of the linear model are defined by slopes of
tangents to the nonlinear model trajectory in phase space
(Errico et al. 1993). For the validity of a TLM, readers
may consults Lacarra and Talagrand (1988), Vukićević
(1991), and Errico et al. (1993). We will focus on the
backward integration of a TLM for the purpose of the
ANA application.

If a TLM can be integrated backward in time, given
a perturbation (forecast error) at the end of forecast
period, a backward integration of a TLM determines
what perturbation (initial error), say at the initial time,
causes the perturbation at the end of forecast period. At
the end of the integration, the initial error (sensitivity)
of the forecast error is obtained.

Unfortunately, in general, most TLMs may not be
integrated backward in time due to the presence of ir-
reversible processes such as mixing (diffusion) and di-
vergence damping. However, simple modifications to
TLMs lead to modified TLMs that can be integrated
backward in time and yield approximations to the initial
errors (sensitivities) of the forecast errors. In the fol-
lowing, we describe the backward integration of TLMs.

Most numerical prediction systems such as ARPS are
a mixture of hyperbolic, elliptic, and parabolic systems
although hyperbolic terms (advection terms) are dom-
inant. Because of irreversible mixing and damping terms
(parabolic in nature), their corresponding TLMs cannot
be integrated backward in time. Pu et al. (1996a,b; 1997)
suggested that the inverse TLM can be approximated
by reversing the signs of mixing and damping terms,
thus making the problem well posed. They denote the
backward integration of such a modified TLM as the
quasi inverse of the TLM. Reversing signs of mixing
terms in a TLM leads to mixings backward in time in
the quasi inverse of the TLM. The difference between
the initial condition of a well-posed forward TLM and
the solution at the initial time of the quasi inverse of
the TLM starting from a solution of the well-posed TLM
at a future time is hard to quantify since it is the dif-
ference of fields from two different models. Empirical
results show that they are ‘‘close.’’ We will demonstrate
this using the ARPS model. Pu et al. (1996a,b; 1997)
introduced a similar approach of integrating the model
backward in time to calculate the sensitivity of forecast
error to changes in the initial conditions.

In the quasi inverse of the TLM of the ARPS, the
artificial divergence damping terms and subgrid-scale
turbulence mixing terms have opposite signs as those
in the ARPS. Here, aDiv* and 2G1/2Du, 2G1/2Dy,
2G1/2Dw, and 2G1/2Du are used in the quasi inverse of
the TLM instead of 2aDiv* G1/2Du, G1/2Dy, G1/2Dw, and

G1/2Du in the TLM of the ARPS. Let U9 be the same
initial fields (Fig. 2) used to obtain the ‘‘simulated ob-
servations.’’ The TLM solution fields at 17 min, X9(tf),
are used as the final condition for the quasi inverse of
the TLM. The solution fields of y and p of the quasi
inverse of the TLM at 15 min are shown in Fig. 3.
Comparing Fig. 2 with Fig. 3, one concludes that the
solution of the quasi inverse of the TLM of the ARPS
approximately yields the initial perturbations fields. Al-
though the initial perturbation fields thus obtained are



OCTOBER 1997 2467W A N G E T A L .

different from the exact fields corresponding to U9, their
overall eddy structures, magnitudes, and signs are ‘‘sim-
ilar’’ to those in the exact fields. The correlation co-
efficients of anomaly between the exact u, y, w, u, and
p at time t0 and those obtained by the quasi inverse of
the TLM are 0.9997, 0.9996, 0.9729, 0.9306, and
0.8275, respectively. This indicates that the quasi-in-
verse of the TLM of the ARPS yields meaningful and
useful results ‘‘direction wise.’’

The validity of the quasi inverse of a TLM may de-
pend on the validity of the TLM itself. The study of the
time length for which a quasi inverse of a TLM yields
‘‘meaningful’’ results is an important issue, which is
under investigation.

d. Adjoint model development

The adjoint of the ARPS was developed (Wang et al.
1995b). The verification of the correctness of the gra-
dient is conducted as follows. A Taylor series expansion
applied in the direction U9 5 W[X(tf) 2 Xo(tf)] yields
(Navon et al. 1992a)

J(U 1 aU9) 2 J(U)
f(a) 5 5 1 1 O(a\U9\). (28)

TaU9 ·DJ(U)

For small a but not too close to machine accuracy, the
value of f(a) should be close to unity if the gradient
DJ(U) is correctly calculated. Numerical results (not
shown) indicate that this is exactly the case.

