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Abstract

The pointwise estimation of heat conduction solution as a function of truncation error of a finite difference scheme is

addressed. The truncation error is estimated using a Taylor series with the remainder in the Lagrange form. The con-

tribution of the local error to the total pointwise error is estimated via an adjoint temperature. It is demonstrated that

the results of numerical calculation of the temperature at an observation point may thus be refined via adjoint error

correction and that an asymptotic error bound may be found.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

At present, there are many numerical methods enabling a very accurate solution of the heat conduction

equation. Nevertheless, an estimate of the error of a concrete calculation is performed relatively rarely.

From an historical perspective this is due to the huge computational burden of numerical error calculation.

The availability of ever increasing performance of computers has led to a significant raise in number of pub-

lications on this subject.

The Richardson extrapolation [24,32–34] is the most popular method for numerical error estimation and
correction at present as far as finite-difference methods are concerned. Unfortunately, it becomes compli-

cated for schemes containing differences with a mixed order of accuracy. Many other effects may change the
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nominal order of the grid convergence, for instance the presence of discontinuities [6–8,43]. Spatial nonuni-

formity of the grid may also reduce the convergence rate [43]. Thus, a correct use of Richardson extrapo-

lation requires a set of grids to prove monotonous convergence and to determine real order of convergence

for a given solution. This may turn to be very expensive from a computer resources viewpoint.

There exists an alternative approach for a posteriori error estimation based on the adjoint equations and
residual estimation and aimed at estimating certain quantities of interest (goal-oriented methods)

[1,10,9,8,20,26–31,39,40].

This approach was used in [10–18,39,40] for the refinement of practically useful functionals both by fi-

nite-element and finite-difference methods. The local truncation error (residual) was estimated through the

action of a differential operator on the interpolated solution, while its contribution to the functional was

calculated using an adjoint problem. The error is shown to be composed of two components, the first being

computable using adjoint parameters and residual while the second is incomputable (depending on errors of

solution of both primal and adjoint problems). In [39,40] information on spatial distribution of the residu-
als was used for mesh refining (for diminishing the incomputable error) above the estimation of the com-

putable error.

In the present work we consider another approach for the estimation of computable error in finite dif-

ferences if compared with [10]. It is based on a differential approximation (DA) [36] instead of being based

on direct estimation of the residual. This provides for certain differences both in applicability domain and

features of the methods. We use a local truncation error estimated from a Taylor series with the remainder

in Lagrange form and adjoint equations in a continuous form. This enables us both to correct the error and

to obtain an error bound for the refined solution. The refinement and the error bound are obtained on the
same grid as that employed for the primal problem solution and require identical computer time.
2. Numerical error estimation using the adjoint temperature

Let us consider the estimation of the temperature error at a checkpoint for the finite-difference solving of

the unsteady one dimensional heat conduction equation.
Cq
oeT
ot

� o

ox
k
oeT
ox

 !
¼ 0 in Q ¼ X� ð0; tf Þ; X 2 R1; ð1Þ

Initial conditions: eT ð0; xÞ ¼ T 0ðxÞ; T 0ðxÞ 2 L2ðCiÞ; ð2Þ

Boundary conditions:
oeT
ox

�����
x¼0

¼ 0;
oeT
ox

�����
x¼X

¼ 0: ð3Þ
Here C is the thermal capacity, k is the thermal conductivity, q is the density, eT is the temperature (con-

sidered here as exact, nonperturbed), x is the coordinate, X is the thickness, t is the time, tf is the duration of

process, X is the domain of calculation, q = Const, C = Const.

In this paper we shall consider two cases: k = Const, eT ðt; xÞ 2 C1ðQÞ and k 2 L2(X), eT ðt; xÞ 2 H 1ðQÞ. In
these spaces the problem is well-posed [22].

Consider a finite-difference approximation of the first order in time and second order in space (for the

constant k), of Eq. (1) namely:
Cq
T n

k � T n�1
k

s
� k

T n
kþ1 � 2T n

k þ T n
k�1

h2k
¼ 0: ð4Þ
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Here T is the approximate solution of finite difference equation, s is the temporal step and hk is the spatial

stepsize.

The simplicity of the scheme and the low order of approximation are deliberately chosen to illustrate the

features of this approach with the simplest mathematical treatment.

