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Abstract—In this paper an adjoint- (or sensitivity-) based error measure is formulated which
measures the error contribution of each solution variable to an overall goal. The goal is typically
embodied in an integral functional, e.g., the solution in a small region of the domain of interest. The
resulting a posteriori error measures involve the solution of both primal and adjoint problems. A
comparison of a number of important a posterior: error measures is made in this work. There is a
focus on developing relatively simple methods that refer to information from the discretised equation
sets (often readily accessible in simulation codes) and do not explicitly use equation residuals. This
method is subsequently used to guide anisotropic mesh adaptivity of tetrahedral finite elements. Mesh
adaptivity is achieved here with a series of optimisation heuristics of the landscape defined by mesh
quality. Mesh quality is gauged with respect to a Riemann metric tensor embodying an a posteriori
error measure, such that an ideal element has sides of unit length when measured with respect to
this metric tensor. This results in meshes in which each finite-element node has approximately equal
(subject to certain boundary-conforming constraints and the performance of the mesh optimisation
heuristics) error contribution to the functional (goal). © 2006 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Mesh adaptation or optimisation algorithms require the derivation of an appropriate error mea-
sure. This error measure ‘guides’ the adaptivity algorithm, or in other words decides how the
mesh is to be modified. Numerous error measures to serve this purpose have been presented in
the literature, for example, methods developed to measure error with respect to a given energy
norm [1-3]; interpolation-based methods [4-7] calculate an a priori measure of the error based
on both the local mesh size and some higher-order derivative of the exact solution, which must
typically be obtained in practice using recovery from the numerical solution; there also exist
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various types of explicit and implicit a posteriori error measures [8,9] as well as the implicit
equation residual approach [10-16] in which the same set of equations is solved for the errors,
with sources given by the residuals of the governing equations. These are the only methods which
can correctly propagate the errors through the domain.

The literature contains various approaches to mesh optimisation for tetrahedral elements, for
example [17-21]. The Imperial College ocean model (ICOM) [22-24] utilises dynamic adaptation
of a fully unstructured tetrahedral mesh in three-dimensions (3-D), as presented in [21]. This
technique uses a form of h-refinement (or mesh optimisation) to adapt the mesh, changing the size,
shape, and location of tetrahedral elements to optimise the mesh according to specific criteria,
as defined by an error measure. The algorithm is based on a series of mesh connectivity and
node position searches, defining the mesh quality. A Riemannian metric tensor reflecting the
error measure is used to calculate the desired element size and, importantly, shape. A functional
is used to gauge the mesh quality; this functional embodies both element size and shape with
respect to the metric tensor. A locally based search strategy is adopted to carry out the adaptation
operations: node smoothing; edge and face-edge swapping; and edge splitting and collapsing, to
minimise the functional. The algorithm is robust, produces high quality anisotropic meshes, and
has a time complexity which varies linearly with the number of elements, see [21]. The anisotropy
of the method offers both substantial computational improvements over fixed mesh methods and
feature-following opportunities.

Other approaches to mesh adaptation can also be applied using the error measures presented.
Unstructured tessellation methods can deal with geometries of arbitrary complexity and render
themselves naturally to adaptivity. There are three main approaches to the generation of unstruc-
tured tetrahedral meshes, quadtree/octree methods [25], the advancing front technique [26,27],
and Delaunay schemes [19]. In general, good quality 2-D meshes can be created through Delau-
nay schemes which can lead to mesh-adapting schemes for triangular [28] or quadrilateral [29]
elements; however in 3-D element aspect ratios can become very large [19]. Further work on 3-D
Delaunay methods can be found in [30-34].

The error measure utilised in this work is one based upon both the curvature of the solution
(which provides directional information) and a required specification of an appropriate interpola-
tion error, derived from a goal-based method. The required interpolation error varies in time and
space through the simulation. Scaling of the resulting metric tensor [21,32] allows phenomena
acting at various scales to be resolved. The overall approach effectively uses the current solution
of the problem in hand to adapt the mesh to reflect future ‘activity’ in the flow.

The motivation for the incorporation of sensitivity analysis in error measure design stems from
the assumption that it is ineffective and undesirable (computationally speaking) to adapt the
mesh every time step (or few time steps); hence in a dynamically evolving flow the mesh could be
said to be ‘behind the flow’, and therefore not in an optimal form to resolve features and provide
the best solution. The method presented here is our first step toward being able to ‘predict’
the flow’s future movement (at least to highlight possibly important areas), and adapt the mesh
accordingly.

Sensitivity analysis deals with the calculation of the gradients of a model forecast with respect
to model parameters, where these parameters might be initial conditions, boundary conditions,
or other physical inputs. Use of an adjoint model, first introduced in [35], can identify regions
where changes to variables or parameters have the largest impact. Put simply, an area with high
‘sensitivity’ is one within which small perturbations can strongly influence the growth of errors
in the overall solution. Sensitivity analysis has been applied in a variety of fields, including the
control of water through irrigation channels [36] and contaminant releases in rivers [37], applica-
tions to the shallow water equations [38], as well as various meteorological applications [39-41].
Theoretical considerations have been presented by Homescu, Navon and Cacuci [42,43], with later
applications to optimal control, 3/4D-VAR data assimilation, and error estimation [44].

Adjoint models can be derived with either of two approaches: the continuous approach based
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on the Euler-Lagrange equations, see [45,46], or the discrete approach in which the discrete
representation of the nonlinear problem is differentiated, see [47,48]. It is only the latter which
is completely consistent with the discretised representation of the forward equations, and as
such is the ideal. Some discretisation methods however are complex (such as nonlinear methods,
nonlinear Petrov-Galerkin [49], or flux limiting methods [50]) and as such an Euler-Lagrange
approach may be more convenient. Indeed this is also the case if a different mesh is used for the
forward and adjoint computations when the meshes are adapted independently to optimise the
accuracy of the forward and adjoint solutions individually, see [51].

Although in principle automatic differentiation [52,53] may be used to form gradients (or sen-
sitivities), some aspects of the solution method may be hard (or even impossible, e.g., decision
branches in the code) to differentiate. A big advantage of using the consistent discrete approach
is that the correct boundary conditions are automatically applied to the adjoint equations. Al-
though error measures are developed in this work from the discrete equations (see Section 3), it
will been seen that the resulting methods are amenable to either approach.

An issue for real problems is time dependence. Problems are typically solved using time-
stepping methods which march forward in time while not necessarily storing all the previous
time levels. The sensitivity approach described here requires access to all time levels. For ex-
ample, if the mesh is to be adapted to optimise the accuracy of the model at an observation
point then there is a need to march forward all the way through time recording the model
result at the observation point as a time series, then propagating, with an adjoint model, back-
ward in time with the observations from the end of the time domain to the start of the time
domain.

Complications arise because of the fact that the adjoint model needs access to the forward
solution (e.g., the velocities) in order to backpropagate information. High-width trees via check-
pointing can provide a memory-efficient alternative to storing the forward solution at every time
level. However, this does require solving the forward problem several times in order to obtain
solution-variable sensitivity information from which the mesh can be adapted. For many problems
the superconvergence (see [54]) properties of the target functional may well warrant an approach
like this, but it may be complicated by multiple solutions and the chaotic nature of such flows
(exponential divergence of the flow behavior following a small perturbation in the solution, such
as would be provided by a different mesh).