4. Cost function, weighting, and scaling

If the ‘‘simulated observations’’ are available at the
beginning of the assimilation window without error, the
ANA would find the minimum in one iteration since
there is no need to integrate the quasi inverse of the
TLM, whose solution, X(t0) 2 Xo(t0), is known in this
case and Xo(t0) 2 X(t0) is the step to the minimum (see
remark 5 in section 2b). Therefore, in order to test the
robustness of the ANA, simulated observations are
made available at the end of the assimilation window.
For simplicity, we assume that the simulated observa-
tions are of the same dimension as the model state. It
is worth noting that although the ANA is presented in
a semidiscrete form, to carry out numerical calculations
only the cost function needs to be defined as a sum
instead of an integral. For instance, in our experiments,
the cost function is defined as

1
o T oJ(U) 5 [X(t ) 2 X (t )] W[X(t ) 2 X (t )], (29)f f f f2

where X 5 (u, y, w, p, u) is the state vector including
all gridpoint values of model solution at a time and W
is weighting matrix. Since there are no statistics avail-
able for the ARPS, a constant diagonal weighting matrix
W 5 diag(Wu, Wy, Ww, Wp, Wu) is used where

N1
21 oW 5 u (t ) 2 u (t )Ou i f i f5N i51

2N1
o2 [u (t ) 2 u (t )] , (30)O j f j f 6N i51

and N is the number of u-gridpoint values. Model so-
lution X 5 (u, y, w, p, u) is obtained by integrating the
ARPS from zero initial guess. The weights thus defined
nondimensionalize the cost function.

Scaling is a crucial issue in the success of nonlinear
unconstrained optimization problems, and considerable
research has been carried out on scaling nonlinear prob-
lems. It is well known that a badly scaled nonlinear
programming problem can be almost impossible to solve
(Navon and de Villiers 1983; Navon et al. 1992a). An
effective automatic scaling procedure would ease these
difficulties and could also render problems that are well
scaled easier to minimize by improving condition num-
ber of their Hessian matrix (Thacker 1989).

Scaling by variable transformation converts variables
from units that reflect physical properties to units that
display desirable properties for the minimization pro-
cess. Given a diagonal scaling matrix, S 5 diag(Su, Sy,
Sw, Sp, Su), where Su, Sy, Sw, Sp, and Su are constant
diagonal submatrices, the general scaling procedure may
be written as

sX 5 SX , (31)
sg 5 Sg, (32)
s TH 5 S HS, (33)

where H is the Hessian matrix. The constant diagonal
elements of submatrix Su will be calculated by

N1
oS 5 u (t ) 2 u (t )Ou i f i f7 5N i51

2 1/2N1
o2 [u (t ) 2 u (t )] , (34)O j f j f 6 8N i51

and similarly for Sy, Sw, Sp, and Su.
In summary, the cost function is defined in terms of

the original variables scaled by their standard deviation.
For complicated functions, difficulties may be en-

countered in choosing suitable scaling factors. Good
scaling is problem dependent. A basic rule is that the
variables of the scaled problem should be of similar
magnitude and of order unity because within optimi-
zation routines convergence tolerances and other criteria
are necessarily based on an implicit definition of
‘‘small’’ and ‘‘large,’’ and, thus, variables with widely
varying orders of magnitude may cause difficulties of
convergence for minimization algorithms (Gill and Mur-
ray 1981). One simple direct way to determine the scal-
ing factor is to use the typical values for different fields.
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FIG. 4. Variations of the log of the scaled cost function (Jk/J0, top
panel) and scaled gradient norm (\gk\/\g0\, bottom panel) with the
number of iterations using algorithms: adjoint Newton algorithm
(ANA) and LBFGS algorithm, respectively, in experiment 1.

This issue is closely related to the issue of precondi-
tioning (Yang et al. 1996).

5. Numerical results

a. Experiment description

Two experiments are carried out to assess the feasi-
bility and efficiency of the ANA as a large-scale min-
imization algorithm in the framework of 4D variational
data assimilation. In all experiments, the length of the
assimilation window is 2 min, and the big and small
time steps are 6 and 1 s, respectively. The two exper-
iments are as follows.

1) Simulated observations without error: The model-
generated fields of u, y, w, u, and p at 17 min (the
end of the assimilation window) are used as simu-
lated observations. The initial guess is zero for all
variables, that is, for the three components of the
3D wind, pressure, and potential temperature fields.
It is emphasized that the simulated observations are
available in all fields and at final time tf only.

2) Simulated observations with random errors: Same as
experiment 1 except that at most 20% random error
of each point is added to the simulated observations
at the final time. Since random observation errors
are just random noise, their distributions are not
shown.

The ANA will be compared with the usual adjoint
method employing the LBFGS algorithm of Liu and
Nocedal [(1989), which will be called the LBFGS meth-
od for simplicity]. The full description of the LBFGS
method may be found in Liu and Nocedal (1989). The
same convergence criterion,

\gk11\ # 1022\g0\, (35)

will be used for both the ANA and LBFGS methods.
This convergence criterion yields a reasonable quality
of the retrieved fields in terms of rms errors and cor-
relation coefficients of anomaly relative to the reference
fields (Fig. 2) of u, y, w, u, and p at the initial time.