Let us expand the mesh function T n
k in a Taylor series and substitute to (4). Herein we imply that there

exists the smooth enough function T(t,x) that coincides with T n
k at all grid points. Then Eq. (4) transforms

to Eq. (5) denoted as the differential approximation [24,36].
Cq
oT
ot

� k
o
2T
ox2

þ dT ¼ 0: ð5Þ
Here dT = dTt + dTx is a local truncation error engendered by Taylor series remainders and again T is the

approximate solution of finite difference equation (4) and
dT t ¼ �Cq
2

s
o2T ðtn � anks; xkÞ

ot2
; dT x ¼ � k

24
h2k

o4T ðtn; xk þ bn
khÞ

ox4
þ o4T ðtn; xk � cnkhÞ

ox4

� �
:

We use here the Lagrange form of remainder, which contains unknown parameters ank ; b
n
k ; c

n
k 2 ð0; 1Þ. The

mathematical properties of differential approximations are discussed in [24,36]. According to [36]

T(t,x) 2 C1(Q).
Thus, when solving the finite difference equation (4) we deal with the differential approximation (5) in-

stead of exact equation (1). The deviation of Eq. (5) from (1) is caused by the source term dT. By introduc-

ing an solution error DT ðT ¼ eT þ DT Þ we can reformulate (5) as
Cq
oðeT þ DT Þ

ot
� k

o2ðeT þ DT Þ
ox2

þ dT ¼ 0: ð5aÞ
Herein, we address the impact of this disturbing source term on some quantities of interest for an example

of temperature at certain checkpoint. The error of the temperature calculation at the checkpoint Test =
T(test,xest) is determined by the sum of contributions of local truncation error with weights depending

on the transfer of disturbances. For their determination let us denote the estimated temperature Test by

e and express it as the functional
T est ¼ e ¼
Z Z

X
T ðt; xÞdðt � testÞdðx� xestÞdtdx: ð6Þ
Here d is Dirac�s delta function.

The most efficient method for calculation of the functional variation is known to be based on adjoint

equations. Let us use this approach here. For this purpose let us introduce a Lagrangian comprised of

the estimated value and a weak statement of (5).
L ¼
Z Z

X
T ðt; xÞdðt � testÞdðx� xestÞdtdxþ

Z Z
X
Cq

oT
ot

Wðt; xÞdtdx

�
Z Z

X

o

ox
k
oT
ox

� �
Wðt; xÞdtdxþ

Z Z
X
dTWdtdx: ð7Þ
Here W is the adjoint temperature; its regularity is discussed below.

Local truncation errors represented in a form of the source dT(t,x) disturb the temperature field eT . By
expanding Eq. (5a) in a Taylor series and taking first order term we obtain a problem for temperature dis-
turbance DT (continuous error) assuming the form:
Cq
oDT
ot

� k
o
2DT
ox2

þ dT ðt; xÞ ¼ 0; ð8Þ
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Initial conditions: DT ð0; xÞ ¼ 0;

Boundary conditions:
oDT
ox

����
x¼0

¼ 0;
oDT
ox

����
x¼X

¼ 0:
ð9Þ
We consider here k = Const, for dT(t,x) 2 C1(Q), the problem is well-posed for DT(t,x) 2 C1(Q).

Problem (8) may be solved by using some part of Taylor expansion for sources dT(t,x) estimation (as in

[9]) that enables a correction of the target functional. Nevertheless, this is not sufficient for our purposes,
since we are interested in the contribution of every grid cell to the total error and in obtaining an error

bound. So we continue the analysis and calculate the variation of the Lagrangian

DLðdT ;WÞ ¼ LðT ;WÞ � LðeT ;WÞ using Eqs. (8) and (9).
DLðdT ;WÞ ¼
Z Z

X
DT dðt � testÞdðx� xestÞdtdxþ

Z Z
X
dTWdtdxþ

Z Z
X
Cq

oDT
ot

wdtdx

�
Z Z

X

o

ox
k
oDT
ox

� �
Wðt; xÞdtdx: ð10Þ
The formal integration of (10) by parts yields
DLðdT ;WÞ ¼
Z Z

X
DT dðt � testÞdðx� xestÞdtdxþ

Z Z
X
dTWdtdx

�
Z Z

X
Cq

oW
ot

DT ðt; xÞdtdxþ
Z
x
CqWðt; xÞDT dx

����tf
t¼0

�
Z Z

X

o

ox
k
oW
ox

� �
DT ðt; xÞdtdx�

Z
t
k
oDT
ox

Wdt

����x¼X

x¼0

þ
Z
t
k
oW
ox

DT dt

����x¼X

x¼0

: ð11Þ
We can express the variation of the Lagrangian via the disturbing term dT
DL ¼
Z Z

X
dTWðt; xÞdtdx ð12Þ
if other terms in (11) are equal to zero, i.e. for the solution of following adjoint (dual) problem.
Cq
oW
ot

þ o

ox
k
oW
ox

� �
� dðt � testÞdðx� xestÞ ¼ 0; ðt; xÞ 2 X; ð13Þ

Boundary conditions:
oW
ox

����x¼X

¼ 0;
oW
ox

����x¼0

¼ 0; ð14Þ

Initial condition: Wðtf ; xÞ ¼ 0: ð15Þ

According to [5] problem (13) is well-posed for W(t,x) 2 H�a(X), a

n >
1
2
, X 2 Rn. In case considered here

the problem is well-posed if W(t,x) 2 H�1(X), however if we smooth the source term according to [22,26],

we may obtain solution Ws(t,x) 2 Hb(X), b > 1 (although containing an error proportional to smoothing

parameter s, s > 0, which may be as small as necessary). Finite difference methods for solution of Eq.

