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Abstract

A novel Proper Orthogonal Decomposition (POD) model has been developed for use
with an advanced unstructured mesh finite element ocean model, the Imperial Col-
lege Ocean Model (hereafter, ICOM, described in detail below) which includes many
recent developments in ocean modelling and numerical analysis. The advantages of
the POD model developed here over existing POD approaches are the ability:

• To increase accuracy when representing geostrophic balance (the balance between the Coriolis terms
and the pressure gradient). This is achieved through the use of two sets of geostrophic basis functions
where each one is calculated by basis functions for velocities u and v;

• To speed up the POD simulation. To achieve this a new numerical technique is introduced, whereby
a time-dependent matrix in the discretised equation is rapidly constructed independent of time.
This development imparts considerable efficiency gains over the oft used alternative of calculating
each finite element and node over the computational domain at each time level;

• To use dynamically adaptive meshes in the above POD model.

keywords: POD; reduced-order modelling; ocean model; finite element; unstruc-
tured adaptive mesh

1 Introduction

Proper Orthogonal Decomposition (POD) is a numerical procedure that can be used to extract
a basis for a modal decomposition from an ensemble of signals. The technique was originally
proposed independently by Kosami (1943), Loeve (1945) and Karhunen (1946), and is alter-
natively known as the Karhunen-Loeve decomposition (KLD) method. Related methodologies
have, however, been developed in a variety of disparate disciplines (Wu, 2003). The procedure
is also known as Principal Components Analysis (PCA) (Fukunaga, 1990) in statistics, and
Empirical Orthogonal Functions (EOF) in oceanography (Jolliffe and Majda, 2002; Cormmelin
and Majda, 2004) and meteorology (Majda et al, 2003).

Proper Orthogonal Decomposition (POD) has been widely and successfully applied to numerous
fields, including signal analysis and pattern recognition (Fukunaga, 1990), fluid dynamics and
coherent structures (Lumley, 1967; Aubry et al. 1988; Holmes et al., 1996; Willcox et al, 2002)
and image reconstruction (Kirby and Sirovich, 1990).
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An important innovation in the use of POD for large problems in fluid dynamics involves using
a series of ”snapshots” to reduce the order of POD eigenvalues (Sirovich, 1987, 1989, 1990 and
Holmes, 1990). The ”snapshots” are essentially a set of instantaneous flow solutions, obtained
from experimental data or a CFD simulation. They are then used to compute the POD basis
vectors to yield an optimal representation of the data so that for any given basis vector size,
the two-norm of the error between the original and reconstructed snapshot is minimized.

A further advance in POD technology, the gappy POD procedure, was developed to reconstruct
full human facial images from partial data-sets (Eversone and Sirovich ,1995). In this technique,
given a set of POD modes, an incomplete data vector is reconstructed by solving a small linear
system. If the snapshots themselves are damaged or incomplete an iterative method is used to
derive the POD basis. This methodology has also been applied to fluid dynamic applications
(Thanh et al, 2004)

POD methodologies, in combination with the Galerkin projection procedure have also been
shown to provide an efficient means of generating reduced order models (Holmes, 1996; Luo
et al, 2006, 2007). This technique essentially identifies the most energetic modes in a time-
dependent system thus providing a means of obtaining a low-dimensional description of the
system’s dynamics. To improve the accuracy of reduced models, the goal-oriented approach has
been used to optimize the POD bases (Willcox et al, 2005, Blayo et al,1998). This practical
utility of this approach has been extended to include ocean and climate modelling and the
solution of inverse problems (Robert et al.,2005; Hoteit, 2004; Cao et al., 2006; and Luo, 2006).

The motivation of the current work is to develop a POD-based reduced model for an unstruc-
tured ocean model, i.e., ICOM, that can simultaneously resolve both small and large scale ocean
flows whilst smoothly varying resolution and conforming to complex coastlines and bathymetry
(Pain et al, 2005). What distinguishes the reduced model developed here from other exist-
ing reduced models is the inclusion of adaptive meshes. This represents the main challenge
in the implementation of the POD approach. When adaptive meshes are employed, the mesh
resolution requirements may be spatially and temporally different, as the meshes are adapted
according to the flow features. This unavoidably introduces difficulties in the implementation of
a POD-based reduced model for an adaptive model. One of these challenges is that snapshots
can be of different length at different time levels. To overcome these difficulties, a standard
reference fixed mesh is adopted for the reduced models. The solutions from the full models are
then interpolated from their own mesh onto the same reference fixed mesh at each time level.
This allows the same number of base modes at each time level. The referenced mesh can also
be obtained by superimposing the resolution at each mesh level associated with a goal-based
function.