The gradient of the cost function with respect to con-
trol variables is calculated by integrating the adjoint of
the ARPS. In the LBFGS method, the gradient is used
to find the descent direction and to check the conver-
gence criterion (35) and line search conditions (A42)
and (A43) in appendix A, while it is only used to check
the convergence criterion (35) and line search conditions
(A42) and (A43) in the ANA. In order to be consistent,
for all experiments the ANA and the LBFGS method
of Liu and Nocedal (1989) are fixed. No fine-tuning is
allowed. The number of updates in the LBFGS method
is set to 5 at where the LBFGS algorithm performs best
for our test problems. Computations were performed
using the Cray C90 at the Pittsburgh Supercomputing
Center.

b. Results and comparison of the ANA and LBFGS
algorithms

For experiment 1, ANA requires 5 iterations, 11 func-
tion calls, and 26.847 s of CPU time to satisfy the con-
vergence criterion (35), while the LBFGS method re-
quires 78 iterations, 224 function calls, and 431.131 s
to satisfy the same convergence criterion (35). Therefore
the ANA is more than an order of magnitude faster than
the LBFGS method in terms of both number of iterations
and CPU time in this experiment. The variation of the
cost function scaled by its initial value (J/J0) as well as
those of the norm of the gradient also scaled by its initial
value (\g\/\g0\) as functions of the number of iterations
are displayed in Fig. 4, which indicates that the cost
function obtained using ANA decreases one order of
magnitude more than that obtained by using LBFGS
method. The quality of the retrieved fields obtained by
using ANA is also much better than that obtained by
using the LBFGS method, which can be seen by com-
paring (given below) the retrieved fields with reference
fields.

Figures 5 and 6 show that the retrieved fields obtained
using ANA are almost identical to the reference fields
(Fig. 2), while those obtained by using the LBFGS meth-
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FIG. 5. Retrieved fields of y (top panel) and p (bottom panel) at
the initial time and z 5 3.5 km using the ANA in experiment 1.

FIG. 6. Same as Fig. 5 except LBFGS is used.

od display clear differences with the reference fields
(Fig. 2). Difference fields of y and p between the re-
trieved and reference fields are displayed in Figs. 7 and
8, respectively. After the minimization, the maximum
difference values of y and p obtained using the ANA
are about an order of magnitude smaller than those ob-
tained using the LBFGS method. The difference fields
of u, w, and u are similar (not shown).

Table 1 shows the rms errors between the retrieved
u, y, w, u, and p and their corresponding reference fields
at the end of assimilation using both ANA and LBFGS

methods, while Table 2 shows the corresponding cor-
relation coefficients of anomaly. Table 1 clearly indi-
cates that the rms errors in all fields obtained using ANA
are an order of magnitude smaller than those obtained
using the LBFGS method. The correlation coefficients
of the anomaly (Table 2) obtained using ANA are larger
than those obtained using the LBFGS method in all
fields.

In experiment 2 we test the feasibility and efficiency
of the ANA in the case of ‘‘simulated observations with
random errors.’’ As in experiment 1, the ANA is very
robust compared to the LBFGS method. It requires 7
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FIG. 7. Difference fields between the retrieved fields of y (top panel)
and p (bottom panel) at z 5 3.5 km using the ANA method and their
corresponding reference fields in experiments 1, respectively.

FIG. 8. Same as Fig. 7 except LBFGS is used.

TABLE 1. The rms errors at the initial time between the retrieved u,, y, w, u, and p fields and corresponding reference fields normalized
by their initial values in experiments 1 and 2, respectively. ‘‘Iter.’’ denotes number of iterations.

Experiments Algorithms rms in u y w u p Iter. CPU (s)

1
1
2
2

ANA
LBFGS
ANA
LBFGS

0.0054
0.1340
0.0560
0.1125

0.0045
0.0619
0.0421
0.0644

0.0090
0.0760
0.0973
0.1133

0.0026
0.0314
0.0485
0.0530

0.0463
0.2344
0.2076
0.2451

5
78

7
108

26.847
431.131

36.556
568.006
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TABLE 2. Correlation coefficients of anomaly at the initial time for u, y, w, u, and p between the retrieved and corresponding reference
fields for experiments 1 and 2, respectively. ‘‘Corr.’’ denotes correlation coefficient.

Experiments Algorithms Corr. in u y w u p

1
1
2
2

ANA
LBFGS
ANA
LBFGS

0.99998
0.99292
0.99825
0.99406

0.99999
0.99792
0.99903
0.99776

0.99996
0.99756
0.99529
0.99413

1
0.99966
0.99876
0.99857

0.99892
0.97411
0.97966
0.97256

FIG. 10. Same as Fig. 5 except they are for experiment 2.FIG. 9. Same as Fig. 4 except they are for experiment 2.

iterations, 15 function calls, and 36.556 s of CPU time
to satisfy the convergence criterion (35), while the
LBFGS method requires 108 iterations, 295 function
calls, and 568.006 s to satisfy the same condition. At
the end of assimilation, the cost function obtained using
ANA decreases by one order of magnitude more than
that obtained by using the LBFGS method (Fig. 9).