Since the adjoint solution is typically used in data assimilation (correlating the model with
observations to obtain suitable initial conditions say) and optimisation (industrial-plant-based
optimisation of the efficiency of process technology) then this work provides an additional use for
this adjoint information—that is, to adapt the mesh and provide indicators of the accuracy of the
functional or goal (e.g., the efficiency of a process). These methods provide the framework for
optimising the accuracy of the inverse problem as this is equivalent to optimising the accuracy
of the functional (goal) in the primal solution.

The aim of the work presented here is to take the emphasis off the numerical analyst in designing
error norms and put it in the domain of the engineer or physicist who has a firm understanding
of the problem in hand. An engineer or physicist would typically want to extract a particular
quantity from the numerical simulation, for example the solution at a range of points or an
integral quantity. The aim of goal-based error-measure design is to take a measure of what is
deemed ‘important’ in a problem and design an error measure, and consequently mesh-adaptation
scheme, to optimise the accuracy of this quantity. A bound on the required accuracy for this
quantity (goal) can be set, and the method presented in this paper yields a mesh which achieves
this level of accuracy with minimal computational resources. A method of this type is particularly
important for problems with a number of solution variables where it is typically unclear what
priority to put on resolving each of the solution fields. The method developed here provides a
systematic way of doing this.
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The error contribution to each of the nodal solution variables can be determined and used to
substantially improve the accuracy of the goal functional, see [54,55]. In addition, sensitivity
information may also be used to provide a bound for the error in this functional, which can be
invaluable to any model, see [2]. An example of an application area of this type of technique is
in the adaptation of a mesh to optimise a quantity of interest in a fluid simulation such as the
drag or lift past an aerofoil [54]. The particular interest here is for an ocean model, as described
by [22-24]. The goal function in such a model could be an observation or some measure of the
dynamics of the system, for example some integral of vorticity, the strength of the thermohaline
circulation, or some more novel measures and diagnostics as explored by [56-58].

The tendency of an adapting mesh to refine down to a scale able to resolve molecular viscosity
in large-scale turbulent flows (e.g., an ocean) can be reduced, as the adaptation technique can
be guided by the measure of what is deemed important in the model. Although there are serious
complications associated with the nonlinearity of systems, such as the Boussinesq equations,
permitting multiple and chaotic solutions, these error measures will still provide useful mesh-
adaptivity guides.

What distinguishes this work from previous work on goal-based error measures and adaptivity,
for example in [59-62], is the use of readily accessible (in simulation codes) discretised equations,
the application to transient problems, and the use of a metric tensor obtained from sensitivity
analysis to adapt three-dimensional meshes of anisotropic unstructured tetrahedral elements. The
metric tensor is used to gauge both shape and size quality of each tetrahedral element which forms
the basis of a mesh adaptivity/optimisation procedure. Since the adjoint solution is typically used
in data assimilation, control, and optimisation problems, then the method presented in this paper
provides an additional use for the adjoint information.

By adapting the resolution of the mesh in space and direction to optimise the functional (in this
case the quantity of interest or goal) the overall aim of this work can be achieved. The method
is demonstrated for simple 3-D advection-diffusion problems in which the solution accuracy at
certain positions of the domain is optimised. Issues associated with solving problems with multiple
solution variables are investigated here by solving a number of advection-diffusion problems on
a single mesh.

This paper is organised as follows: the next section gives a brief overview of the adaptiv-
ity algorithm, followed by the derivation of two dual equations for the functional sensitivity in
Section 3; metric tensors and residual calculation methods are presented in Sections 4 and 5;
Section 6 contains a summary of the computational aspects of the approach; Sections 7 and 8
consider some results on simple test problems; finally conclusions are drawn.

2. ANISOTROPIC MESH ADAPTIVITY METHOD

For completeness a brief overview of the mesh optimisation algorithm employed in this work
is given in this section. A more-detailed description of the method is given by [21].

2.1. Metric Tensor

The mesh optimisation method presented requires as a precursor an error measure in the form
of a nodally defined metric tensor [19]. This positive definite matrix defines, anisotropically, the
desired mesh edge lengths at each node. The desired edge length, h;, in the direction of the ith
eigenvector, e;, of the symmetric metric tensor M, is defined as h; = 1/4/A;, where A; is the
eigenvalue associated with e;. In general the metric tensor is used to calculate distances during
mesh optimisation via ||v|| = vT My v where M, is the average metric tensor along vector v. This
approach may be viewed as a discretisation of a Riemannian geometry constructed from an error
norm. As the directionality of the solution is encoded in the metric tensor, anisotropic solutions
will generally lead to anisotropic meshes that balance accuracy with computational efficiency.
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For example, the fact that the method seeks to attain a specific error means that the procedure
will also remove surplus elements, thus improving computation efficiency.

When forming a suitable metric tensor a number of generic operations are regularly applied.
These include: limiting the maximum and minimum desired edge lengths so as not to specify
unrealistic modelling goals; limiting the aspect ratio of principal directions of an element; com-
bining several metric tensors from different solution fields; global scaling of the metric tensor
in order to limit the computational resources the model may request (i.e., limit the number of
degrees of freedom in the model); and metric-tensor gradation control. Most of these operations
are discussed extensively in the literature (e.g., [19,21]) and so will not be elaborated on here.

2.2. Element Functional

To define a mesh-optimisation problem an element functional is defined in terms of the metric
tensor and of the properties a good mesh should exhibit for modelling. Trials are then performed
on the local mesh connectivity and node position—in the case of a minimisation problem being
defined the aim is to find a local configuration that reduces the functional value. Defining the
mesh functional as

F = Flloo, 1)

where F is the vector of element functionals for the whole mesh, the process terminates when F
falls below some tolerance. There are many possible choices for the definition of the local func-
tional F (see [63] for a review). The element functional used here is geometrical-based

Fe=%2(rg—1)2+u(%—1)2. 2)

LeL.

Here 7, is the length, with respect to the edge-centred metric tensor, My, of edge ¢; L. is the set
of edges of element e; p. is the radius, with respect to the element-centred M, of the inscribed
sphere (insphere) of element e; and « is the radius of the inscribed sphere of an ideal equilateral
element. In 3-D the ideal element is defined in metric space as an equilateral tetrahedron with
sides of unit length.

The trade-off between size and shape is controlled by the parameter y, which has been chosen to
be unity for the work here. The first term in the functional becomes zero as all of the edge lengths
approach unity (measured with respect to the metric tensor M), and the second term becomes
zero as the in-sphere radius approaches o (measured with respect to the metric tensor M). In
this way the functional gives a measure of the quality of an element in terms of both its size and
shape.

2.3. Mesh Adaptations

For a given metric tensor and objective functional, the tetrahedral mesh is adapted through a
combination of [21]:

¢ node insertion/deletion via edge splitting and collapsing,
e face-to-edge, edge-to-face, and edge-to-edge swapping [34],
e Laplacian smoothing (in metric space),
e optimisation-based node positioning.
It is worth noting that: edge collapsing reduces the number of elements and nodes thereby
coarsening the mesh; edge splitting increases the number of elements and nodes, thereby refining
the mesh; face and edge swapping, and mesh smoothing primarily serve to modify the shape of
elements and do not generally alter the number of elements or nodes.
For the mesh-optimisation method employed here the surface geometry is modelled using dis-
crete elements, i.e., the domain is represented using a piecewise linear approximation whose
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integrity is maintained throughout a simulation. This is to avoid conservation issues associated
with using adaptive mesh methods with parametric surface descriptions.