One of the important issues in reducing ocean models is to accurately represent the geostrophic
balance. In this work, the pressure is divided into two parts: non-geostrophic and geostrophic
pressures. The basis function for the geostrophic pressure is constructed by two sets which
should satisfy the geostrophic balance and be calculated by the basis functions for the velocity
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components u; v respectively. To construct an efficient POD model, a new numerical technique is
introduced. A general discretised reduced model at the time level n can be written: Anαn = sn,
where, αn is the coefficients associated with the basis functions for the variables in the full
model. The matrix An is time dependent and calculated at each element and node over the
whole computational domain. It costs a lot of CPU to calculate the matrix An at each time level.
To accelerate the POD simulation, the matrix An is constructed by a set of time-independent
matrices which are obtained before running the reduced model.

Error estimation is a critical issue in reduced modelling. The references related to error estima-
tion can be found in (Utku, 1985; Hinze and Volkwein, 2005; Homescu et al, 2005; Legresley
and Alonso, 2003; Meyer and Matthies, 2003; Kunisch and S. Volkwein, 2002). Early work has
been done by Utku (1985), where the first order error estimation of the model reduction for
non-linear systems were given at a small number of time steps (during which the Jacobian ma-
trix can be considered constant). More recently, the Dual- Weighted-Residual method (DWR),
which makes use of the solution of an adjoint system, has been incorporated into the error
estimation of reduced models (Meyer and Matthies, 2003; Homescu et al, 2005). Using this
method it is possible to obtain an a ’priori’ error estimate for a certain cost functional of the
solution. This error estimate can be used for adaptively resizing the number of basis vectors
and the length of the time step to satisfy a given error tolerance. It can also be used to form
a very efficient low-dimensional basis especially tailored to the cost functional of interest. For
example, Homescu et al (2005) employed the DWR method to determine the regions of validity
of the reduced models, that is, ranges of perturbations in the original system over which the
reduced model is still appropriate. Furthermore, Hinze and Volkwein (2005) incorporated both
the time derivatives and adjoint information into snapshots in the error estimation for the PDF
constrained optimization and POD inverse model. In this work, the error estimation is carried
out using a simple approach described in Luo (2007), where, a spectral norm A2 is defined to
estimate the spatial error between the full and reduced models. A error bound is given by the
(maximum eigenvalues of AT A)0..5.

The remainder of this paper is structured as follows: In the second section ICOM is briefly
described. In the third section the reduced forward model is then derived, whilst the geostrophic
pressure, mesh adaptivity, and acceleration of the POD simulation are discussed in details
in section four. In section six the above reduced model is applied to some relevant cases.
Conclusions are drawn in the final section.

2 Description of ICOM

In this work, a POD-based reduced model is developed for ICOM that can simultaneously
resolve both small and large scale ocean flows whilst smoothly varying resolution and conform-
ing to complex coastlines and bathymetry [1, 2, 3]. With more appropriate focused numerical
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resolution (e.g. adaptive and anisotropic resolution of fronts and boundary layers, and op-
timal representation of vertical structures in the ocean) ocean dynamics may be accurately
predicted during future climatic change. To accurately represent local flow around steep topog-
raphy the hydrostatic assumption is not made in this work. Here, the pressure is split into the
non-geostrophic and geostrophic parts which are solved separately. This allows the accurate
representation of hydrostatic/geostrophic balance [2]. . In principle, coupling of the momentum
and continuity equations results in an extremely large system of equations to solve, for which
an efficient solution strategy is difficult to devise. Therefore, a technique (e.g. a projection
method) is used in which pressure and velocity are solved for independently, thus reducing the
total dimension of the systems that must be solved for (for details see [8]).

The underlying model equations consist of the 3-D non-hydrostatic Boussinesq equations,

∇ · u=0, (1)

∂u

∂t
+ u · ∇u + fk × u=−∇p − ρgk + ∇ · τ, (2)

where u ≡ (u, v, w)T ≡ (u1, u2, u3)
T is the velocity vector, x ≡ (x, y, z)T ≡ (x1, x2, x3)

T are the
orthogonal Cartesian coordinates, p is the perturbation pressure (p := p/ρ0, ρ0 is the constant
reference density), f represents the Coriolis inertial force, g represents the acceleration due to
gravity, ρ is the perturbation density (ρ := ρ/ρ0), and k = (0, 0, 1)T . The stress tensor τ is used
to represent viscous terms and is defined in terms of the deformation rate tensor S as

τij = 2µijSij, Sij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

− 1

3

3
∑

k=1

∂uk

∂xk

, 1 ≤ i, j ≤ 3,

with no summation over repeated indices. In this work the horizontal kinematic viscosities
(µ11, µ22) and vertical kinematic viscosity (µ33) take constant values with the off-diagonal
components of τ defined by µij = (µiiµjj)

1/2, see also [? ? ]. For barotropic flow (baroclinic flow
is incorporated in section 4), the pressure p consists of hydrostatic ph(z) and non-hydrostatic
pnh(x, y, z, t) components. The hydrostatic component of pressure balances exactly the constant
buoyancy force and both terms are therefore dropped at this stage.