The rms errors and correlation coefficients of anom-
aly in Tables 1 and 2 indicate that the ANA yields more
accurate results than the LBFGS method does, that is,
smaller rms errors and larger correlation coefficients of
anomaly in all fields, but the differences are smaller
comparing with those in experiment 1.

Figures 10 and 11 show that the retrieved fields ob-
tained using the ANA are a little closer to the reference
fields (Fig. 2) than those obtained by using the LBFGS
method. After the minimization, the difference between
the maximum and minimum values of y and p in the
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FIG. 11. Same as Fig. 6 except they are for experiment 2.

difference fields of y and p between the retrieved and
reference fields are 0.266 m s21 and 59.8 Pa when the
ANA is used and 0.354 m s21 and 62.9 Pa when the
LBFGS method is used. The quality of the retrieved
fields in this case is similar, although the ANA yields
slightly better results (Tables 1 and 2).

6. Summary and conclusions

A new ANA suitable for 4D variational data assim-
ilation was applied to the ARPS. The new ANA finds
the Newton descent direction by integrating the quasi

inverse of a TLM backward in time. Since most TLMs
of numerical weather prediction models are not well
posed when they are integrated backward in time due
to mixing and damping effects, they have to be modified
by reversing the signs of the mixing and damping terms
such that the quasi inverses of the TLMs are well posed
when they are integrated backward in time (Pu et al.
1996a, b; Pu et al. 1997). The solution of a quasi inverse
of a TLM at the initial time is only an approximation
to Newton descent direction, which leads to a fast linear
convergence rate of the ANA for our experiments. Nu-
merical experiments using the ARPS indicate that the
ANA is suitable for 4D variational data assimilation in
the setting where an analysis is used as observations. It
is very efficient in terms of both the number of iterations
and CPU times for our test problems. Therefore it may
be a very promising and efficient alternative to large-
scale unconstrained minimization algorithms for mete-
orology problems. Compared to the LBFGS method of
Liu and Nocedal (1989), the ANA is a clear winner for
our test problems both in terms of efficiency as well as
in terms of quality of retrieved fields.

The current ANA has not considered how to deal with

1) parameters other than initial and boundary condi-
tions as part of control variables;

2) noninvertible operator C—this limitation can be
avoided by reformulating the ANA, as pointed out
in the first remark following Theorem 2 in appendix
A;

3) how the validity of the backward integration of a
TLM may depend on the validity of the TLM itself;

4) the backward integrations of the TLMs with physical
processes; and

5) model errors.

How to formulate the ANA in these settings is under
investigation.

The current version of ANA requires the operator C
to be invertible. In the case of incomplete observations,
the operator C is not invertible in the classic sense, and
one has to use the generalized inverse of C (Bennett
1992; Caradus 1974; Golub and van Loan 1989; Rao
and Mitra 1971). Based on the paper by Zou et al.
(1992), incomplete data in a 4D variational data assim-
ilation may affect several issues, namely, conditioning
of the Hessian matrix, uniqueness of the solution, con-
vergence of the minimization process, quality of the
retrieved fields, and finally the quality of the ensuing
forecast. A detailed study addressing these issues is cru-
cial in order to demonstrate that this method has po-
tential for application to real data 4D variational data
assimilation. The first remark following Theorem 2 in
appendix A is a good starting point. This important issue
will be addressed in a separate paper in which real ob-
servations will be mimicked in two possible ways: 1)
assume data are completely absent for one or more mod-
el variables (to represent small-scale data assimilation
using radar data) and 2) assume data are available for
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all variables but absent in some large areas (to represent
large-scale data assimilation using conventional data).

Convergence criteria and line search conditions in the
current version of the ANA can be carried out without
the information of the gradient using techniques such
as the golden section search, etc. (Luenberger 1984).
Namely, the next version of the ANA to be tested in
the near future will not use the gradient and the adjoint
model. In this paper, the ANA is only tested using an
adiabatic model and simulated observations. Our next
paper will also deal with real data cases using models
that include additional physical processes. The back-
ward integration of TLMs with physical processes will
also be discussed in a follow-up paper.
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APPENDIX A

The Theory of the Adjoint Newton Algorithm

For completeness, in this appendix we provide the
mathematical foundations of the ANA (Wang et al.
1996). Notations similar to those in the text will be used.
For simplicity, the proof is presented under the best,
and even unrealistic, scenario by assuming the model
is perfect, the TLM can be integrated backward in time,
and the operator C is invertible. However, these as-
sumptions may not limit the applications of the ANA
as shown in the previous sections and the remarks be-
low. We also assume that F: Rn . Rn is sufficiently
differentiable to carry out our arguments. Discontinuous
physical processes are very important. However, we do
not deal with them at this time.