Some of the adaptive operations are constrained when applied close to a geometrical boundary
(whether an external surface or an internal boundary). For example, edge collapsing is normally
effected by replacing the two nodes of an edge with another node at the midpoint of the edge. If
one of those nodes lies on a geometrical boundary then the edge must be collapsed to that node.
If both nodes lie on such a boundary then the edge cannot be collapsed.

Similarly, a face cannot be swapped to an edge if it forms part of such a boundary, and neither
can an edge be swapped for another edge if the new edge would intersect a boundary. With regards
to the node movement, if the node is located on a geometrical boundary then its movement is
constrained to that surface. Alternatively, if a node is on a geometrical edge (an intersection of
boundaries) then it is constrained to move on that edge. If the node is on a geometrical corner
(intersection of two or more boundaries) then it cannot move at all.

The optimisation method visits each element of the mesh in turn. The adaptive operations,
associated with an element, as listed above, are only proposed if the worst element is sufficiently
‘bad’ (i.e., if the maximum element functional is greater than some predetermined value, 0.15 is
used in the examples presented here). Once a local mesh change has been proposed, the maximum
element functionals are compared before and after the change. If there is not sufficient reduction
then the face/edge/node is flagged so that the change is not proposed again later on. Otherwise
the proposed alteration is made to the mesh, the surrounding elements/edges/nodes (that have
been affected by the change) are unflagged (since their local situation has changed and they
should be checked again), and the algorithm moves on to propose the next change to another
face, edge, or node.

This multipronged approach is similar to that of [17] except that the objective function de-
scribed above is used rather than purely Euclidean measures of element quality.

3. AN ADJOINT-BASED SENSITIVITY MEASURE

In this section two equivalent error measures are derived based on the forward and adjoint
solutions, leading to two alternate definitions for the metric tensor M.

3.1. A Goal-Based Error Measure

Suppose a differential equation to be solved is
L¢exact — 8= 0, (3)

for source s, linear operator L (the extension to nonlinear operators is relatively straightforward
although it can involve considerable algebra), and the exact solution is Yexact = Yexact(X). This
solution is approximated with a finite-element scheme as

N
Y(x) =) Nj(x)T5, (4)

i=1

(2

il

with x being the spatial coordinates; N;(x) is the finite-element basis function associated with
node j; U = (¥, Uy,...,Uu)T is the discrete solution vector; and A is the number of nodes in
the finite-element mesh. The equation residual is

R(p) =Ly —s. (5)

The aim is to make this residual small in some sense. This is done by multiplying equation (5)
by a weighting function. In the Bubnov-Galerkin method this weighting function is chosen to be
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the basis function N;(x). However the equations are discretised, a matrix equation and residual
vector is obtained

r(h) = AT — S =0, (6)

for matrix A and discretised source S. In a practical implementation with inexact arithmetic and
possibly the use of iterative solution methods, r(1) may not be identically zero. It is assumed
insignificantly small in this work. This assumption may be relaxed by retaining r(¢) in the
following equations. In addition, note that in the analysis it is assumed that r(¢) is in some
sense a discretised representation of the residual R(y) multiplied by a representative volume of
each cell or node, as achieved in typical finite-element Petrov-Galerkin or control volume methods.

3.2. The Functional or Goal

Suppose that the functional whose accuracy is to be optimised is represented as F' = F(¢),
and

Fy) = /Q f(w)av, (1)

where Q is the solution domain. F (1) may be any derived quantity of the solution 1. Applying a
first-order Taylor-series analysis, the gradient 3 f near the exact solution 1exact can be obtained
from

S (st = )  (Vact) = £(0), ®
or in discrete form,

aF\ " .

ﬁ (\Ilexact - \Il) ~ F ("l’exact) - F(d)), (9)
in which Wexact = (Vexact;r Yexactys - - - » Yexact N)T is a vector containing the exact solution at
the NV finite-element nodes (or control-volume cells) and

. N
'l;bexact = Z Nj (X) \I’exactj . (10)
j=1

That is, @exact is a finite-element (or other numerical) interpolant of the exact solution exact-

3.3. Continuum Error Measure

In a similar manner to the previous section, applying a first-order Taylor series results in

oOR
EE (wexact - 11)) ~R (wexact) - 92("p) (11)

Since R(texact) = 0,

aR\ !
(Voxncs — ) = — (5@) R). (12)
Equations (8) and (12) can be combined to obtain
of [0R\ !
f Wors) = 1) 2L (%) ). (13)

Integrating this expression over the domain 2, using Green’s theorem and ignoring the resulting
surface integrals leads to

F (Vesact) = F(9) = [ 22 (%) () dv
() o

- [ 2 av,
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in which o of
— = = 15
(55:) ¥ =55 1o
which is typically solved for 1* using a finite-element method. In addition
oOR*
LY=(=—).
(5) 1o

Equation (14) can now be used directly to determine an improved prediction of F, that is to
obtain F(texact)-

3.4. Discrete Error Measure

Suppose a nonsingular matrix Aexact €xists such that

Texact ("Zexact) = Aexact\llexact -S5=0 (17)
and OF
* Tk T
Texact (¢exact> = (Aexact) \I/:xact - ﬁ =0. (18)
Define Uz, .oc = (Wixact,» Yoxactys - - - » Yexact N)T which is associated with the finite-element rep-
resentation N
1/-;;(xact = Z Nj (x)‘II:xactj . (19)
j=1

The discrete analogue of equation (11) is

0 (Texact (iexact))
OVexact

(\Ilexact - ‘I’) = Texact (&exact) - "'exact(w) (20)

~ 7 (Pexact) = 7 ().
Combining this with equation (17) differentiated w.r.t. Wexact results in
(Wexace = ¥)  (Acxac) ™ (7 (Pexact) = 7(8)) - (21)
This can then be combined with equations (9) and (18) to obtain

F (d;exact) —F@)~ (gg_)T (Aexact)_l (T ("Zexact) B 7‘(1/1))
= (7 (Fosss) =) (hernc)™™ (55 @)

. T
= (T (wexact) - T(¢)) \IJ;xaCt'

This expression can also be used to obtain an improved prediction of F', that is to find F ("Z;exact)y
once estimates of 7(Yexact) and Uk, .. have been obtained.

3.5. Discrete Functional Correction

Although the error estimates are obtained from equation (22), the product
~ T
("' ('wexact) - 7‘('1/))) \p:xact

is not known and cannot be used directly to correct the functional F'. To do this the following
relation is employed:

- - T
F (wexact) - F(d)) ~ (T (wexact) _7'(7/))) v
~ () —r(¥)) " ",
7(¢) is approximately equal to T‘('l/;exact) and is obtained from the residual calculation method

outlined in Section 5. Equation (23) can also be used to renormalise the error measures to
correctly obtain the desired error in F'

(23)
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3.6. Dual Continuum Error Measure

An alternative dual error measure can be obtained which utilises L1* instead of R(¢). Since

R (".bexact) = Ltfexact — S = 0, (24)

with the application of Green’s theorem and again ignoring the resulting surface integrals, equa-
tion (14) becomes

F (¢exact) - F(¢) ~ = /S; R(w)iﬁ* av

- / (Coxact — ) — (L — 8)) ¥ dV
7 (25)
- /Q (& (Vexact — $)) ¥* dV

- /ﬂ (Vexact — 1) L7467 dV.