(13) are presented in [37,38,41]. The analytical solution of (13) (adjoint temperature) corresponds to a

Green function of heat transfer equation [23]. For infinite space it corresponds to fundamental solution
of heat transfer equation and has the following analytic form
Wðt; xÞ ¼ Q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk=ðCqÞðtest � tÞ

p exp � ðx� xestÞ2

4k=ðCqÞðtest � tÞ

 !
ðfor t < testÞ:
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It is known, [25], that De(dT) = DL(dT,W) for the solution of direct and adjoint problems. Thus we deter-

mine the variation of T(test,xest).
De ¼ DT est ¼ T est � T exact ¼
Z Z

X
dTWðt; xÞdtdx: ð16Þ
Considering W(t,x) as a Green function we can conclude that expression (16) corresponds to the solution of

heat conduction equation with the source dT. Hence it is bounded for bounded dT.
Thus, the adjoint temperature enables us to calculate the variation of estimated parameter as a function

of the truncation error. The adjoint problem is solved in the reverse temporal direction. It is determined by

the direct problem and by the choice of a checkpoint. The present statement differs from adjoint equations

used in inverse heat transfer problems [4] by the form of target functional and by the form of the source in
(13). Usually, problem (13) is solved by a finite-difference method, so it also contains an errorW(t,x) =

Wexact(t,x) + DW(t,x). So, the error of the temperature at a checkpoint may be divided into two parts
De ¼ DT est ¼
Z Z

X
dTWexactðt; xÞdtdxþ

Z Z
X
dTDWðt; xÞdtdx: ð17Þ
Some works [39,40] consider the minimization of the second part of expression (17) as a means for dimin-
ishing the inherent error.
3. The estimation of error caused by temporal approximation

Let us expand the mesh function T n
k using the Taylor series with the Lagrange remainder and substitute it

into finite differences (4). For the temporal part of truncation error we obtain
T n
k � T n�1

k

s
¼ oT

ot
� 1

2
s
o2T ðtn � anks; xkÞ

ot2

� �
: ð18Þ
Parameters ank 2 ð0; 1Þ are unknown.

The last term in (18) determines dTt, so the corresponding part of error DTest (16) has the form
DeðdT tÞ ¼ �Cq
2

Z
X

s
o
2T ðtn � anks; xkÞ

ot2

� �
Wdxdt: ð19Þ
Further discussion is mainly devoted to the calculation of magnitude and bounds of expression (19) and its

analogues. Let us present (19) in a discrete form, for example:
DeðdT tÞ ¼ �Cq
2

XNx;Nt
k¼1;n¼2

s
o2T ðtn � anks; xkÞ

ot2

� �
Wn

khks: ð20Þ
Herein Nt is a number of time steps while Nx is the number of spatial nodes.

Eq. (20) may be expanded in series over anks,
DeðdT tÞ ¼ �Cq
2

XNx;Nt
k¼1;n¼2

s
o
2T ðtn; xkÞ

ot2
� sanks

o
3T ðtn; xkÞ

ot3
þ ðanksÞ

2

2
s
o
4T ðtn; xkÞ

ot4
� . . .

 !
Wn

khks: ð21Þ
The first part of sum (21) may be used for correcting functional (6)
DT corr
t ¼ �Cq

2

XNx;Nt
k¼1;n¼2

o2T ðtn; xkÞ
ot2

Wn
khks

2: ð22Þ
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The second part of (21) contains unknown parameters ank 2 ð0; 1Þ. If only first order term over anks is re-

tained in (21) an upper bound may be obtained
Cq
2

XNx;Nt
k¼1;n¼2

anks
3 o

3T ðtn; xkÞ
ot3

Wn
khk 6

Cq
2

XNx;Nt
k¼1;n¼2

hks3
o
3T ðtn; xkÞ

ot3
Wn

k

���� ���� ¼ DT sup
t;1 : ð23Þ
Using this value we can determine the upper bound of the functional error (after refining):
T est � DT corr
t � T exact

�� �� < DT sup
t;1 : ð24Þ
Expression (23) is the Holder inequality applied to the scalar product ðankHn
kÞ,
XNx;Nt

k¼1;n¼2

ankH
n
k ¼ ðankHn

kÞ 6 ank
�� ��

p
Hn

k

�� ��
q
;