THEOREM 1. Let:

(a) Variables X, X9, P, and P̂ ∈ Rn satisfy Eqs. (2),
(4), (6), and (8), respectively.

(b) The cost function defined by (1) and function F(X)
in Eq. (2) be sufficiently differentiable and the op-
erator C: Rn . Rm in (1) be invertible.

(c) There are no observation errors and the cost func-
tion defined by (1) has a unique minimum, Um, such
that CX(Um)(t) 5 Xo(t) for any time t ∈ [t0, tf], where
X(Um)(t) is the model solution with initial condition
Um.

Then for a given U near the global minimum3 Um with

U9 5 U 2 Um, (A1)

and for any time t ∈ [t0, tf], we have

1) The forcing terms in the first- and second-order
adjoint models satisfy

T o 2 TC W[CX(t) 2 X (t)] 5 [D F(X)X9(t)] P(t)

T 21 C WCX9(t) 1 O(\U9\ );
(A2)

2) The first- and second-order adjoint variables satisfy

P(t) 5 P̂(t) 1 O(\U9\2). (A3)

PROOF

1) The nonlinear model and tangent linear model so-
lutions, X and X9, obtained with initial conditions U
and U9, satisfy Eqs. (2) and (4), respectively. Using
Taylor expansion (Berger 1977), one has

X(U) 5 X(Um) 1 DX(U)U9 1 O(\U9\2); (A4)

that is,

X(U) 5 X(Um) 1 X9 1 O(\U9\2). (A5)

Using Eq. (A5) and CX (Um)(t) 5 Xo(t), one obtains
oCX(U)(t) 2 X (t) 5 C[X(U )(t) 1 X9(t)m

21 O(\U9\ )] 2 CX(U )(t)m

25 CX9(t) 1 O(\U9\ ). (A6)

Hence CTW[CX(t) 2 Xo(t)] 5 O(\U9\). From Eq. (6),
one obtains (Dieudonne 1960)

P(t) 5 O(\U9\). (A7)

Since F is sufficiently differentiable, \D2F(X)\ is bound-
ed. Hence

[D2F(X)X9(t)]TP(t) 5 O(\U9\2),

which together with Eq. (A6) leads to
T oC W[CX(t) 2 X (t)]

2 T T2 {D F[X(t)]X9(t)} P 1 C WCX9(t)7 8
T 2 25 C W[CX9(t) 1 O(\U9\ )] 2 O(\U9\ )

T 22 C WCX9(t) 5 O(\U9\ ). (A8)

Equation (A8) yields Eq. (A2).
2) Subtracting Eq. (6) from Eq. (8), one can see that

P̂(t) 2 P(t) satisfies

3 See remark 1 after the proof of Theorem 1 for the meaning of
‘‘near the global minimum Um.’’
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ˆd[P(t) 2 P(t)]
T ˆ2 5 [DF(X)] [P(t) 2 P(t)]

dt
2 T T1 [D F(X)X9] P(t) 1 C WCX9

T o2 C W(CX 2 X ), (A9)

with the final condition

P(tf) 2 P(tf) 5 0. (A10)

Equation (A9) is a linear equation with a forcing term
satisfying Eq. (A8). Hence Eqs. (A9) and (A10) yield
Eq. (A3) (Dieudonne 1960).

REMARKS:
1) Under the assumption of sufficient conditions for

the convergence of Newton’s method (Berger 1977;
Stoer and Bulirsch 1976), we know that there exists a
neighborhood, B, of Um such that if U ∈ B, the Newton’s
method converges. ‘‘For a given U near the global min-
imum Um . . . ’’ in Theorem 1 means U ∈ B.

2) In most cases, Eqs. (A2) and (A3) will be ap-
proximately satisfied. In appendix B, we will show that
Eqs. (A2) and (A3) can be exactly satisfied using a linear
example. For nonlinear model equations, Eqs. (A2) and
(A3) are satisfied with indicated accuracy. Interested
readers may use

dX
25 2X , (A11)

dt

X(0) 5 U, (A12)

where time t ∈ [0, 1] to verify Theorem 1.

COROLLARY 1. If the same assumptions in Theorem 1
hold, then

X9(tf) 5 C21[CX(tf) 2 Xo(tf)] 1 O(\U9\2), (A13)

where C21 is the inverse of C.