ICOM utilises dynamic adaptation of a fully unstructured tetrahedral mesh in three- dimen-
sions (3-D), as presented in Pain et al. (2001). This technique uses a form of h-refinement (or
mesh optimisation) to adapt the mesh, changing the size, shape and location of tetrahedral
elements to optimise the mesh according to specific criteria, as defined by an error measure.
The algorithm is based on a series of mesh connectivity and node position searches, defining
the mesh quality. A Riemannian metric tensor reflecting the error measure is used to calculate
the desired element size and, importantly, its shape. A functional is used to gauge the mesh
quality–this functional embodies both element size and shape with respect to the metric tensor.
A local based search strategy is adopted to carry out the adaptation operations–node smooth-
ing, edge and face-edge swapping, and edge splitting and collapsing–to minimise the functional.
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The algorithm is robust, produces high quality anisotropic meshes, and has a time complexity
which varies linearly with the number of elements see Pain et al. (2001). An alternate approach
of defining an error measure to guide an adaptive meshing algorithm for unstructured tetrahe-
dral finite elements is to utilise an adjoint or goal-based method. This method is based upon
a functional, encompassing important features of the flow structure. The sensitivity of this
functional, with respect to the solution variables, is used as the basis from which an error mea-
sure is derived. This error measure acts to predict those areas of the domain where resolution
should be changed.

3 Reduced order ocean model

A derivation of the 3-D reduced forward equations is described in this section. The Proper
Orthogonal Decomposition (POD) reduction is the most efficient choice among linear decom-
positions in the sense that it can capture the greatest possible kinetic energy.

3.1 Discretised ocean model

To construct the discretised ocean model, the linear basis function N is chosen for the veloc-
ity components and non-geostrophic pressure, whilst the quadratic basis function M for the
geostrophic pressure (Figure 1). The variables to be solved can be expressed in the finite element
form:

ux,y,z =
N
∑

i=1

uiNi, vx,y,z =
N
∑

i=1

viNi, wx,y,z =
N
∑

i=1

wiNi,

png =
N
∑

i=1

png,iNi, pg =
N
∑

i=1

pg,iMi, (3)

where, N is the number of nodes, png and pg are the non-geostrophic and geostrophic pressures
respectively.

[Fig. 1 about here.]
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3.2 Proper Orthogonal Decomposition

The variables (e.g., u, v, w, p) are sampled at defined checkpoints during the simulation period
[t1, . . . , tn, . . . , tK ], also referred to as snapshots (K is the number of snapshots). The samples at
the snapshots can be obtained either from a mathematical (numerical) model of the phenomenon
or from experiments/observations. The sampled values of variables at the snapshot i are stored
at a vector Ui with N entries (N is the number of nodes), here, U can represent one of variables
u, v, w, p. The average of the ensemble of snapshots is defined:

Ū =
1

K

N
∑

i=1

Ui, 1 ≤ i ≤ K, (4)

Taking deviation from the mean of variables,forms

Vi = Ui − Ū , 1 ≤ i ≤ K, (5)

A collection of all Vi constructs a rectangular N by K matrix Y . The order K for matrix Y Y T

is far larger than the order K for matrix Y T Y . Therefore a K ×K eigenvalue problem is solved

Y T Y yk = λkyk; 1 ≤ k ≤ K. (6)

The eigenvalues λk are real and positive and should be sorted in an descending order. The POD
basis vectors Φk associated with the eigenvalues λk are orthogonal and expressed as follows:

Φk = Y yk/
√

λk (7)

It can be shown [6,11], that the kth eigenvalue is a measure of the kinetic energy transferred
within kth basis mode (strictly speaking this is applied, when the field under consideration
is the velocity field, but can be generalised to others fields as well). If the POD spectrum
(energy) decays fast enough, practically all the support of the invariant measure is contained
in a compact set. Roughly speaking, all the likely realisations in the ensemble can be found
in a relatively small set of bounded extent. By neglecting modes corresponding to the small
eigenvalues, the following formula is therefore defined to choose a low-dimensional basis of size
M (M << K),

I(M) =

∑M
i=1 λi

∑K
i=1 λi

(8)

subject to

M = argmin{I(M) : I(M) ≥ γ} (9)

where, 0 ≤ γ ≤ 1 is the percentage of energy which is captured by the POD basis Φ1, . . . , Φm, . . . , ΦM .
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3.3 POD reduced model for ICOM