3.7. Dual Discrete Error Measure

Following the method of Section 3.6 the analogous result in the discrete sense is, from equa-
tion (22),

F (Yexaer) = F@) % (1 (oxser) = r(9) T
= (A¥exact — 5) — (AT — 8)) T Ty

= (A (Vexact = 1)) T Tiaer (26)
= (‘Ilexact - \I,)T AT‘I/;xact

= (AT\I’:xact)T (\IJexact - \I’) .

This is used to form a directional error measure based on the forward solution.

3.8. Alternative Error Measures

The dual error measures derived in Section 3.7 can be expressed, assuming r(¢) =0, as

F (esact) = ) ~ 7 (Fosae) W

(27)
- T - T
=r ("/)exact> U* 47 (wexact) (\Ij:xact - \II*) .
From equation (27) a useful relationship, which has an analogous continuous form, is
aF\ " - \T
F (d]exact) - F("p) ~ (%‘) (\I/exact - ‘IJ) +r ("pexact) (‘I’:xact - ‘I/*) . (28)

Equation (28) is used to form a directional error measure based on the adjoint solution. Similar
results to (27) have been presented by [62], in which the latter part of equation (28), that is

T ("Z’exact) T (Vexact — ¥%),

is used to gauge mesh adaptivity isotropically [64] and anisotropically [65]. In [54] a defect
correction method, similar in form, is presented to increase the accuracy of estimation. Miiller
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and Giles [55] use a similar approach to that described here, but using an isotropic error measure.
Note that equation (27) can also be expressed for linear operators as

T

F (wexact) - F(d’) ~ <AT (\Il;xact - \I,* + A_ng>> (\I’exact - \II)
T

aF) (\I’exact - \Ij) (29)

exact — + —8_’1/1—

= (AT (U2 T*)
(

OF

T
-a_ll)) (\Ilexact - \I’) .

= ( ;xact - \I’*)T A (\I’exact - \I’) + (

Estimates of the solution errors (¥* — U% ) and (¥ — Wexact) can readily be obtained using
interpolation theory as outlined in Section 5.

4. DERIVATION OF A METRIC TENSOR

In Section 3 the error measures were derived. In this section these error measures are mﬁcjﬁed
slightly by approximating the unknown quantities AT W% . . and r(Yexact) with known ATEZ
and #(texact ), respectively. Full details of how this is implemented are outlined in Section 5. The

error measures (equations (26) and (28)) then become

F ($exact) = F(9) & (AT000)  (Teract = 1), (30)
oF\ " =N\
F (exact) = F(¥) ~ (%) (Wexacr = ©) + 7 (Poxact) - (Liaer = ). (31)

These equations require a measure of the error in the forward solution (equation (30)) and both
forward and adjoint solutions (equation (31)).

4.1. Defining a Metric Tensor

A metric tensor (see Section 2) can be defined
M=%ML (32)

Here H is the Hessian matrix, € is the required level of error, and « a scalar constant. The
absolute value of the symmetric Hessian matrix is defined as

H|=V|A|VT, (33)

where the matrices V and A contain the eigenvectors e; and eigenvalues A; of the Hessian
matrix H, respectively, and are defined as

Ayl 00
V=(81 €9 83), |A|= 0 |Az| 0 .

0 0 |Ag

Ideal elements then have sides of length unity when measured with respect to the metric tensor.
The discrete (nodal) form of ¢, from equation (30), is

F

€ = m (34)
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Here (AT?,,.); is the it} entry of the vector AT . and

;xact
N

€ = (Yexact — ) = Z Nj(x)ej'
j=1

Suppose 6 F is the acceptable error in F'; then assuming the error contribution to F' is the same

for each node, then define

~ OF
6F = =7 (35)

Predicting, and potentially fixing, the available number of nodes is an alternative to specify-
ing 0F, and useful when computational resources are restricted in some way. The number of
available nodes can be fixed and the metric scaled in the following way. The volume of an opti-
mal tetrahedral element can be taken to be v = (1/4/72). If it is assumed that after the mesh
is adapted all the elements have the ideal volume <, then as the domain is a fixed volume the
number of elements can be calculated from

&

old

>
0FEpnew = e=; (36)

o~

where Eg4 is the number of elements in a mesh before it is adapted and Epey the number of
elements after. V, is the volume of an element e. A new metric Mpew = SM replaces M for
some scalar 8. M is obtained from the method above (see equation (32)) with SF arbitrarily
taken as 6F = 1. Mapping the node-wise values of the metric tensor to the element-wise metric
tensor M, is achieved by taking the average of the metric tensor values at the nodes of element e.

The scalar § acknowledges the fact that equation (36) is not exact, a value of § ~ 0.85 is found
to be appropriate in [21]. To make the replacement of M with Myew then the required number
of elements is 0 Ey ey, and substituting into equation (36) leads to

E, E,
SV, /At (BML) - BY/2V,\/det (M)
gEnew = e=1 = =L ) (37)
vy Y
and so
2/3
_ Y0 Enew

3 Vuy/det (M,)

4.2. Application to Multiple Field Problems

For each solution variable [ and at each node 7 it is possible to define two Hessians: H! associated
with the forward solution ! and H*! associated with the adjoint solution ¥*.. The Hessian
matrices are defined as

H. = (VT vy) (39)

i?

H = (VTvy)
To calculate the Hessians, the method presented in [21] is followed. Galerkin projections are
repeatedly applied to calculate the first derivatives. Consider the forward Hessian constructed
from the forward solution 4!, consequently at node 1,

oyt _m-1 Yt
o [ (3) o

oz

A
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and in a similar manner for qé‘_ and g... M, is the row summed lumped mass matrix, see [66].
The second-order terms which form the Hessian for an equation solution variable ! centred on
node 1,
Goo, Goy, oz
Hi=| G Gy Bs |
Coy Gy oz

are calculated in a similar way, for example
- dql g
o 1 N I a1 ¢
do =M [ NS av, b, =Mt [N

If there are M solution variables per node then an averaged Hessian H; associated with node 4
can be defined as

= —— > N[, (40)
where

Absolute values of the Hessian matrices |H!| are as given by equation (33). This technique uses
equation (30) as the basis for this average. Using the error measure defined by equation (30) the
metric tensor field can be found. An interpolation error €; at node i can be defined as

) §F
€ = M l ) (41)
3 X
=1
and then the nodal metric tensor M; is obtained from
M, = I_Z’T |H|. (42)

Using the adjoint error measure defined by equation (31) a second metric tensor can be obtained
based on the forward and adjoint solutions. To that end, suppose that

l
)‘+2 = (%g‘) R )‘*i = "A‘(w)iy

then a combined averaged Hessian H associated with node i can be defined as

-~ 1 M l
A - (%

H*,
M (]
& (el + i) 1=

)
A

|HY| +

) . (43)

An adjoint-based interpolation error € can be defined as

& = L (44)
E G
= K3 K3
So a new adjoint-based metric tensor M} at node i is obtained from
M = L |H (45)

&
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As shall be seen in some of the examples of this method in Section 8.1, it may be valuable to
consider a modified adjoint metric tensor constructed in a similar manner to equation (45), but
omitting AT terms. Taking this into consideration, a modified averaged adjoint Hessian, H; say,
can be defined,