PROOF. From Theorem 1, we know that Eq. (A2) is true
at any time. Hence it is true at the time tf in particular;
that is,

T oC W[CX(t ) 2 X (t )]f f

2 T T5 [D F(X)X9(t )] P(t ) 1 C WCX9(t )f f f

21 O(\U9\ ). (A14)

Noticing that P(tf) 5 0 given by Eq. (7) and C is in-
vertible, solving Eq. (A14) for X9(tf), one obtains Eq.
(A13) as a result.

THEOREM 2. If the same assumptions in Theorem 1 hold
and the tangent linear model can be integrated back-
ward in time, then the estimated Newton descent direc-
tion is given by de 5 2Y(t0) 5 2 , where Y9(t0) isU9e
the solution of the following backward problem:

dY9
5 DF(X)Y9, (A15)

dt
21 oY9(t ) 5 C [CX(t ) 2 X (t )] (A16)f f f

such that

2\U9 2 U9 \ 5 O(\U9\ ), (A17)N

2\U9 2 U9 \ 5 O(\U9\ ), (A18)e N

2\U9 2 U9\ 5 O(\U9\ ). (A19)e

PROOF. Since the tangent linear model can be integrated
backward in time, Eqs. (A15) and (A16) indicate that

.Y9 5 DX(U)U9e (A20)

According to Eq. (A6) and noticing X9 5 O(\U9\), one
has

.21 o 2Y9(t ) 5 C [CX(t ) 2 X (t )] 5 X9(t ) 1 O(\U\ )f f f f

(A21)

Hence

Y9(t) 5 O(\U9\) 5 O(\U9\).e (A22)

Since the tangent linear model can be integrated back-
ward in time, the solution of the following equations,

dZ9
5 DF(X)Z9, (A23)

dt

Z9(t ) 5 X9(t ) 5 [DX(U)U9] , (A24)f f t f

is the same as that of Eqs. (4) and (5). Namely,

Z9 5 DX(U)U9 5 X9. (A25)

Equation (A6) at tf yields

, (A26)21 o 2C [CX(t ) 2 X (t )] 2 X9(t ) 5 O(\U9\ )f f f

which is a relationship between final conditions (A16)
and (A24). Hence,

Y9(t) 2 X9(t)

5 Y9(t) 2 Z9(t) 5 DX(U)U9 2 DX(U)U9e

25 O(\U9\ ). (A27)

At the minimum, the gradient of the cost function
with respect to control variables is zero; that is,

0 5 DJ(U ) 5 DJ(U 2 U9)m

2 25 DJ(U) 2 D J(U)U9 1 O(\U9\ ) (A28)

and

2 2D J(U)U9 5 DJ(U) 1 O(\U9\ ). (A29)

Subtracting Eq. (14) from Eq. (A29), one obtains

2 2D J(U)(U9 2 U9) 5 O(\U9\ ).N (A30)

Since by assumption D2J(U) is positive definite, Eq.
(A30) yields Eq. (A17). Now consider the forcing terms
of Eq. (A9) with X9 replaced by Y9 and apply Eqs.
(A22), (A7), (A27), and (A6); one obtains
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2 T T T o{[D F(X)Y9] P(t) 1 C WCY9} 2 C W(CX 2 X )( (
2 T T T o5 [D F(X)Y9] P(t) 1 C WC(Y9 2 X9) 1 C W[CX9 2 (CX 2 X )]( (

2 2 2 25 O(\U\ ) 1 O(\U9\ ) 1 O(\U9\ ) 5 O(\U9\ ). (A31)

That is

2 2P̂(t) 2 P(t) 5 D J(U)U9 2 DJ(U) 5 O(\U9\ ).e

(A32)

Using Newton’s equation Eq. (14), Eq. (A32) becomes

2 2D J(U)(U9 2 U9) 5 O(\U9\ ),e N (A33)

which yields Eq. (A18). From Eqs. (A17) and (A18),
one obtains

2\U9 2 U9\ # \U9 2 U9\ 1 \U9 2 U9\ 1 O(\U9\ ),e e N N

(A34)

which yields Eq. (A19). If U9 is sufficiently small, U9e
is a descent direction since

T TU9 U9 5 U9 (U9 2 U9 1 U9)e e

2$ \U9\ 2 \U9\ \U9 2 U9\e

5 \U9\(\U9\ 2 \U9 2 U9\)e

25 \U9\(\U9\ 2 O(\U9\ )) . 0. (A35)

REMARKS:
1) For simplicity, the operator C is assumed to be

invertible. However, C is not necessarily invertible ex-
cept in case it is applied to certain discrete systems. In
this case, one may reformulate the Newton’s equation

2D J(U)U9 5 DJ(U)N (A36)

as a minimization problem of the following form

1
2 2min \D J(U)U9 2 DJ(U)\ , (A37)

2U9

where U9 is the initial condition of tangent linear model
given by Eqs. (4) and (5). Minimization problem ((A37)
is quadratic and is similar to problem (1). All techniques
such as penalty, model error techniques, etc., suitable
for problem (1) are also suitable for the quadratic prob-
lem (A37). In this case, the tangent linear model is
integrated forward. This is related to generalized inverse
problem (Bennett 1992; Caradus 1974; Golub and van
Loan 1989; Rao and Mitra 1971) and is successfully
applied to the ARPS. Our next paper will deal with this
general case.