1

p
þ 1

q
¼ 1; kakp ¼ j a1jpþ j a2jp þ � � � þ j aN jpð Þ1=p; kak1 ¼ max j ai jð Þ:
This approach enables us to obtain estimates for other terms in (21) also. For example, the estimation of the

second (over anks) order term has the form
�Cq
2

XNx;Nt
k¼1;n¼2

ðanksÞ
2

2
s
o4T ðtn; xkÞ

ot4

 !
wn

khks <
Cq
2

XNx;Nt
k¼1;n¼2

1

2
s4hkw

n
k

o4T ðtn; xkÞ
ot4

���� ���� ¼ DT sup
t;2 : ð25Þ
The estimate of the error taking into account the second term may be written as
j T est � DT corr
t � T exact j< DT sup

t;1 þ DT sup
t;2 : ð26Þ
On a sufficiently smooth solution, every next term of series DT sup
t;s has an order that is greater by one. For an

infinitely smooth solution expression (26) may be stated as j T � DT corr
t � T exact j<

P1
s¼1DT

sup
t;s . If all deriv-

atives are bounded, this series converges
XNx;Nt
k¼1;n¼2

ðanksÞ
s

s!
osþ2T ðtn; xkÞ

otsþ2
Wn

khks
2

���� ���� < Cs
ss

s!
:

Nevertheless, this does not guarantee the estimate to be small enough to be of practical significance.

The applicability of such estimates may be complicated by discontinuities of the derivatives. Let us con-

sider this problem at the heuristic level. For this purpose let us write (21) in more detail.
DeðdT Þ ¼ �Cq
2

XNx;Nt
k¼1;n¼2

s
o2T ðtn; xkÞ

ot2
� sanks

o3T ðtn; xkÞ
ot3

þ � � � þ ð�anksÞ
s

s!
s
osþ2T ðtn; xkÞ

otsþ2
þ � � �

� �
Wn

khks:

ð27Þ
Let m be the number of bounded derivatives (derivatives of the order m and higher may have a finite num-

ber of jump discontinuities), p is the order of the approximated derivative; j is the formal order of accuracy

of a finite-difference scheme. Let us approximate derivatives by the finite differences DT ðt;xÞ
Dt . The limit

lims!0

P
X sj D

pþjT ðt;xÞ
Dtpþj

� �
hWs corresponds to the first term (27). Consider its asymptotic form. The derivative

of order m+1 has an asymptotic ðT ðmÞ
þ � T ðmÞ

� Þ=s � D=s for the jump discontinuity, while the derivative of

order m + 2 has the asymptotic (D/s � 0/s)/s � D /s2, correspondingly the derivative of the order p + j

has the asymptotic D
spþj�m. Thus lims!0 sj D

pþjT ðt;xÞ
Dtpþj

� �
� lims!0 sj D

spþj�m

� 	
. There are a limited number of nodes
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that participate in the summation in the vicinity of the discontinuity, so the multiplier s (appearing during

summation) should be taken into account, yielding
Pk¼Nx;n¼nrþns

k¼1;n¼nr�ns
sj D

pþjT ðt;xÞ
Dtpþj

� �
hWs � sm�pþ1.

Thus, the terms of jth formal order of accuracy contain a component of jth order (appearing due to inte-

gration over the smooth part of the solution) and a component having the order i = m � p + 1 (engendered

by the jump discontinuity of the mth order derivative). So, the order of convergence depends on the solu-
tion and may asymptotically tend to a minimal order i = m � p + 1 as grid size decreases. This is also rel-

evant to other terms in (27).

If we have a sufficient number of smooth derivatives, we can restrict the number of terms in expansion

(21) in order to avoid using derivatives of order higher than m. Let m = 3, then in our case (m = j + 2)
DeðdT Þ ¼ �Cq
2

XNx;Nt
k¼1;n¼2

s
o
2T ðtn; xkÞ

ot2
� sanks

o
3T ðtn � gnka

n
ks; xkÞ

ot3

� �
Wn

khks: ð28Þ
The derivatives in (28) are related to some points within the interval gnk 2 ð0; 1Þ. Correspondingly, the esti-
mation of error bound has the form
DT sup
t;1 ¼ Cq

2

XNx;Nt
k¼1;n¼2

s2
o3T ðtn � gnka

n
ks; xkÞ

ot3
Wn

k

���� ����hks: ð29Þ
If the third derivative is bounded, the deviation of (29) from (23) Cq
2

PNx;Nt
k¼1;n¼2 s

2 o3T ðtn;xkÞ
ot3 Wn

k

��� ���hks� �
is not

large. Let m = 2, the third derivative is not bounded and the deviation of (29) from (23) may be large.

In this case we should consequently estimate terms of series (27) (having the same order on s) in the hope

that the presence of the factorial s! in (27) would enable us to stop summing at a certain term.