-5

*l *l
2 |V (B (46)
S|
=1
Consequently a modified adjoint-based interpolation error € can be defined as
., __OF
€ = M . (47)
Z A
So a modified adjoint-based metric tensor M for node i is obtained from
M; = o [ (48)

4.3. Incorporation of Multiple Metric Tensors

In practice, one metric tensor M is required to guide the mesh adaptivity algorithm. A single
metric tensor field can be obtained by either ignoring the metric tensors M+ or M* and using
only M as the basis for mesh adaptivity, and thus the overall metric tensor M; at node i is
obtained from

M; = M, (49)

or alternatively by including aspects of more than one metric tensor. One method could take the
form an of averaging, similar to that used in equation (43). The average metric tensor takes the
form

M, =

|~z

H,|, (50)

i}

|&]

where the interpolation error € and averaged Hessian H; bring in components from the forward
and modified adjoint metric tensors, where

I+ e
=]
and : W o
Hi:m;(piHHil—k x| [e]) (52)

Alternatively a method of superposition can be used. If metric tensors M and M* are to be
superimposed then

MY = G (M, ). (53)

In this case the operator G(A, B) superimposes the two metric tensors A and B by the method
presented in [21].
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5. DETERMINING EQUATION RESIDUALS

In this section the forward and adjoint equation residuals are estimated, which enables the
metric tensor to be obtained by the method described in Section 4. If the differential equation
under consideration is first order then it is a simple matter of substituting the finite element
solution ¥* into the operator L*(¢*) into the final result of equation (25) or R(%)) into the first
result of equation (25). It may be possible for a second-order operator £(v), using quadratic and
higher-order elements, to obtain estimates of L*(¢*) and R(¢); however, in this work only linear
elements are considered. Moreover, since second-order operators are often solved in their weak
form and since it may be inconvenient to write additional code to determine the residual through
the residuals of the equations, estimates of L*(¢*) and R(¢) are calculated from the discretised
equations. It should also be noted that the equation residual R(%) or similarly L*(4*) can be
quite oscillatory, see [54], and have been smoothed in [62] to obtain residuals that can be used in
the equations above.

The overall approach that will be used here for calculating equation residuals will be based
on forming course grid approximations to the discretised equations on the current fine mesh. It
will be seen that this can be equivalent to using a high-order Taylor-series expansion to find the
equation residuals or truncation errors and is thus accurate. However, since interpolating theory
is used throughout this work, in calculating metric tensors this approach is also demonstrated by
using it to estimate equation residuals.

5.1. Interpolation Error Residual Estimation

The residuals can be obtained by finding an estimate of the error in the solution at the nodes
using interpolation theory. For a finite-element e the interpolation errors are

I\I’exact - ‘I’| ~ Ye lgé%): {V; |H| Ve} )

I\I’:xact - \Il*| ~ YcMmax {v;r |H*| Ve} ’
LeLl,

where £ is an edge of an element (or side of a control volume), v, is the vector along edge £ and
with magnitude equal to its length, and L. is the set of edges of the element e. The Hessian
matrices remain as previously defined.

5.2. Residual Estimation

——

In this section approximations AT . and #(Yexact), for a particular node i, are obtained
to the quantities ATUZ . and r (iexact), respectively. This is achieved by finding a coarse-
grid representation of the discrete matrix equations at each node i; the residual is obtained
when an approximation to the adjoint solution ¥* is evaluated at the coarse-grid nodes and
used in conjunction with the resulting coarse-grid matrix. The coarse-grid residuals are also
obtained algebraically, so that no access to the governing equations is necessary. This takes a
step toward the possibility of developing a method (and associated computer implementation)
that is independent of the governing equations. With knowledge of how the residual varies with
the grid resolution one can determine an estimate of the residual.

Matrices and vectors are calculated to obtain an estimate of the residual at a node 4, the set of
nodes directly connected to 4 is taken to be S;. Vectors and matrices used in this section should,
strictly, have a subscript ¢ indicating this; however for simplicity of the notation this has not
been included, but note must be taken that the following must be performed for each node ¢ in
turn in order to obtain the (nodal) residual vector. Suppose the following system of equations is
to be solved:

AT =S,
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v=(5) s=(5)

U is the vector of unknowns associated with the nodal basis and S is the source. Let a vector of
unknowns associated with a hierarchical basis be

. (AT
b= (597)

The subscripts f and c refer to the fine- and coarse-grid variables, respectively, and AW are the

where

fine-grid correction terms. ¥ and ¥ are related through

v =J9, (54)

J=((I) J112>. (55)

()= ) () 9

The subscripts f and crefer to the fine- and coarse-grid variables, respectively. From equation (55)
it can be said

where

Consequently

I -J
-1 _ 12
) o
The matrix formed with the hierarchical basis is defined by
A=JTAJ, (58)
and thus, .
A I 0)/An A12) (I J12) (Au Qm)
A= = , 59
(JE I) <A21 Ay 0 I Qa1 A, (59)
where
Q2 =Andis + Ay, (60)
Qa1 =J LA + Ay, (61)
A, =JLA 1T +ILAL + Aydis + Ag,. (62)

The matrix A is spectrally equivalent to the matrix A and can be formed using the shape
functions associated with the coarse grid. The residual can now be estimated from

% (Ac¥e - 5.) = 7.Qu ATy, (63)
in which the coarse-grid source S, takes the form
S, =308+ S.. (64)

It is worth noting that AW may be used directly in equation (30) to help improve the estimation
of F. In this work the equation for the residual at node i is

(r (Peact) ), = (F()); = (e QuATy),, (65)

where

ATy =T; — Jyp0,. (66)

The scalar 7, has been used to take into account the fact that the residual is estimated on a mesh
that is 2h (see Sections 5.3 and 5.4) as opposed to h in element size. Supposing that the residual
converges with h%, then vy, = 1/4 as this is the factor required to give a residual estimation on
the current mesh.
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5.3. Ji2 Definition for Structured Meshes

The matrix vector multiplication J15W . acts to interpolate the coarse-grid solution variables ¥,
to obtain solutions on the other (fine-grid) nodes. The matrix J;o possesses the property that
it has a row sum of unity and mostly positive entries. The fact that J;o¥, acts to interpolate
coarse-grid variables reiterates the definition of J=! in equation (57), that AU are fine mesh
correction terms.

A fine-grid stencil is constructed from the nodes directly connected to node k, say; these nodes
form the set S and are shown as filled-in circles in Figure 1. The fine-grid stencil is extended
by a factor of two in each direction to give the location of the coarse-grid nodes. These points
are shown as open circles in Figure 1. The solution at node k is obtained by interpolating the
surrounding coarse-grid nodes. For example, suppose the node at which the residual is short is
(4,7), on a regular N, x N, mesh, as illustrated in Figure 1. The node (3, j) is the central node,
and forms the centre of both the fine- and coarse-grid stencils, and then the solution (interpolated
from the coarse-grid solution variables) at the fine node (4,7 + 1) is

. V.. 4.
\I’i,j+1 — 24 + m+2’
2
and at the fine-grid node (i +1,j + 1)
G o Wi+ Yigeo+ Wiraj + Yitajva)
i+1,5+1 4 .

This results in a nine-point stencil in the coarse mesh in matrix A., which is used in Section 7.
Alternatively,
Goronn = Ligre + Vitaj)
LT T
which results in the same five-point stencil as the original, as indicated by equation (84). Conse-
quently AW can be taken to be
AV; =¥ — 0y, (67)

with indices (7, j) omitted for simplicity.