The variables in (1) and (2) can be expressed as an expansion of the POD basis functions for
u, v, w, p, that is,

u(t, x, y, z)= ū +
Mu
∑

m=1

αm,u(t)Φm,u(t, x, y, z)

v(t, x, y, z)= v̄ +
Mv
∑

m=1

αm,v(t)Φm,v(t, x, y, z)

w(t, x, y, z)= w̄ +
Mw
∑

m=1

αm,w(t)Φm,w(t, x, y, z)

p(t, x, y, z)= p̄ +
Mp
∑

m=1

αm,p(t)Φm,p(t, x, y, z) (10)

Substituting (10) into (1) and (2) and taking the POD basis function as the test function, then
integrating over the computational domain, the POD reduced model is obtained:

∂αmu,u

∂t
= Fu(t, α1,u, . . . , αMu,u, α1,v, . . . , αMv ,v, α1,w, . . . , αMw ,w, α1,p, . . . , αMp,p)

∂αmv ,v

∂t
= Fv(t, α1,u, . . . , αMu,u, α1,v, . . . , αMv ,v, α1,w, . . . , αMw ,w, α1,p, . . . , αMp,p)

∂αmw ,w

∂t
= Fw(t, α1,u, . . . , αMu,u, α1,v, . . . , αMv ,v, α1,w, . . . , αMw ,w, α1,p, . . . , αMp,p)

∂αmp,p

∂t
= Fp(t, α1,u, . . . , αMu,u, α1,v, . . . , αMv ,v, α1,w, . . . , αMw ,w, α1,p, . . . , αMp,p) (11)

where, 1 ≤ mu ≤ Mu, 1 ≤ mv ≤ Mv, 1 ≤ mw ≤ Mw, 1 ≤ mp ≤ Mp, and Mu, Mv, Mw, Mp are
the number of the basis functions for u, v, w, p respectively. The initial conditions for solving
(11) are

αmu,u(0, x, y, z)= ((u(0, x, y, z) − ū(x, y, z)), Φmu,u)

αmv ,v(0, x, y, z)= ((v(0, x, y, z) − v̄(x, y, z)), Φmv ,v)

αmw ,u(0, x, y, z)= ((w(0, x, y, z) − w̄(x, y, z)), Φmw ,w)

αmp,u(0, x, y, z)= ((p(0, x, y, z) − p̄(x, y, z)), Φmp,p)

(12)

The errors for the above POD model can be obtained by (details in Luo (2007)):
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||ufull − u||2 ≤
√

λMu+1

||vfull − v||2 ≤
√

λMv+1

||wfull − w||2 ≤
√

λMw+1

||pfull − p||2 ≤
√

λMp+1 (13)

4 Geostrophic pressure, adaptive meshes and Efficiency in POD simulation

4.1 Geostrophic pressure

One important issue in ocean modelling is the treatment of Coriolis term in the momentum
equation. To allow the accurate representation of the geostrophic pressure, the pressure in (2)
is divided into two parts: p = png + pg. The geostrophic pressure has to satisfy the geostrophic
balance:

−∇pg = fk∇u (14)

Taking the divergence of equation (14), an elliptic equation for geostrophic pressure is obtained

−∇2pg =
∂(−fv)

∂x
+

∂(fu)

∂y
(15)

To accurately represent geostrophic pressure its basis functions are split into two sets: Φpgu and
Φpgv which are associated with the u- and v-velocity components. The geostrophic pressure that
satisfies equation (15) can be obtained from a quadratic finite element representation (figure 1)
whilst linear finite element representations for the velocity components. Furthermore since the
velocity components are represented by a summation of POD basis functions can be represented
by a summation of the two sets of geostrophic basis functions. Therefore these basis functions
are calculated by solving the elliptic equations:

−∇2Φpgu,m =
∂(fΦm,u)

∂y

−∇2Φpgv,m =
∂(−fΦm,v)

∂x
(16)

where, Φpgu,m and Φpgv,m are the basis functions respectively for velocity components u and v.
m = (1, . . . , M) indicates a set of basis functions, M is the total number of basis functions.
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The geostrophic pressure can therefore be expressed as:

pg = p̄g +
M
∑

m=1

αm,uΦm,u +
M
∑

m=1

αm,vΦm,v (17)

In addition the average geostrophic pressure is calculated from:

−∇2p̄g =
∂(−f v̄)

∂x
+

∂(fū)

∂y
(18)

where, ū =
∑K

k=1 uKand v̄ =
∑K

k=1 vk. It is shown in Figure 2 that the numerical results are
significantly improved by using the new numerical method described above. This method can
also be extended easily to represent buoyancy with temperature and salinity dependence by
introducing more basis functions for which balance these buoyancy terms.