2) For completeness, the algorithm form of the ANA
is listed here:

(a) Choose an initial guess U0 and set k 5 0.

(b) Calculate the gradient of the cost function with re-
spect to initial conditions

gk 5 g(Uk) 5 DJ(Uk), (A38)

by integrating the first-order adjoint model equa-
tions.

(c) Obtain a Newton line search direction,

dk 5 2Y9(t0), (A39)

by integrating the backward tangent linear model
given by Eqs. (16) and (17).

(d) Set

Uk11 5 Uk 1 akdk, (A40)

where ak is the step size obtained by conducting a
line search,

J(Uk 1 akdk) 5 minaJ(Uk 1 adk), (A41)

using Davidon’s cubic interpolation method for the
line search of the step size and that satisfies the
following Wolfe conditions (Liu and Nocedal
1989):

TJ(U 1 a d ) # J(U ) 1 b9a g dk k k k k k k (A42)

and
Tg (U 1 a d ) dk k k k k

# b, (A43)
Tg dk k

where b9 5 0.0001, b 5 0.9.
(e) Check the convergence condition. Given a tolerance

criterion e: 10214 # e # 1021, and if

\gk 1 1\ # e\g0\, (A44)

stop. Otherwise, set k 5 k 1 1 and go to step (b).

3) The adjoint Newton method requires the user to
provide a subroutine to calculate the cost function and
a subroutine to calculate the Newton direction by in-
tegrating the backward tangent linear model. In the
current version of the ANA, the gradient is only used
to check the convergence criterion (A44) and line search
conditions (A42) and (A43). This criterion and condi-
tions could be carried out without the gradient infor-
mation (Luenberger 1984). In addition to the above cal-
culations, each iteration of the adjoint Newton iteration
requires two stages: setup (performed once per iteration)
and line search iteration. The numerical costs of the two
stages are approximately 2n flops and 4n flops (Nash
and Nocedal 1989), respectively, where ‘‘flops’’ denotes
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additions, subtractions, multiplications, or divisions.
The ANA is a large-scale unconstrained minimization
Newton algorithm that does not have the limitation of
the storage problem since it does not require the cal-
culation of either the Hessian or its inverse. However,
it may be sensitive to the initial guess and may only be
applied to the problems where their corresponding back-
ward problems could be solved with ‘‘reasonable ac-
curacy.’’

APPENDIX B

A Simple Example

We first show that Eqs. (A2) and (A3) are exactly
satisfied by using a very simple linear example and then
we illustrate the ANA by using the same example.

Let us consider the following one-dimensional model
equation:

dX
5 2X, (B1)

dt

X(0) 5 U, (B2)

where time t ∈ [0, 1]. The solution of the model is

X 5 Ue2t. (B3)

Suppose that the simulated observations are model gen-
erated with the initial condition

X(0) 5 1, (B4)

then from Eq. (B3) the simulated observation may be
written as

Xo5 e2t. (B5)

Let us define the cost function as
11

o 2J(U) 5 (X 2 X ) dt, (B6)E2 0

then
2(U 2 1)

22J(U) 5 (1 2 e ). (B7)
4

The first-order adjoint model of Eqs. (B1) and (B2)
may be written as

dP
o2 5 2P 1 (X 2 X ); (B8)

dt

that is,

dP
2t2 5 2P 1 (U 2 1)e , (B9)

dt

P(1) 5 0, (B10)

where P is the adjoint variable. The gradient of the cost
function with respect to the initial conditions is given by

DJ(U) 5 P(0). (B11)

Equation (B9) has an analytic solution of the follow-
ing form:

t

t t 2t 2t¯P(t) 5 Pe 2 e e (U 2 1)e dtE
0

(U 2 1)
t 2t t¯5 Pe 1 (e 2 e ), (B12)

2

where P̄ is a constant to be determined by the final
condition (B10). Therefore P̄ 5 [(U 2 1)/2](1 2 e22),
and Eq. (B12) yields

(U 2 1) (U 2 1)
22 t 2t tP(t) 5 (1 2 e )e 1 (e 2 e )

2 2
(B13)

and

(U 2 1)
22P(0) 5 (1 2 e ). (B14)

2

Equation (B14) is exactly the gradient of the cost func-
tion [Eq. (B7)] with respect to the initial condition U.