©

A
U
)

I4h)

)

®

G S S

Figure 1. Diagram showing how the coarse grids are obtained for a structured mesh,
as outlined in Section 5.3. Filled circles represent fine-grid nodes; open circles indicate
coarse-grid nodes.

5.4. Ji5 Definition for Unstructured Meshes

Extending the method to an unstructured mesh requires some extra work, as the coarse-grid
nodes do not generally lie in the same positions as the fine-grid nodes. A simple method of
mesh coarsening and quadratic interpolation is employed to enable computation of the fine-
grid correction AV and approximations A@act and 7(Yexact) to ATTE o and 7(Yexact),
respectively, for each node i of the mesh. Fine- and coarse-grid stencils are established for each
node.
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Figure 2. Diagram showing how the coarse grid is obtained for an unstructured
mesh. Filled circles represent fine-grid nodes (¥;); solid open circles indicate coarse-
grid nodes (¥.) and dashed open circles represent the extra points required for
interpolation (¥g4).

A fine-grid stencil is constructed from the nodes directly connected to the node ¢; these nodes
form the set S; and are shown as filled circles in Figure 2. The fine-grid stencil is indicated by
solid bold lines in Figure 2. The fine-grid stencil is extended by a factor of two in each direction
to give the location of coarse-grid nodes. The coordinates of the coarse nodes x., related to the
nodes j € S;, are defined as

Xe =X; +2(X; — X;). (68)
These points are shown with solid open circles in Figure 2; the extension of the stencil is shown
with a bold dashed line. To apply quadratic interpolation a further point must be defined, x4 say.
Similarly, the coordinates of the coarse nodes xg4, related to the nodes j € S; are defined as

Xq =X; —2(X; — X;). (69)

These points are shown with dashed open circles in Figure 2, the extension of the stencil shown
with a standard-weight dashed line. This process results in points x. and x4, related to each
node j € S;. These points generally lie inside elements of the fine (original) mesh. The elements
are identified by means of a local vicinity search, initiated from one of the elements surrounding
node i. The values of a field, for the purposes of this work the solution to the adjoint problem,
U*! at points x. and x4, can then be found by interpolating from the known values of T+ at
the nodes of the element in the points lies, thus yielding \I/*lc and \Il*fi. The objective is to find
an interpolated value of ¥*! at the fine-grid node j. Computing this is now a simple matter of
applying a quadratic interpolation scheme, such that

g L ~Va+6U 430

exact j 8

(70)

This process is repeated for each of the nodes j surrounding node 4; the interpolated value at
node %, the centre of the discretisation, is taken to be ‘Il*ﬁ Figure 2 shows the stencil extensions
required for a node ¢ with three surrounding nodes j.

Generally the points x. and x4 lie within elements of the fine (original) mesh; there are however
some special cases to consider when the nodes lie close to the boundaries of the domain, as
demonstrated in Figure 3. It is likely that the stencil will be extended beyond the boundaries of
the domain. In the case that only x. lies outside the domain or both x. and xq4 lie outside the
domain then

:xact; = lII*_l’ (71)
Alternatively if x4 lies outside the domain then linear interpolation is applied such that
o \Il*§-+\IJ*’c.

exactj — 92

(72)
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Figure 3. Diagram showing how the coarse grid is obtained for an unstructured
grid near to the domain boundary. Definitions identical to those given by Figure 2.
Note that it is possible to extend the stencil beyond the domain boundary; the
methodology for dealing with this is detailed in Section 5.

The interpolated values of U* at the nodes surrounding node i are enough to compute the ith
row of ATW? .. required by equation (34). It is sufficient to take the interpolated values of ¥*

in this case as the values of U*

exact*

5.4.1. Residual smoothing

It should also be noted that the equation residual can be quite oscillatory, see [54], and has been
smoothed in [62] to obtain residuals that can be used in the equations above. As indicated in the
previous section, smoothing is applied to the residuals calculated using the above method. The
smoothing method employed uses a weighted average of residual values at the node in question
as well as those nodes directly connected to it. For simplicity, let # be the approximation to

—

the residual that has calculated; AT®Y, . or 7 (&exact) This is defined at the nodes. Then a
smoothed value of this, 77 say, at a node i, is defined as

1 1
AS _ Zay T A
7 = 2r1+ 55 Z 75, (73)
JES;
where S; is the set of nodes directly connected to node i, excluding node i itself and s; is the
number of nodes in set S;. Applying this procedure to all the nodes in turn creates a new

smoothed field; the process is repeated a number of times (in the examples presented here five

)
. T
times where AT WY

smoother fields.

<t is amended in equation (30) using this approach), producing increasingly

5.4.2. Metric relaxation

A form of metric relaxation is also employed to avoid excessive refinement of the mesh. The
mesh is typically adapted a number of times, generally between 25 and 35, using the same
definition of metric tensor in each case (i.e., forward, superimposed, etc.). For the first adaptation
of the mesh the metric tensor is used ‘as is’. For subsequent adaptations the metric used to adapt
the mesh is defined as

M= (1-oM® 4 pMED (74)

where M(¥) is the metric tensor calculated at adaptation k, M(*~1) is the metric tensor calculated
upon the previous mesh interpolated onto the current mesh, and p is some relaxation parameter.
M® s simply the metric tensor calculated from the initial grid.

For the examples given in this paper g is taken to be 0.9. As the process is repeated the change
in number of nodes between adaptations becomes very small. For this work adaption ceases when
the change in number of nodes becomes < 0.5%.
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6. NUMERICAL BASIS OF MODEL

The advection-diffusion equation is solved for the examples given in Section 8. For the forward
model
u-VC—-VrVC =S, (75)

and for the corresponding adjoint model,
—u-VC* - VkVC* = S*, (76)

Here u = (u,v,w) represents the 3D velocity; u, v, and w are the velocity components in the
z-, y-, and z-directions, respectively. C is the concentration field and the diffusivity tensor is
represented by k; in this model the « is diagonal and isotropic (all diagonal values are equal).
S and S* are the sources in the forward and adjoint models.

The equations in (75) are solved using “the standard” Petrov-Galerkin method and linear
tetrahedral elements. In this way a matrix equation involving A is obtained for the solution of
the forward problem and the matrix AT is obtained for the adjoint problem. These matrices
allow then enabling the error measures defined in the previous section to be used. More details
of the numerical basis of the model can be found in [22,24].

6.1. Definition of a Functional

A functional can be defined to optimise the accuracy of the solution in a certain region of
the domain; let this region be Qp. In Section 8 test cases are considered where the adaptivity
algorithm is based upon the temperature field only; it is appropriate therefore to consider a
functional based upon increasing the accuracy of the solution of the temperature field in a certain
region of the domain. In Section 8 the region Qp- is referred to as a ‘detector’ and the region Qp
is referred to as the source region (the region containing a nonzero source—a box shape in the
example problems). Recalling the previous definition for the functional,

F= [ swav,
Q
a functional can now be defined such that

F= / G*Cdv, (77)
Q

where G* = E?il N;G7 is a function with a finite element representation defined such that

*, if X; € Q -,
ci={7 o (78)
0, otherwise x; & Qp-,
where X; is the position vector of node 7 and 4* is defined such that
/ Grav =G, (79)

where G} is a constant. This definition of G* allows an unstructured mesh to be used while
maintaining the volume integral [ G* dV to be constant of the detector defined by equation (6.1).
Thus, the adjoint source terms S} for node ¢ in equation (76) with C; = W, are calculated from

2

* oF _ *
5t = g = /NZG av. (80)
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Similarly, the volume integral under the source of the forward problem given in the discretised
forward solution vector S must have a constant volume integral G, say. Then the source terms S;
for node ¢ in equation (76) is calculated from

S; = / N;GdvV, (81)

where G = Zj‘le N,G; is a function with a finite element representation defined such that

, if x; € Qp,
G, = { T R et (82)
0, otherwise x; & Qp,
where « is defined such that
/ GdV = G,, (83)

for some scalar G,,.