[Fig. 2 about here.]

4.2 Adaptive meshes in POD

When adaptive meshes are employed in ocean models, the mesh resolution requirements vary
spatially and temporally, as the meshes are adapted according to the flow features through the
whole simulation. The dimensional size of the variable vectors is different at each time level since
the number of nodes varies during the simulation. Snapshots can therefore be of different length
at different time levels. This unavoidably brings to difficulties in the implementation of a POD-
based reduced model for an adaptive model. To overcome these difficulties, a standard reference
fixed mesh is adopted for the reduced models. The solutions from the original full models are
interpolated from their own mesh onto the same reference fixed mesh at each time level, and
then stored at the snapshots. The information at the snapshots is used to find the optimal
POD basis. This allows the same length of base modes at each time level. The resolution of the
referenced mesh and the interpolation errors between the two meshes may affect the accuracy
of the POD simulation.This will be exploited and discussed in detail through applications
below. The reference mesh can be obtained by superimposing the resolution at each mesh
level associated with a goal-based function. To reduce the interpolation error, the high order
interpolation approach can be adopted.

4.3 Acceleration of the POD simulation

For simplicity, suppose the discrete forward model to be solved at the time level n :

Anαn = sn (19)
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where,
sn = Bn + f (20)

where, An and Bn are the matrices at the time level n, αn = (αn
1 , . . . , α

n
m, . . . , αn

M) is the vector
variables to be solved at the time level n, here including the coefficients related to the basis
functions for the velocity components and the pressure, i.e, αn

m = (αn
m,u, α

n
m,v, α

n
m,w, αn

m,p), sn is
a discretised source term at the time level n. Note that it is time-consuming to calculate the
time dependent matrix An at each finite element and node over the computational domain at
each time level. To speed up the POD simulation, a new numerical technique is introduced,
that is, the time-dependent matrix An is constructed by a set of sub-matrices independent of
time. For a nonlinear simulation, the matrices An and Bn can be written as:

An = Â0 +
M
∑

m=1

αn−1
m Âm (21)

Bn = B̂0 +
M
∑

m=1

αn−1
m B̂m (22)

where, the matrices Â0, B̂0 Â and B̂ are time independent, and derived in the appendix.
Equations (21) and (22) can be rewritten as:

An = Â0 + Ânαn−1 (23)

Bn = B̂0 + B̂nαn−1 (24)

where, Â = (Â1, . . . , Âm, . . . , ÂM), B̂ = (B̂1, . . . , B̂m, . . . , B̂M), which are independent of time.
Therefore, instead of calculating the time-dependent matrix An at each time level, one needs
to calculate those sub-matrices Ân and B̂n once prior to the POD simulation. This significantly
speeds up the POD simulation.

5 Application cases and numerical results

In this secion, the POD model developed here is applied to 2D plus time cases. Error estimate
is carried out for the validation of the POD model.

5.1 Case 1: flow past a cylinder

The POD model developed here is first applied to the flow past a cylinder. In the case, the
adaptive mesh is adopted in the full model. The reference fix mesh for the POD simulation is
shown in Figure ?. The cylinder had a radius of 1 and the computational domain is 29 by 10.
The domain has a depth of 1 and one element along the vertical direction. An inlet velocity of
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1 is imposed normal to the boundary on the left side, and the centre of the cylinder is placed
5 from the inlet boundary. The Reynolds number is Re = 100. No-slip boundary condition is
applied to the cylinder and both lateral sides. The spin-up period is 8. The initial condition is
set up by running the full model from the ’static’ state during the spin-up period. The time
step is 0.02 and the mesh adapts every 20 time steps. The maximum and minimum mesh sizes
are 0.1 and 0.04. The maximum mesh aspect ratio is 1000.

In this case, 20 snapshots and 10 basis functions are chosen for u, v, w and p, in which 95
percent of energy is captured. Figure 3 shows the velocity field (vector) obtained from the
full (left panel) and POD (right panel) models. It is apparent that the results (especially the
details of eddies nearby the cylinder) from both models are in good agreement. For details,
figure 4 shows the blowup of the velocity field around the cylinder at the time level t = 10. It is
indicated that the reduced simulation can provide almost identical details of local flow as does
the full simulation. The overall error of the results from the reduced model by the comprison of
those from the full model is less than 0.8. The whole simulation by runnig the reduced model
is completed whithin 9 minutes, whilst 40 minutes by runnig the full forward model.