Later we will consider in numerical tests the influence of discontinuities on the error, for example that of

the temperature spatial derivative.
4. Calculation of error due to spatial approximation

Similar to previous treatment we use Taylor series with a Lagrange remainder in order to estimate the

discretization error of the spatial derivative. (here bn
k 2 ð0; 1Þ, cnk 2 ð0; 1Þ are unknown).
T n
kþ1 ¼ T n

k þ hk
oT
ox

þ 1

2
h2k

o2T
ox2

þ 1

6
h3k

o3T
ox3

þ 1

24
h4k

o4uðtn; xk þ bn
khkÞ

ox4

� �
;

T n
k�1 ¼ T n

k � hk
oT
ox

þ 1

2
h2k

o2T
ox2

� 1

6
h3k

o3T
ox3

þ 1

24
h4k

o4uðtn; xk � cnkhkÞ
ox4

� �
:

Then
T n
kþ1 � 2T n

k þ T n
k�1

h2k
¼ o2T

ox2
þ 1

24
h2k

o4T ðtn; xk þ bn
khÞ

ox4
þ o4T ðtn; xk � cnkhÞ

ox4

� �
: ð30Þ
The second part of this equation corresponds to the x-component of the disturbing term dT (dTx) used in

(16).

The error of estimated value related to the truncation error of spatial approximation has the form
DeðdT xÞ ¼ �
Z
X

k
24

h2k
o4T ðtn; xk þ bn

khÞ
ox4

þ o4T ðtn; xk � cnkhÞ
ox4

� �
Wdxdt: ð31Þ
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Its discrete form
DeðdT xÞ ¼ � k
24

XNx;Nt
k¼1;n¼1

h2k
o
4T ðtn; xk þ bn

khÞ
ox4

þ o
4T ðtn; xk � cnkhÞ

ox4

� �
Wn

khks:
The first term of Taylor series expansion over bn
kh; c

n
kh may be formulated as
DeðdT xÞ ¼ � k
12

XNx;Nt
k¼1;n¼2

h3k
o4T ðtn; xkÞ

ox4
Wn

ks�
k
24

XNx;Nt
k¼1;n¼2

h3k
o5T ðtn; xkÞ

ox5
bn
k �

o5T ðtn; xkÞ
ox5

cnk

� �
Wn

khks: ð32Þ
The first part of this sum can be used for an error correction
DT corr
x ¼ � k

12

XNx;Nt
k¼1;n¼1

h3k
o
4T ðtn; xkÞ
ox4

Wn
ks: ð33Þ
The inherent error is engendered by the second part terms. We can obtain a bound for it by assuming

bn
k � cnk ¼ 1.
k
24

XNx;Nt
k¼1;n¼2

h3k
o
5T ðtn; xkÞ
ox5

bn
k �

o
5T ðtn; xkÞ
ox5

cnk

� �
Wn

khks < DT sup
x;1 ¼ k

24

XNx;Nt
k¼1;n¼2

h4k
o
5T ðtn; xkÞ
ox5

Wn
k

���� ����s: ð34Þ
The density in (34) h4k
o5T ðtn;xkÞ

ox5 Wn
k

��� ���s represents the contribution of every cell to the total error, so it may

serve for the design of a grid that minimizes it.
5. Numerical tests

The error is calculated for the temperature field evolution engendered by a pointwise heat source (t0, n
are the initial time and the coordinate of the point source).
T anðt; xÞ ¼
Q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk=ðCqÞðt � t0Þ

p exp � ðx� nÞ2

4k=ðCqÞðt � t0Þ

 !
; ð35Þ
Tan(t,x) is the analytic solution of heat conduction equation. We use the data fk = T0(xk) calculated by (35)

as the initial data when solving (4). The length X of spatial interval is chosen so as to provide a negligible
effect of the boundary condition compared with the effect of approximation. The round-off errors were esti-

mated by comparing calculation with single and double precision, and the difference was negligible. We

should also ascertain that the error
R R

XdTDWðt; xÞdtdx engendered by adjoint equation approximation

is sufficiently small. For calculation of DW(t,x) the following equation was used
Cq
oDW
ot

þ o

ox
k
oDW
ox

� �
þ dWtðt; xÞ þ dWxðt; xÞ ¼ 0 ð36Þ
(second order adjoint equation [2,42]). For k = Const and dT(t,x) 2 C1(Q), the problem (36) is well-posed

for DW(t,x) 2 C1(Q) [22].

Corresponding error of functional has the form:
DeðdT Þ ¼ �Cq
2

XNx;Nt
k¼1;n¼2

s
o2T ðtn; xkÞ

ot2

� �
DWn

khks:
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As expected, numerical computations show that the part of error (17) related to the adjoint temperature

error is significantly smaller than the main value (connected with the adjoint temperature itself).
An implicit method (implemented via the Thomas algorithm) was used for solution both of the heat

transfer equation and the adjoint equations of first and second orders. The spatial grid consisted of 100–

1000 nodes, the temporal integration contained 100–10,000 steps. Thermal conductivity was

k = 10�4kW/(mK), volume heat capacity was equal to Cq = 500kJ/(m3K). The initial and final tempera-

ture distributions are presented in Fig. 1 together with zones of error estimation.

The temperature errors were estimated via adjoint equations and compared with the deviation of the

numerical solution from analytical one (35).