7. APPLICATION OF
RESIDUAL CALCULATION
TO A DIFFUSION EQUATION
ON A STRUCTURED GRID

In this section residual calculations are tested for a second-order problem on a structured grid;
the diffusion equation V21 = s is solved. A source s of unit strength is introduced in the central
0.2 x 0.2 region of domain z € [0,1], y € [0,1]. At the boundaries a zero potential % boundary
condition is enforced. Three simulations with finite-element grids of resolution 50 x 50, 100 x 100,
and 200 x 200 elements are used to demonstrate how the residuals calculated using different
methods converge with increased resolution. For simplicity a five-point finite-difference operator
was used to discretise the diffusion equation and solve for the potential at the nodes denoted by
the indices i, j, that is,

area (‘4‘I’z‘,j T %51+ ‘I’Z;‘H + Wi +Wig1y Sm') =0,

(84)

in which h is the width or size of the elements and area is the area of each element, here area = h2.
The truncation error may be obtained by dividing this equation by the area “area”. The residual
from the solution of this equation is calculated from a rotated operator

4V + Virjo1 + Yicig + Wiyt + Yivngn g 5
T;,; = area - S (85)
2h2
0.015 T T T
0.010
K
]
g
0.005
0.000 L L . .
0.0 0.2 0.4 0.6 0.8 1.0

x-coordinate

Figure 4. Potential field generated with 50 x 50 elements. Cut-through at y = 0.5.
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Figure 5.Absolute value of the truncation errors (residuals/h?) generated by inter-

polation theory and high-order Taylor-series expansion at the interface of the source
region. Cut-through at y = 0.5.
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Figure 6. Comparison of the absolute value of the truncation errors (residuals/ h?)
using the three methods with a grid of 50 x 50 elements. Cut-through at y = 0.5.
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Figure 7. Comparison of the absolute value of the truncation errors (residuals/h?)
using the three methods with a grid of 200 x 200 elements. Cut-through at y = 0.5.
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The indices i and j refer to the i*h and j*! cell measures from the bottom left z = y = 0 corner
of the domain. The method of calculating the residual using interpolation theory is explained in
Section 5.3 and the multigrid method defined by equation (65).

The purpose of this section is to validate these methods by comparing their residuals with
the residual calculated using a high-order Taylor series expansion as presented by [47,48] and
the rotated operator residual in equation (85). The graphs in Figures 4-7 show the residuals or
truncation errors along a line y = 0.5 through the centre of the domain.

Figure 4 shows the potential 1) obtained using a mesh of 50 x 50 elements. The results for the
other finer meshes are difficult to distinguish visually from this result.

The residuals, or more specifically the absolute value of the residuals, however, are quite
different. The residuals obtained for the high order and the interpolation theory method are
relatively large in the local vicinity of the interface, with the source as shown in Figure 5. This
figure shows that the magnitudes do not decrease with increased resolution, but the large residual
magnitude regions do become narrower. Figures 6 and 7 compare the different residual calculation
methods. Notice that the residual magnitude found by interpolation theory is in general rather
conservative in producing larger residuals than the other methods. It is particularly larger in
the source region because the source itself generates curvature, making this roughly twice the
magnitude that it should be. We assume the value it should be is governed by the high-order
Taylor-series expansion. The magnitude of the residual calculated by the rotated operator is
almost exactly four times smaller than that obtained from the Taylor series. Note should also
be taken that the magnitude of the residuals (by comparing Figures 6 and 7) increases with h?
and is consequently 16 times smaller for the 200 x 200 element result than for the 50 x 50 result.
In general, the interpolation theory approach to calculating residuals does an adequate job even
in the difficult case of a second-order operator and thus provides a simple alternative to the
multigrid approach. The multigrid method produces virtually identical residuals (Figures 5-7)
to the high-order Taylor-series method. The difference in these results is a maximum of about 2%.
The only place where there is a significant difference is near the corners of the source and this is
largely due to that fact that the multigrid stencil is a 3 X 3 nine-point stencil; and the high-order
Taylor series is a 13-point stencil (a seven-point 1-D stencil in each direction). This validates the
use of the multigrid method in these applications.

Note that the multigrid method produces visually identical residuals (in these graphs) to the
high-order Taylor-series method. The truncation errors shown are approximate equation trunca-
tion errors, that is r; ;/area.

8. APPLICATION OF
RESIDUAL CALCULATION TO A
DIFFUSION EQUATION
ON AN UNSTRUCTURED GRID

8.1. Simple Source/Detector Problem

An application similar to that investigated in Section 7 is explored here. In this example we
employ a cuboidal domain z € [0,4], y € [0,4], z € [0,0.02] with an initial grid resolution of
40 x 40 x 1 tetrahedral finite elements. A source of unit strength, cuboidal in shape, with edge
lengths 0.2, 0.2, and 0.02 in the z-, y-, and z-directions, respectively, is centred at (1.0,2.0,0.01),
with a corresponding receiver centred at (3.0,2.0,0.01) and of the same size. The integral within
the source region is 8 x 1074, giving a corresponding potential value of ¢ = 1 within that region.

A functional F is considered (as described in Section 6.1) where the mesh in the vicinity of the
detector region is to be optimised; consequently the source for the adjoint problem (g%) is equal
to approximately unity (corrected to take make the volume integral in the source and detector
regions constant, see Section 6.1) within the detector region and zero elsewhere. The integral
over the source region is maintained at a constant value while the meshes are adapting.
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Figure 8. Solution to the forward problem. Figure 9. Solution to the adjoint problem.

Figure 10. Mesh resulting from the use of the
forward metric tensor to adapt the initial mesh.
3296 nodes, 10467 elements.

Figure 11. Mesh resulting from the use of the
adjoint metric tensor to adapt the initial mesh.
8061 nodes, 27217 elements.
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Figure 14. Mesh resulting from the use of the Figure 15. Mesh resulting from the use of a su-

modified adjoint metric tensor to adapt the initial perposition of forward and modified adjoint met-

mesh. 3216 nodes, 10150 elements. ric tensors to adapt the initial mesh. 3576 nodes,
11023 elements.

Figure 16. Mesh resulting from the use of the av- Figure 17. Forward residual corresponding to the
eraged metric tensor (M, see (50)) to adapt the solution given in Figure 10.
initial mesh. 3712 nodes, 11287 elements.

