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On Estimation of Temperature Uncertainty Using the Second
Order Adjoint Problem
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The uncertainty of temperature prediction from the heat flux error is estimated using first and second
order adjoint equations. The adjoint codes developed for the inverse heat transfer problems provide the
uncertainty estimation for the corresponding forward problems. Numerical tests corroborate the
feasibility of fast uncertainty estimation using Hessian maximum eigenvalue obtained via second order
adjoint equations.
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1. INTRODUCTION

The estimation of solution uncertainty from the input data

error is of interest when heat transfer problems are solved.

For this purpose, both Monte Carlo methods and sensitivity

equations are suitable. Nevertheless, algorithms providing

both the result and its uncertainty are a rarity in practice due

to the high computational burden involved in their solution.

The present paper is concerned with providing a

computationally cheap estimation of temperature solution

uncertainty from the heat flux error. The uncertainty is

estimated from the Hessian spectrum, which is calculated

by first order adjoint (FOA) equations commonly used for

inverse heat transfer problems or by using the second

order adjoint (SOA) equations.

2. UNCERTAINTY ESTIMATION VIA HESSIAN

CALCULATION

Consider the uncertainty estimation using the one-

dimensional thermal conduction equation (forward

problem) as an example.

Cr
›T

›t
2

›

›X
x

›T

›X

� �
¼ 0: ð1Þ

Initial conditions are:

Tð0;XÞ ¼ T0ðXÞ;

ðt;XÞ 2 ð0 , t , tf ; 0 , X , 1Þ:
ð2Þ

The boundary ðX ¼ 1Þ is subjected to the heat flux

Qw(t ), which contains the error dQ:

x
›T

›X
jX¼1 ¼ QwðtÞ þ dQ: ð3Þ

The other boundary is thermally insulated:

›T

›X
jX¼0 ¼ 0: ð4Þ

We search for the uncertainty of temperature prediction

T(t ) on this boundary.

We pose the problem as an optimisation statement

formally coinciding with the inverse boundary heat

conduction problem (Alifanov et al., 1996). As the

measure of uncertainty, we consider the discrepancy

between exact and noisy solutions given by:

1ðdQwðtÞÞ ¼

ð
t

ðTexact
X¼0 ðtÞ 2 Terror

X¼0ðtÞÞ
2 dt: ð5Þ
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The finite dimensional analogue for the discrepancy

assumes the form:

1ðdQwðtiÞÞ ¼
XN

1
ðTexact

X¼0 ðtiÞ 2 Terror
X¼0ðtiÞÞ

2;

where N is the number of heat flux time nodes (i.e.

parameters, containing the error).

For small errors (in the vicinity of the exact solution)

the discrepancy gradient is close to zero and the

discrepancy 1 is determined by the Hessian:

1 ¼
1

2

›21

›Qi›Qj

dQidQj ¼
1

2
HijdQidQj;

i; j ¼ 1; . . .;N:

ð6Þ

The averaged (over dQ ) error k1l ¼ 1
2

kHijdQidQjl is

determined as 1 ¼ 0:5HijDQij (DQij is the correlation

matrix of the heat flux error). For non-correlated error

ðDQ ¼ diagðs2
i ÞÞ 1 ¼ 0:5Hiis

2
i : If the data error is

constant and equal to s, the uncertainty of the result is

determined by the trace of the Hessian 1 ¼ 0:5Hiis
2 (here

the summation is performed over the repeating index).

The direct differentiation of the discrepancy 1 provides

the calculation of the Hessian requiring N 2 forward

problem runs, which is highly computationally inefficient.

It is well known that the adjoint problem provides the most

efficient way for carrying out the gradient calculation. So,

it is quite natural to extend this approach for the Hessian

calculation. The straightforward way to proceed is via

direct numerical differentiation of the gradient obtained

from the FOA problem (Alifanov et al., 1996) (where a is

the differentiation parameter):

H dQ ¼ ðgradðQ þ a dQÞ 2 gradðQÞÞ=a: ð7Þ

There exists another approach to Hessian action calculation

based on the SOA approach (Wang et al., 1992, 1995). Here

we consider both variants of the Hessian action calculation

using adjoint equations from inverse conduction problems

(Alifanov et al., 1996) as a basis.

Let us consider the adjoint problem for discrepancy

gradient calculation in detail (although the derivation may

be found in Alekseev and Navon (2001)) since these

transformations will turn out to be useful for deriving the

SOA statements. First, we form the Lagrangian

LðQw; T;CÞ:

LðQwðtÞ; T ;CÞ ¼

ð
t

ðT exactð0; tÞ 2 T errorð0; tÞÞ2 dt

þ

ð
V

ð
t

rC
›T

›t
Cðx; tÞ dt dx

2

ð
V

ð
t

›

›X
x

›T

›X

� �
Cðx; tÞ dt dx: ð8Þ

This Lagrangian is equal to the discrepancy in Eq. (5)

on a solution of Eq. (1): LðQwðtÞ; T ;CÞ ¼ 1ðdQwðtÞÞ:

3. TANGENT LINEAR PROBLEM

Secondly, we perturb the boundary condition by DQw By

subtracting the undisturbed solution we obtain the tangent

linear problem

Cr
›DT

›t
2

›

›X
x

›DT

›X

� �
¼ 0; ð9Þ

with initial conditions

DTð0;XÞ ¼ 0;

and boundary conditions

›DT

›X
jX¼0 ¼ 0; ð10Þ

x
›DT

›X
jX¼1 ¼ DQwðtÞ: ð11Þ

Further, we use Eqs. (9–11) for the calculation of the

Lagrangian Eq. (8) variation:

DLðQwðtÞÞ ¼

ð
t

2ðT exactð0; tÞ 2 T errorð0; tÞÞDT dt

þ

ð
V

ð
t

rC
›DT

›t
Cðx; tÞ dt dx

2

ð
V

ð
t

›

›X
x

›DT

›X

� �
Cðx; tÞ dt dx: ð12Þ

Our purpose is to find C(t,x ) such that

DL ¼

ð
t

DQwgradð1Þ dt;

while all other first order terms are equal to zero.

Integrating Eq. (12) by parts and taking into account the

initial and boundary conditions (Eqs. (9–11)) gives:

DLðQwðtÞÞ ¼

ð
t

2ðT exactð0; tÞ 2 T errorð0; tÞÞDT dt

2

ð
V

ð
t

rC
›C

›t
DTðx; tÞ dt dx

þ

ð
X

rCCðX; tÞDT dXj
t¼tf

t¼0 2

ð
t

x
›DT

›x
C dtj

x¼1
x¼0

þ

ð
t

x
›C

›x
DT dtj

x¼1
x¼0

2

ð
V

ð
t

›

›X
x

›C

›X

� �
DTðx; tÞ dt dx: ð13Þ

4. FIRST ORDER ADJOINT PROBLEM

If the function C satisfies the following equation:

rC
›C

›t
þ x

›2C

›X 2
¼ 0 ð14Þ
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with boundary conditions

x
›C

›X
jX¼0 ¼ 22ðT exactð0; tÞ 2 T errorð0; tÞÞ ð15Þ

x
›C

›X
j
X¼1

¼ 0; ð16Þ

and final condition

rCCðt; xÞj
t¼tf ¼ 0; ð17Þ

then

DL ¼ D1ðQwðtÞÞ ¼ 2

ð
x

›DT

›X
Cj

X¼1
dt

¼ 2

ð
DQwðtÞCðt; 1Þ dt: ð18Þ

The discrepancy gradient may be obtained from the

above expression (Eq. (18)):

gradð1Þ ¼ 2Cðt; 1Þ: ð19Þ

Eqs. (14–17) form the FOA problem. The gradient is

calculated by the solution of the forward and adjoint

problems. The adjoint problem is solved backward in the

time direction. This algorithm provides the gradient for an

approximate computational cost of about double that of

the solution of the heat conduction equation (the relative

cost equals two).

Having the gradient available at our disposal, the

Hessian action may be computed by numerical differences

using Eq. (7), then the Hessian relative computational cost

is 2N. However, if the parameter of differentiation a is

poorly chosen, a low Hessian accuracy may result due to

computing the difference between two small values. The

Hessian may be computed more accurately via the

alternative approach that we discuss below.

5. SECOND ORDER ADJOINT PROBLEM

Let us form the problem tangent to adjoint one (Eqs. (14–

17)) and, according to Wang et al., 1992, denote it as the

SOA problem

rC
›DC

›t
þ x

›2DC

›X 2
¼ 0 ð20Þ

with boundary conditions

x
›DC

›X
jX¼0 ¼ 2DTð0; YÞ; ð21Þ

x
›DC

›X
j
X¼1

¼ 0; ð22Þ

and initial condition

DCðt; xÞj
t¼tf ¼ 0; ð23Þ

because

CðQ þ DQÞ ¼ CðQÞ þ DC;

and

71QþDQ ¼ 71Q þ 721DQ;

accounting

71 ¼ 2Cðt; 1Þ:

The Hessian action by the vector DQ equals:

HDQ ¼ 721DQ ¼ 2DCðt; 1Þ: ð24Þ

Thus, in order to obtain the Hessian action by the vector

DQ; we sequentially solve the following four initial-

boundary problems:

1. forward problem, Eqs. (1–4) (where time is increasing)

2. FOA problem, Eqs. (14–17) (where time is decreasing)

3. tangent problem, Eqs. (9–11) (time is increasing)

4. SOA problem, Eqs. (20–23) (time is decreasing).

In order to find the Hessian, the calculations for N orts

should be performed, so the Hessian computational cost

equals 4N.