Let us now consider a perturbation, U9, on the initial
condition U for X. Then the tangent linear and second-
order adjoint models are

dX9
5 2X9, (B15)

dt

X9(0) 5 U9, (B16)

and

ˆdP ˆ2 5 2P 1 X9, (B17)
dt

P̂(1) 5 0, (B18)

respectively. They have the following exact solutions

X9 5 U9e2t (B19)

and

U9 U9
22 t 2t tP̂(t) 5 (1 2 e )e 1 (e 2 e ), (B20)

2 2

respectively. Here, P̂(0) 5 U9(1 2 e22)/2 is exactly
Hessian vector product D2J(U)U9.

It can be shown that
22(1 2 e ) (U 2 1)

22P̂(0) 5 U9 5 (1 2 e ) 5 P(0)
2 2

if U9 5 U 2 1; that is, Eq. (A3) can be exactly satisfied
in this linear case. In nonlinear cases, Eq. (A3) is only
an approximation. When U9 5 U 2 1, the forcing terms
of Eqs. (B9) and (B17) are exactly equal, (U 2 1)e2t

5 U9e2t, which indicates that Eq. (A2) is exactly sat-
isfied for this problem.

The variational data assimilation aims to find the best
initial condition, X(0) 5 1, which minimizes the cost
function given by (B7). It should be realized that since
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TABLE C1. Convergence analysis information for adjoint Newton
algorithm in experiment 1.

k Jk jk jk/jk11 5 M

1
2
3
4
5

14
15
16
17
18

4.847 3 1022

6.183 3 1023

1.170 3 1023

3.590 3 1024

1.165 3 1024

1.060 3 1027

5.734 3 1028

3.382 3 1028

1.897 3 1028

1.155 3 1028

0.952
4.229 3 1022

5.012 3 1023

8.116 3 1024

2.424 3 1024

8.804 3 1028

4.867 3 1028

2.352 3 1028

1.484 3 1028

7.417 3 1029

22.50
8.438
6.176
3.847
3.781
1.809
2.069
1.585
2.001
1.460

the model itself is linear, its tangent linear model is
identical to itself. Since we can solve it exactly, an exact
Newton descent direction could be obtained and the
minimum point is found in one step.

1) Assume an arbitrary initial guess U0.
2) Solving the backward problem

dY9
5 2Y9, (B21)

dt
o 21Y9(1) 5 X(t ) 2 X (t ) 5 (U 2 1)e , (B22)f f 0

one obtains

d0 5 2Y9(0) 5 2(U0 2 1). (B23)

3) Let

U1 5 U0 1 a0d0, (B24)

where a0 is the step size obtained by the following
line search:

J(U 1 a d )0 0 0

2[U 2 a(U 2 1) 2 1]0 0 225 min (1 2 e ) ,5 62a

(B25)

which has an exact solution a0 5 1.
4) Using the newly found a0, we can see that

U1 5 U0 1 a0d0 5 U0 2 (U0 2 1) 5 1, (B26)

which is the best initial condition that minimizes the
cost function given by Eq. (B7), that is,

J(U1) 5 0. (B27)

So the adjoint Newton algorithm algorithm has found
the minimum in a single step.

APPENDIX C

Convergence Analysis

For a quick assessment of the rate of convergence, a
table can be constructed of

jk 5 Jk21 2 Jk

for the last few values of k (Gill and Murray 1972). In
our experiment, Jk denotes the value of the cost function
at the kth iteration scaled by J0. Superlinear convergence
would be indicated if jk11 ø , where r . 1. Fast linearrj k

convergence would be indicated if jk11 ø jk/M, where
M . 2.

In forming the sequence {jk}, the user needs to be
aware that eventually all algorithms either fail to make
further progress or display slow linear convergence near
the limiting accuracy of the solution. What may occur
with a superlinearly convergent algorithm is that the
sequence {jk} will demonstrate superlinear convergence

for a few iterations only and then lapse into slow linear
convergence when limiting accuracy has been achieved.
Therefore, it is important, especially if a failure has been
indicated, to examine the sequence {jk} at iterations that
sufficiently precede the final stage (Gill and Murray
1972).

After 18 iterations, the cost function decreased eight
orders of magnitude when the ANA is used. We con-
struct Table C1 for iterations 1–5 and 14–18. This table
indicates that the ANA has a fast linear convergence
rate for the first five iterations with average M 5 8.77,
while its convergence rate slows down for the last five
iterations with average M 5 1.79. Similar studies are
carried out for the LBFGS method. It is found out that
LBFGS has a linear convergence rate with average M
5 2.38 for the first 5 iterations and M 5 0.63 for it-
erations 74–78.

As pointed out in the third remark in section 2b, ANA
has a theoretical quadratic convergence rate. It is a New-
ton method. However, its numerical convergence rate
in this example is only fast linear. This is due to the
fact that once modifications are introduced in the back-
ward integration of the tangent linear model, its solution
at the initial time will not be as good as the Newton
descent direction. Hence the corresponding ANA will
not display a quadratic convergence rate.
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