The inlet boundaries where n - u < 0 have a zero potential ¢ condition enforced; otherwise a
zero normal derivative condition is applied as a natural boundary condition. The initial mesh
contains 3362 nodes and 9600 elements. A velocity field u = (15.0,0,0) is also imposed with a
unit isotropic diffusion coefficient, see equation (75). The solutions to the forward and adjoint
problems are shown in Figures 8 and 9, respectively. The forward residual corresponding to these
solutions is shown in Figure 17. The adaptivity algorithm is constrained so that the domain
maintains one element in the vertical. New element edge lengths are limited to being in the
region [ € [0.001,0.25] (in the horizontal). In this case the number of nodes (and consequently
the number of elements) is effectively unrestricted to avoid any scaling of the element sizes. The
parameter §F is taken to be 5 x 1078,

Figure 10 shows the mesh adapted using the forward metric tensor, defined by equation (42).
Areas highlighted by both the Hessian of the forward solution (equation (40)) and the residual
can be seen to be receiving mesh refinement, while in other areas the mesh is coarsened.
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Figure 11 shows the mesh adapted using the adjoint metric tensor, defined by equation (45).
Areas highlighted by both the Hessian of the adjoint solution (equation (43)) and the residual
can be seen to be receiving substantial mesh refinement, while again, in other areas the mesh is
coarsened. An interesting feature of the mesh is a very distinct area of fine resolution centred
around the location of the detector. This results from the inclusion of the AT terms in the
definition of the adjoint metric tensor (see equation (45)). This area is hard to distinguish
from Figure 11, so a blowup of the mesh is given in Figure 12. Figure 12 shows an area of mesh
refinement directly resulting from the inclusion of the forward Hessian matrix H and source terms
for the adjoint problem. This pattern of refinement results from the type of functional being
employed, and it may be valuable to not consider its contribution to the overall metric tensor. A
modified adjoint metric tensor (equation (48)) is applied to the same problem. Figure 14 shows the
mesh adapted using this modified adjoint metric tensor; the result is similar to that of Figure 11,
but without the additional square form refinement as highlighted previously. Figure 14 is also
symmetrical under a 180° rotation, as expected. For completeness Figure 13 shows a blowup of
the same region as Figure 12.

Figure 15 shows the mesh adapted using a metric tensor 1\=/IG resulting from the superposition
of the forward and modified adjoint metric tensors (see Section 4.3 for details). Anisotropic
elements dictated by both component metric tensors can be seen in the adapted mesh. For com-
parison Figure 16 shows the mesh adapted using the averaged metric tensor (see also Section 4.3).
Additional anisotropic structure can be observed in this mesh.

Figures 18 and 19 compare the different metric tensors for this problem which are compared
visually in Figures 10-16. The graphs plot values of the functional to be optimised for the different
metric tensors; a blowup is given in Figure 19. The graph indicates the failings of the adjoint
metric tensor for achieving a set functional value within a set number of nodes, compared to the
other options. The best method appears to be the averaging of metric tensors; from Figure 16 it
is possible to see both fine resolution and directional information for this choice of metric tensor.
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Figure 18. Graph comparing the value of the Figure 19. Graph comparing the value of the

functional for mesh adapted using different met- functional for mesh adapted using different metric

ric tensors. tensors, blowup around area of 2000-4000 nodes.
3576 nodes, 11023 elements.

8.2. Offset Source and Detector

Following the same principles as the problem discussed in the previous section a slight change
can be made to test the method. Offsetting the source and detector ensures the resulting metric
tensors lose some of the symmetry seen in the results of Section 8.1. The source is now located
at (1.0,1.5,0.01), with the receiver at (3.0,2.5,0.01). All other parameters remain the same.
Figure 20 shows the mesh adapted using the forward metric tensor, Figure 21 using the modified
adjoint metric tensor, and Figure 22 using a superposition of the forward and modified adjoint
metric tensors. Clear directional information resulting from the forward and adjoint Hessians
can be seen in Figures 20 and 21, respectively.
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Figure 20. Mesh adapted using forward met- Figure 21. Mesh adapted using modified adjoint
ric tensor for an offset source and detector. metric tensor for an offset source and detector.

2578 nodes, 8453 elements.

2643 nodes, 8655 elements.

}

Figure 22. Mesh adapted using superimposed forward and modified adjoint metric
tensors, for offset source and detector. 2747 nodes, 8699 elements.

Figure 23. Mesh adapted using superimposed for- Figure 24. Solution for the first of two temperature fields.
ward and modified adjoint metric tensors, for two
solution fields, each with a source and detector.

9382 nodes, 30261 elements.



Adjoint a Posteriori Error Measures 1239

Figure 25. Solution for the second of two temperature fields.

8.3. Two-Field Problem

The definitions of metric tensors in Section 4 extend to multiple fields; to demonstrate the
combining of information from more than one field an idealised test case is considered here.
Figures 24 and 25 show the forward solutions for a problem with two temperature fields. A single
source is placed in each of the two fields at (1.0,1.5,0.01) and (1.0,2.5,0.01), with corresponding
detectors at (3.0,1.5,0.01) and (3.0,2.5,0.01). All other parameters are as defined in Section 8.1.
The result is two independent solutions, for which information can be combined in constructing
a metric tensor to adapt the mesh. Figure 23 shows a mesh adapted using a metric tensor based
on a superposition of forward and modified adjoint metric tensors.

8.4. Three Dimensions

The same method can be applied in three dimensions, with the domain changed to become a
cube of length 4.0, with an initial grid resolution of 40 x 40x tetrahedral elements. The initial
mesh contains 68921 nodes and 384000 elements. In this case the source and detector are located
at (1.0,2.0,2.0) and (3.0,2.0,2.0), respectively, and have their size adjusted to be a cube with
sides of length 0.2. The integral of the source/detector is consequently adjusted to be 0.008. To
account for the change to three dimensions and the increased number of nodes the parameter §F
is changed to 6 F = 5 x 10~7. The maximum edge length allowable when the mesh is adapted is
also increased to 2.0.

Figure 26. Adaptation in three dimensions, elements where z > 2 and z > 2 are
removed. 28974 nodes, 165049 elements.
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Figure 26 shows a cutaway of the domain adapted using a superposition of the forward and
modified adjoint metric tensors. The figure excludes elements containing any point with > 2
and z > 2 so the mesh refinement can be seen. The adaptation pattern in the three-dimensional
sense is easy to determine, exhibiting the same characteristics as the previous results.

9. CONCLUSIONS

In this paper a sensitivity- or goal-based error norm is defined. This results in a metric tensor
from which 3-D anisotropic mesh adaptivity with tetrahedral elements is performed. The advan-
tage of this approach is three-fold: the superconvergence of the goal with mesh adaptivity; the
ability to assign bounds on the accuracy of this goal; and the possibility of improving the accu-
racy of the goal. The application to relatively simple advection-diffusion problems demonstrates
the robustness of this approach and a number of metric tensor-based error measures are assessed.
The method using a superposition of metric fields obtained from the forward and adjoint Hessians
performs the best closely followed by the method that uses the forward Hessian and the method
that takes an average of forward and adjoint metrics and then the method based on the adjoint
Hessian. There is a focus on developing relatively simple methods that refer to information from
the discretised equation sets (often readily accessible in simulation codes) and do not explicitly
use equation residuals. Thus a number of methods based on a multigrid approach have been
outlined here. This general approach was shown to be highly accurate and resulting in identical
residuals for a simple diffusion problem to that obtained from a high-order Taylor-series analysis.

Future work will concentrate on defining appropriate integral measures of the dynamics of
various nonlinear fluid problems from which anisotropic mesh adaptivity can be performed, as
well as the application to time-dependent nonlinear and inverse problems.
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