6. NUMERICAL TESTS

The calculations of the Hessian are performed using the

differentiation of the FOA problem as well as by using the

solution of the SOA problem. The same finite-difference

algorithm (first order accuracy in time and second order in

space) is used for all problems under consideration. The

test problem contains 28 time nodes for the heat flux

interpolation, there are 20 cells in space, the specimen

thickness is 0.003 m, the specific conductivity equals x ¼

4:18 £ 1024 kW=ðmKÞ; and the specific volume heat is

2r ¼ 2090 kJ=ðm3KÞ: The heat flux is presented in Fig. 1,

and the temperature at the measurement point is provided

in Fig. 2. The comparison of the calculated Hessians

shows that the direct differentiation causes a higher

symmetry violation compared with the second order

approach. The eigenvalues, computed via FOA (H1) and

SOA (H2) (Eqs. (7) and (24), respectively), are presented

in Table I.

The problem under consideration has nonnegative

eigenvalues due to the uniqueness of the Inverse Boundary

Heat Conduction Problem (Alifanov et al., 1996). Some

eigenvalue should be close to zero due to the ill-posedness

of this problem. (See Hansen, 1998 for an in-depth

discussion on rank deficient and discrete ill-posed prob-

lems.) Both methods yield a number of small negative

eigenvalues, although the SOA problem yields a

significantly smaller number of such eigenvalues. Never-

theless, from the viewpoint of uncertainty estimation, the

TEMPERATURE UNCERTAINTY 115
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FIGURE 1 Heat flux on boundary in time dependence.

FIGURE 2 The time variation of temperature at the point of uncertainty estimation.

TABLE II

First order adjoint H1 Second order adjoint H2 lmax Averaged

1 0.354 0.345 0.32 0.326

TABLE I

j 1 2 3 4 5 6 7 8 9 10 11–17 18

H1 5590 644 217 100 54.8 30.4 19.6 11.3 6.6 4.47 – 0
H2 6060 640 212 97.2 51.7 30.1 18.2 11.3 7.6 5.07 – 0.145

A.K. ALEKSEEV AND I.M. NAVON116
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largest eigenvalues are of interest and they practically

coincide. The trace of the Hessian Hij for FOA equals

7073, whereas for SOA it equals 6952. The rapid decrease

of eigenvalues (Table I) should be emphasised. There-

after, we can use only the maximum eigenvalue for

uncertainty estimation 1 < 0:5lmaxs
2: The iterative

calculation of the maximum eigenvalue lmax may require

a significantly smaller number of PDE solutions in

comparison with the total Hessian calculation. The

iterations for obtaining the maximum eigenvalue have

the form

Xmþ1 ¼ AXm; l ¼ maxðXmþ1Þ=maxðXmÞ:

In the present case seven iterations yield a lmax value of

about 6423 (total spectrum for FOA provides lmax ¼

5590; for SOA lmax ¼ 6060).

The estimation of the temperature uncertainty 1 for

normally distributed input data error of dispersion s ¼

0:01 via Hessian trace ð1 ¼ 0:5Hiis
2; FOA and SOAÞ;

maximum eigenvalue ð0:5lmaxs
2Þ; and averaging over

the ensemble of 200 calculations are presented in the

Table II.

7. DISCUSSION

The total information regarding uncertainties in the

present problem (standard deviation of temperature at a

certain point X ) may be calculated (in the linear event)

using sensitivities

kdT 2l ¼ SikkdQkdQllSil;

Sik ¼
›Tðti;XÞ

›QðtkÞ
:

The calculation of sensitivity implies the solution of a

PDE system of higher order in comparison with the

forward problem and requires storing multidimensional

result. For small errors, the Fisher information matrix

(Alifanov et al., 1996) (composed from sensitivities)

approximating the Hessian in vicinity of solution,

provides correlation of the sensitivity approach and the

above-considered method.

Hjk ¼
›21

›Qj›Qk

¼
i

X ›Ti

›Qj

›Ti

›Qk

2 2
i

X
ðTexact

i 2 Terror
i Þ

›2Ti

›Qj›Qk

: ð25Þ

If we are interested in the time-averaged temperature at

a certain point (or another temperature functional), the

adjoint approach may turn out to be more efficient from

the computer memory viewpoint. If the Hessian

eigenvalues decrease rapidly, fast uncertainty estimation

via the maximum eigenvalue is feasible.

For estimation of uncertainty, the FOA differentiation is

more advantageous than the SOA, because it is much

simpler while providing similar accuracy for large

eigenvalues. The SOA solution is preferable if we need

an accurate calculation, for the estimation of correctness

subspace or for problem uniqueness.

8. CONCLUSION

The uncertainty of temperature from heat flux error may

be estimated via FOA equations, which are commonly

used in inverse heat transfer problems, or via SOA

equations. The adjoint codes developed for Inverse Heat

Transfer may be directly used for the uncertainty

estimation of the corresponding forward problems. The

time computational cost is proportional to the input data

dimension with a coefficient of about two or four.

Numerical tests corroborate the feasibility of fast

uncertainty estimation using a Hessian maximum

eigenvalue calculated in an iterative manner.

NOMENCLATURE

Hij Hessian

Q heat flux

DT temperature variation

1 discrepancy

s input data error standard deviation

x thermal conductivity

l eigenvalue

r density

C first order adjoint variable

DC second order adjoint variable
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