Isolines of temperature and adjoint temperature are presented in Figs. 2 and 3 for one of computed
variants.
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Fig. 2. Temperature isolines.
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As previously mentioned, the adjoint temperature may be considered as a weight coefficient determining

the contribution of the truncation error to the error of estimated parameter. Thus, Fig. 3 describes the rel-

ative weights of the truncation error contribution to the temperature at the estimated point.
6. The error caused by the truncation error of time approximation

Estimates of temperature calculation error as a function of a time step are presented in Table 1 (central

point at the final moment). The spatial step is chosen to be enough small (h = 0.0001m) so as to provide a

small impact on the spatial discretization error in comparison with the temporal one. The error caused by

adjoint temperature approximation was calculated using Eq. (36) and was significantly smaller then the

temporal one.

Here Test � Tan is the difference between the numerical and analytical calculations, DT corr
t is the correc-

tion for the time step error, DT corr
x is the correction for the space step error, DT err ¼ T est � DT corr

t �
DT corr

x � T an is the deviation of refined solution from the analytical one, and DT sup
t;1 is the upper bound of

error (25) caused by the time step.

One concludes from Table 1 that the error of calculation is practically eliminated by the correction using

DT corr
t and DT corr

x , with the remaining part being in the range of the bound DT sup
t;1 .

We compare here DTerr and DT sup
t;1 to illustrate that the bound is indeed satisfied.

The reader should also compare Test � Tan with DT corr
t to understand the quality of the correction.
Table 1

Temperature error estimations depending on the time step

s, s Test � Tan DT corr
t (23) DT corr

x (33) DTerr DT sup
t;1 (25)

0.1 0.1007 0.09301 7.75 · 10�3 �5.0 · 10�5 0.0113

0.2 0.1938 0.1856 7.78 · 10�3 4.0 · 10�4 0.0429

0.4 0.3790 0.3699 7.8 · 10�3 1.3 · 10�3 0.156

0.8 0.7400 0.7341 7.84 · 10�3 �1.9 · 10�3 0.524

1 0.9189 0.9141 7.86 · 10�3 �3.0 · 10�3 0.76

2 1.7904 1.7932 7.97 · 10�3 �1.0 · 10�2 2.15
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Certainly, the effectivity index [26] of bound estimation � DT err=DT sup
t;1 is rather small, nevertheless the

magnitude of the upper bound is also small which ensures the practical importance of this bound.

Figs. 4–6 illustrate a comparison between analytic, finite-difference and corrected finite-difference solu-
tions and the error bounds (h = 0.0001m, s = 1.0s) in different zones (Fig. 1).
7. The error of temperature calculation engendered by the spatial discretization

Let us consider the error caused by the truncation error of spatial approximation. In order to observe

this error, let us provide a small contribution of truncation error of the temporal approximation. For this

purpose a second order time approximation scheme was used.
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Cq
T n�1=2

k � T n�1
k

s
� 1

2
k
T n�1

kþ1 � 2T n�1
k þ T n�1

k�1

h2k
¼ 0;

Cq
T n

k � T n�1=2
k

s
� 1

2
k
T n

kþ1 � 2T n
k þ T n

k�1

h2k
¼ 0:

ð37Þ
It may be shown in a similar fashion as in previous treatments that the error caused by the temporal

approximation is of second order in s.
DeðdT tÞ ¼ �Cq
12

XNx;Nt
k¼1;n¼2

o3T ðtn; xkÞ
ot3

Wn
khks

3: ð38Þ
A bound on the inherent error caused by temporal step is:
DT sup
t ¼ DeðdT Þ ¼ Cq

4

XNx;Nt
k¼1;n¼2

o
4T ðtn; xkÞ

ot4
Wn

k

���� ����hks4: ð39Þ
The error caused by the spatial approximation preserves its previous form (33) and (34).
Numerical tests demonstrated that the error caused by the time step (38) was not greater than 2 · 10�5

and was significantly smaller than the error caused by the spatial approximation. The error caused by the

adjoint equation approximation
R R

XdTDWðx; tÞdtdx was still smaller by several orders of magnitude. The

temperature error estimates as a function of the spatial step size are presented in Table 2 (for central point

at the final time).
2

rature error estimates depending on the spatial step

Test � Tan DT corr
x (33) T corr

x � T an DT sup
x;1 (34)

3.0607 2.719 0.341 6.3

0.772345 0.751934 0.0204 1.86

0.494818 0.48683 0.0080 1.08

0.123853 0.123579 2.74 · 10�4 0.163

0.030948 0.031011 6.3 · 10�6 2.1 · 10�2

0.007711 0.007760 4.9 · 10�5 2.7 · 10�3
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The comparison of deviations of solution and refined solution (T corr
x ¼ T est � DT corr

x ) from analytical one

(Test � Tan and T corr
x � T an) demonstrates that the refinement by DT corr

x (33) enables us to eliminate a signif-

icant part of the error. Comparison of the remaining error T corr
x � T an and DT sup

x;1 shows a reliable satisfac-

tion of the bound (34). The remaining error T corr
x � T an contains all uncontrolled errors including those

caused by boundary terms, errors of upper orders etc., so it has a rather irregular behavior.
The quadratic character of DT corr

x and the third order of DT sup
x should be noted. The convergence rate of

DT corr
x andDT sup

x demonstrates that discontinuities of high order derivatives for Eq. (1) under initial conditions

(35) and boundary conditions (2) did not engender any visible effect (they are located in zones of small W).