5.2 Case 2: flow past a cylinder on a β plane (β = 7.5)

The POD model developed here is further applied to a flow past a cylinder on a β plane. The
schematic of the model domain and the boundary conditions are the same as that in the last
case. The β effect on the flow is considered in this case. The Coriolis parameter is given by
f = βy, here β = 7.5. The Reynolds number is Re = 200. The spin-up period is 0.4. The
simulation period is 2 and the time step is chosen for 0.002.

Figure 3 shows the velocity field (vector) obtained from the full (left panel) and POD (right
panel) models. It can be seen from both full and reduced simulations that two seperated jets
form downstream of the cylinder, as discribed in reference (C.Tansley and D.P.Marshall,2001).
40 snapshots and 30 basis functions, here, are chosen for u, v, w and p, in which 99.9999
percent of energy is captured. The maximum error of numerical POD solutions is less than
max{√λu31,

√
λv31} ≤ 10−3 (here, λu31 and λv31 are the 31th eigenvalues respectively for the

velocity components u and v. It takes only 3 hrs to complete the simulation by running the
reduced model which is much less than that (38-39 hrs) required by running the full forward
model, that is, the computer cost is significantly reduced by 92%.

[Fig. 3 about here.]

[Fig. 4 about here.]
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[Fig. 5 about here.]

5.3 Case 3: Gyre

Another example of applications is wind driven barotropic circulation. The computational do-
main is taken to be a square box of 1000km with a depth of 500m. A maximum zonal wind
stress of τ0 = 0.1Nm−1 is applied in a consine of latitude profile. The Reynolds number is
Re = 250, β = 1.8 × 10−11 and the reference density ρ0 = 1000kgm−1. The problem is non-
dimensionalised, so that the domain is a box of 1, and a depth of 0.0005 with one element in the
vertical. Incorporating the β−plane approximately gives a non-dimensional rotation vector of
Ω = (0, 257.143, 0) and non-dimensional wind stress of τ0 = 163.2653. The time step is 3.78E-
04, equivalent to 6hrs. No-slip boundary conditions are applied to the lateral boundaries. The
spin-up period is 0.3024(200days). The simulation period is [200, 400]days.

As discussed above, the POD simulation could end up having results far from the true values
(figure 2) if the geographic pressure is represented improperly. In this work, to accurately
represent the geostrophic balance the geostrophic pressure is calculated using the novel approach
described in section 4. Comparison of velocity field between the full and POD models is provided
in figure 6. The velocity fields at the different time levels have an overall good concordance with
those from the full model.

[Fig. 6 about here.]

To judge the quality of the POD model developed here, the error estimate is undertaken. The
percentage of energy represented by the POD bases is listed in table 7. The energy can be
captured more than 99% when 60 POD bases are chosen for 81 snapshots, and 97% of energy
for the choice of 30 POD bases and 41 snapshots. Above 91% of energy is captured if half the
number of POD bases is chosen. In general, the more POD bases and snapshots are chosen, the
more energy is represented.

[Table 1 about here.]

The error of numerical results obtained by a different number of POD bases can be calculated
by (13). Figure 7 illustrates the eigenvalues and error associated with a corresponding number
of POD bases for the velocity components u and v. It is indicated that the first quarter numbers
of POD bases have a significant effect on POD results. The error of POD results decreases by
70% − 80% of its original values whilst the energy captured can achieve above 76% if a first
quarter numbers of POD bases are chosen.
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The RMSE and correlation coefficient of results between the full and POD models at different
time levels are given in figures 9 and 8. It can be seen that as simulated time goes by, the
POD error increases, whilst the correlation decreases. During the first half simulation period,
the POD results are consistent with those from the full model. This is supported by the good
correlation (mostly larger than 0.8) and small RMSE (mostly less than 1). It is also shown that
the increase of the number of snapshots and POD bases can improve the correlation and reduce
the RMSE (figure 10).

[Fig. 7 about here.]

[Fig. 8 about here.]

[Fig. 9 about here.]

[Fig. 10 about here.]

6 Conclusion

A POD reduced model has been developed for a finite element adaptive meshes ocean model
(here, ICOM). This is the first attempt to apply the POD approach to an adaptive model. To
allow the same length of POD modes at each time level, a reference fixed mesh is chosen for
the POD reduced model. The results from the full model are interpolated from the adaptive
mesh onto the reference mesh at the snapshots and stored to find the optimal POD bases.

The POD reduced model is applied to 2D time-dependent ocean cases. The Coriolis effect is
considered in the POD model. The accurate representation of the geostrophic balance can be
achieved by two sets of basis functions for the geostrophic pressure, which are obtained by the
basis functions for the velocity components u and v.