Fig. 7 illustrates the initial and final temperature distributions (h = 0.001m, s = 0.1s). Figs. 8 and 9 pro-

vide a comparison between the analytical, finite-difference and refined solutions and the error bound at dif-

ferent points (zones A and B, Fig. 7). The spatial step is chosen large enough for visibility and for

suppression of other errors. As expected, the error is smaller for finer mesh (Table 2).
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8. Influence of discontinuities

A calculation of DT corr
x and DT sup

x requires bounded high order derivatives. These are not always avail-

able, nevertheless (as already shown), the limitations on the smoothness requirements may be slightly re-

laxed. If the corresponding derivatives of the exact solution have jump discontinuities, ðeT 2 H 2
locðXÞÞ the

integral estimates of error exist, but asymptotically reveal existence of another (smaller) order of conver-

gence. Hence, the thermal conductivity stepwise discontinuities (engendering discontinuities of temperature

gradient) are potential sources of errors, which may be significantly greater than the nominal error of the

finite-difference scheme. Herein we focus our attention on the discontinuities of primal parameters. The ad-

joint parameters are not differentiated, so are not so dangerous for our calculations. Some information on

discontinuities of primal and adjoint parameters in related problems may be found in [12,14,19].

Let us carry out numerical tests to study the asymptotic dependence of the error on the space step size

for a temperature gradient discontinuity. In order to deal with the discontinuity we used a divergent inte-
gro-interpolation method [35] assuming the following form:

First step
Ckqk
T nþ1=2

k � T n
k

s
¼ Zkþ1=2 T n

k � T n
kþ1

� 	
þ Zk�1=2 T n

k � T n
k�1

� 	
: ð40aÞ
Second step
Ckqk
T nþ1

k � T nþ1=2
k

s
¼ Zkþ1=2 T nþ1

k � T nþ1
kþ1

� 	
þ Zk�1=2 T nþ1

k � T nþ1
k�1

� 	
; ð40bÞ
where
Zkþ1=2 ¼
2

hk

�
hk
kk

þ hkþ1

kkþ1

� ; Zk�1=2 ¼
2

hk

�
hk
kk

þ hk�1

kk�1

� :
Corresponding estimates of the form (33) and (34) may be easily deduced but are very bulky and are not

presented here. They may be found in [3].



Table 3

Temperature error estimates as a function of the spatial step

h, m DT corr
x DT sup

x;1 DT sup
x;2 DT sup

x;3 DT sup
x;4

0.0016 4.6 · 10�1 2.7 2.45 6.9 · 10�1 1.6 · 10�1

0.0008 3.02 · 10�1 8.61 · 10�1 5.59 · 10�1 1.28 · 10�1 2.48 · 10�2

0.0004 9.39 · 10�2 4.1 · 10�1 3.89 · 10�1 1.19 · 10�1 2.92 · 10�2

0.0002 2.77 · 10�2 3.57 · 10�1 4.13 · 10�1 1.32 · 10�1 3.26 · 10�2

0.0001 7.32 · 10�3 2.24 · 10�1 2.63 · 10�1 8.58 · 10�2 2.09 · 10�2

0.00005 1.84 · 10�3 1.2 · 10�1 1.42 · 10�1 4.65 · 10�2 1.13 · 10�2
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Table 3 presents temperature error estimates (for central point at the final moment) depending on the

spatial step for the thermal conductivity coefficient having a 10% jump at the center of the grid.

The data of Table 3 shows that DT corr
x has a convergence order similar to the smooth case (Table 2), while

DT sup
x;s has a low order (not higher than one) and decreases relatively slowly when the number of terms in-

creases. This difference in behavior is caused by the compensation of the error before and past the stepwise

discontinuity in the expression for DT corr
x (33). Similar effects are well known in CFD ([21], for example).

Corresponding expressions for DT sup
x;s contain moduli, so a compensation of the error before and past the

discontinuity is impossible.
As another test we consider the evolution of the initial temperature distribution of a step shape. The ini-

tial, the final distribution of temperature, and the location of estimated points are presented in Fig. 10. The

stepwise discontinuity of thermal conductivity is located at center point (xs = X/2) and coincides with a

stepwise discontinuity of the initial temperature.

On the left part of Fig. 10, the initial temperature is denoted as T01, thermophysical parameters are

marked by index 1, correspondingly. On the right part of Fig. 10 the initial temperature is marked as

T02, while thermophysical parameters are marked by index 2, and the value of thermal conductivity is dou-

bled comparing the left part. The thermal conductivity stepwise discontinuity causes a discontinuity in the
temperature derivative which is of special interest here.

The corresponding analytical unsteady solution is described by expressions
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Table 4

Estimates of temperature error in dependence on spatial step

h, m Test � Tan DT corr
x DT sup

x;1 DT sup
x;2 DT sup

x;3 DT sup
x;4

0.0016 �4.0 · 10�1 �3.7 · 10�1 8.9 · 10�1 1.15 3.7 · 10�1 9.2 · 10�2

0.0008 �1.55 · 10�1 �1.4 · 10�1 5.5 · 10�1 6.6 · 10�1 2.13 · 10�1 5.3 · 10�2

0.0004 �5.0 · 10�2 �5.3 · 10�2 3.6 · 10�1 4.3 · 10�1 1.4 · 10�1 3.4 · 10�2

0.0002 �1.2 · 10�2 �2.0 · 10�2 2.7 · 10�1 3.3 · 10�1 1.02 · 10�1 2.6 · 10�2
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T anðt; xÞ � T 01

T 02 � T 01

¼ h
1þ h

1� erfð�U 1Þð Þ; x < xs; ð41Þ

T anðt; xÞ � T 01

T 02 � T 01

¼ h
1þ h

1þ erfðU 2Þ
h

� �
; x > xs; ð42Þ

h ¼ k2C2q2

k1C1q1

� �0:5

; Ui ¼
x� xs

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki=ðCiqiÞt

p ; erfðUiÞ ¼
2ffiffiffi
p

p
Z Ui

0

e�u2 du: ð43Þ
The deviation of finite-difference calculation from the analytical value and estimates of the errors are

presented in Table 4.

The rate of convergence of Test � Tan and DT corr
x is close to second order despite the influence of discon-

tinuity. This is caused by mutual compensation of error in the vicinity of discontinuity as confirmed by an

analysis of local distribution of error density � k
12
h3k

o4T ðtn;xkÞ
ox4 Wn

ks (engendering DT corr
x in accordance with

(33)). The order of DT sup
x;s is close to one (slightly below), which corresponds to the expected influence of

the temperature gradient discontinuity. Calculations show the upper bound of error DT sup
x;1 to be quite reli-

able; hence computation of the next terms is rendered unnecessary.

Thus, refining of the finite-difference solution and calculation of error bound using adjoint temperature

may also be performed in presence of discontinuities in the temperature gradient.
9. Discussion

The approach considered above is limited by the need to use temperature derivatives of high order that

may be unbounded. In the first test problem, we used initial data fk = T0(xk) that are calculated analytically

(35). The problem (1) with these initial data (on infinite space interval) provides existence of an infinite

number of temporal and spatial derivatives. Here we use a finite spatial interval X and boundary conditions

(2), so the discontinuities on the boundaries are unavoidable. Nevertheless, for the time duration considered

in the paper the adjoint temperature is close to zero near the boundary. This allows applicability of esti-

mates using high order derivatives.

For the solution, having m bounded derivatives, we can obtain a correction and upper bound for the
finite-difference approximation of the pth derivative under condition that m � p P 0. Nevertheless, for

small number of bounded derivatives (m = p) refinement does not increase the convergence rate (correcting

and upper bound terms have the same order). Even after refinement, the error still contains a component of

first order, and the upper bound (28) may contain an indefinite number of terms and may be too large. For

a smoother solution (m � pP 1), it is feasible to raise the minimal convergence order by one and obtain an

upper bound of error using a single term of next higher order. And only for a smooth enough solution

(m P j + p + 1, j-approximation order) is it feasible to raise the nominal order of scheme accuracy and ob-

tain upper bounds of next order of accuracy.
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Naturally, the present approach enables us to compute not only the error of temperature (written in the

form of functional (6)) but also the error of other functionals of temperature. The differences are only in the

form of the source in the adjoint equation (13).
10. Conclusion

The numerical tests presented in this paper demonstrate that the pointwise error of finite-difference solu-

tion of heat conduction equation may be reduced using differential approximation of finite difference

scheme in conjunction with the adjoint equation.

The bound on the remaining error may be obtained as a function of the sizes of temporal and spatial

steps.

As shown by numerical tests, the first upper bound estimate is reliable enough for smooth solutions. As
the mesh size is reduced, numerical tests exhibit a convergence rate higher by one than the order of the finite

difference scheme. Even in the presence of discontinuities in the temperature gradients, numerical compu-

tations demonstrated the possibility of obtaining realistic upper bounds despite a reduction in the conver-

gence order.

This approach may be used for calculation of other quantities of interest (temperature functionals) with

preset levels of accuracy or for the design of an optimal mesh. The computer time required for the refining

and for the bound calculation is equal to the CPU time required for temperature computation on a mesh of

similar size.
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