The error analysis has also been carried out for the validation and accuracy of the adaptive
POD model. It is shown that the results from the reduced model coincide with those from the
full model. The correlation of results between the reduced and full models can acheive 80−99%,
the RMSE of results is less than 1 and 99% of energy can be captured if a suitable number
of POD bases is chosen (say, half of total POD bases is chosen). The error of POD results
decreases by 70%− 80% of its original values if a first quarter numbers of total POD bases are
chosen.

To increase the efficiency of the POD simulation, a new numerical technique is introduced, that
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is, one can generate a priori time-independent decomposition of the matrix in the discretised
POD equations before runnig the reduced model. It is proved that the computer cost by runnig
the reduced model can be decreased by75 − 92% of that required by running the full model.

Further research will address the following issues: (1) goal oriented POD to optimise/weight
POD bases; (2) gappy POD which allows the consideration of incomplete data sets; and (3)
adjoint ( Inverse) POD with adaptivity both in mesh and in controls.

7 Appendix

The second-order Crank-Nicolson time stepping algorithm is used, and the sub-matrices are:
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Â0,i,j = frac12∆t
N
∑

k=1

[

ūk
∂Φu,j,k

∂x
+ v̄k

∂Φu,j,k

∂y
+ w̄k

∂Φu,j,k

∂z
+

∂2Φu,j,k

∂x2
+

∂2Φu,j,k

∂y2
+

∂2Φu,j,k

∂z2

]

,

Â0,i,M+j =
N
∑

k=1

(−fΦv,j,k)

Â0,i,2M+j = 0

Â0,i,3M+j = frac12∆t
N
∑

k=1

∂pk

∂x
,

Â0,M+i,j =
N
∑

k=1

(fΦu,j,k)

Â0,M+i,M+j =
1

2
∆t

N
∑

k=1

[

ūk
∂Φv,j,k

∂x
+ v̄k

∂Φv,j,k

∂y
+ w̄k

∂Φv,j,k

∂z
+

∂2Φv,j,k

∂x2
+

∂2Φv,j,k

∂y2
+

∂2Φv,j,k

∂z2

]

,

Â0,M+i,2M+j = 0

Â0,M+i,3M+j =
1

2
∆t

N
∑

k=1

∂pk

∂y
,

Â0,M+i,j = 0

Â0,M+i,M+j = 0

Â0,M+i,2M+j =
1

2
∆t

N
∑

k=1

[

ūk
∂Φw,j,k

∂x
+ v̄k

∂Φw,j,k

∂y
+ w̄k

∂Φw,j,k

∂z
+

∂2Φw,j,k

∂x2
+

∂2Φw,j,k

∂y2
+

∂2Φw,j,k

∂z2

]

,

Â0,M+i,3M+j =
1

2
∆t

N
∑

k=1

∂pk

∂z
,

Â0,3M+i,j =
N
∑

k=1

∂Φu,j,k

∂x

Â0,3M+i,M+j =
N
∑

k=1

∂Φv,j,k

∂y

Â0,3M+i,2M+j =
N
∑

k=1

∂Φw,j,k

∂z
(25)
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B̂0,i,j =
N
∑

k=1

un−1 − 1

2
∆t

N
∑

k=1

[

ūk
∂Φu,j,k

∂x
+ v̄k

∂Φu,j,k

∂y
+ w̄k

∂Φu,j,k

∂z
+

∂2Φu,j,k

∂x2
+

∂2Φu,j,k

∂y2
+

∂2Φu,j,k

∂z2
+

∂ūk

∂x
Φu,j,k

]

,

B̂0,i,M+j =
N
∑

k=1

[

− fΦv,j,k +
∂ūk

∂y
Φv,j,k

]

B̂0,i,2M+j =
∂ūk

∂z
Φw,j,k

B̂0,i,3M+j =
1

2
∆t

N
∑

k=1

∂pk

∂x
,

B̂0,M+i,j =
N
∑

k=1

[

fΦu,j,k) +
∂v̄k

∂x
Φu,j,k

]

B̂0,M+i,M+j =
N
∑

k=1

vn−1 − 1

2
∆t

N
∑

k=1

[

ūk
∂Φv,j,k

∂x
+ v̄k

∂Φv,j,k

∂y
+ w̄k

∂Φv,j,k

∂z
+

∂2Φv,j,k

∂x2
+

∂2Φv,j,k

∂y2
+

∂2Φv,j,k

∂z2
+

∂v̄k

∂y
Φv,j,k

]

,

B̂0,M+i,2M+j =
∂v̄k

∂z
Φw,j,k

B̂0,M+i,3M+j =
1

2
∆t

N
∑

k=1

∂pk

∂y
,

B̂0,M+i,j =
∂w̄k

∂x
Φu,j,k

B̂0,M+i,M+j =
∂w̄k

∂y
Φv,j,k

B̂0,M+i,2M+j =
N
∑

k=1

wn−1 − 1

2
∆t

N
∑

k=1

[

ūk
∂Φw,j,k

∂x
+ v̄k

∂Φw,j,k

∂y
+ w̄k

∂Φw,j,k

∂z
+

∂2Φw,j,k

∂x2
+

∂2Φw,j,k

∂y2
+

∂2Φw,j,k

∂z2
+

∂w̄k

∂z
Φw,j,k

]

,

B̂0,M+i,3M+j =
1

2
∆t

N
∑

k=1

∂pk

∂z
, (26)
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Âi,j =
1

2
∆t

M
∑

l=1

N
∑

k=1

[

Φu,l,k
∂Φu,j,k

∂x
+ Φv,l,k

∂Φu,j,k

∂y
Φw,l,k

∂Φu,j,k

∂z

]

ÂM+i,M+j =
1

2
∆t

M
∑

l=1

N
∑

k=1

[

Φu,l,k
∂Φu,j,k

∂x
+ Φv,l,k

∂Φu,j,k

∂y
Φw,l,k

∂Φu,j,k

∂z

]

Â2M+i,2M+j =
1

2
∆t

M
∑

l=1

N
∑

k=1

[

Φu,l,k
∂Φu,j,k

∂x
+ Φv,l,k

∂Φu,j,k

∂y
Φw,l,k

∂Φu,j,k

∂z

]

(27)

B̂i,j = −1

2
∆t

M
∑

l=1

N
∑

k=1

[

Φu,l,k
∂Φu,j,k

∂x
+ Φv,l,k

∂Φu,j,k

∂y
Φw,l,k

∂Φu,j,k

∂z

]

B̂M+i,M+j = −1

2
∆t

M
∑

l=1

N
∑

k=1

[

Φu,l,k
∂Φu,j,k

∂x
+ Φv,l,k

∂Φu,j,k

∂y
Φw,l,k

∂Φu,j,k

∂z

]

B̂2M+i,2M+j = −1

2
∆t

M
∑

l=1

N
∑

k=1

[

Φu,l,k
∂Φu,j,k

∂x
+ Φv,l,k

∂Φu,j,k

∂y
Φw,l,k

∂Φu,j,k

∂z

]

(28)

where, M represents the number of basis functions, N is the number of nodes.
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Fig. 1. Linear and quadratic mixed finite element. •: u, v, w, png ; ◦: pg
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Fig. 2. Effect of geostrophic balance on results from POD simulation (left panel: with the new
geostrophic pressure method; right panel: without the new geostrophic pressure method).
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Fig. 3. Case1: comparison of velocity field between the full and reduced models (left panel: the full
model; right panel: the reduced model; top panel: at the initial time level t = 8; middle panel: at the
time level t = 10; bottom panel: at the time level t = 12.22



Fig. 4. Case1: Blowup of the velocity field in figure 3 around the cylinder at the time level t = 10.
(left panel: the full model; right panel: the reduced model
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Fig. 5. Case2–cylinder on a β plane (β = 7.5): comparison of velocity field between the full and reduced
models (left panel: the full model; right panel: the reduced model; top panel: at the initial time level
t = 0.4; middle panel: at the time level t = 0.8; bottom panel: at the time level t = 2.
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Fig. 6. Case3: comparison of velocity field between the full and reduced models (left panel: the full
model; right panel: the reduced model; top panel: at the time level t = 200days; middle panel: at the
time level t = 300days; bottom panel: at the time level t = 400days.
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Fig. 7. Case3: Eigenvalues and errors for velocity components u and v (top panel: eigenvalues; bottom
panel: error left panel: 41 snapshots; right panel: 81 snapshots.
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Fig. 8. Case3: Correlation at time levels (left panel: 41 snapshots; right panel: 81 snapshots.
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Fig. 9. Case3: RMS at time levels (left panel: 41 snapshots; right panel: 81 snapshots.
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number of POD bases Energy (%) Energy (%)

(41 snapshots) (81 snapshots)

10 for 41 bases 77.373 (for u) 88.614 (for u)

20 for 81 bases 76.003 (for v) 89.723 (for v)

81.103 (for p) 92.880 (for p)

20 for 41 bases 91.448 (for u) 97.025 (for u)

40 for 81 bases 91.693 (for v) 97.738 (for v)

94.343 (for p) 98.614 (for p)

30 for 41 bases 97.386 (for u) 99.458 (for u)

60 for 81 bases 97.624 (for v) 99.600 (for v)

98.584 (for p) 99.766 (for p)

Table 2: Energy captured by the POD bases for velocity components, u, v and pressure p.
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