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A b s t r a c t - - W e  consider the bilinear finite element method on a Shishkin mesh for the singularly 
perturbed elliptic boundary value problem ~2/a2u o2u -~ ~ -{- ~ - ]  % a(z,y)u ---- f(z,y) in two space di- 
meusions. By using a very sophisticated asymptotic expansion of Han et al. [1] and the technique 
we used in [2], we prove that our method achieves almost second-order uniform convergence rate in 
L2-norm. Numerical results confirm our theoretical analysis. 

geywvords--Fini te  element methods, Singularly perturbed problems, Elliptic partial differential 
equations. 

1.  I N T R O D U C T I O N  

In this paper, we will consider a finite element method (FEM) for the singularly perturbed elliptic 
boundary value problem: 

L e u = - - e 2 (  o2u O 2 U ~ + a ( x , y ) u = f ( x , y ) ,  in fl -- (0, 1) x (0, 1), (1) 
\ Oz 2 + Oy2 ) 

u = 0, o n  0f~,  (2 )  

where s E (0,1] is a small positive parameter. The functions a and f are assumed to be sufficiently 
smooth in f~ and 

a(x, y) > cx 2 > 0, in fl. 

Singularly perturbed problems appear in many branches of applied mathematics. While the 
problem can be traced back to 1904 when Prandtl  introduced the terminology boundary layer 
at the Third International Congress of Mathematicians in Heidelberg, it still constitutes a very 

active research area, as evidenced by recent books, such as [3-5]. It  is well known that  singularly 
perturbed problems often have very thin boundary layers and internal layers, cf. [3-5]. These 
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problems are very difficult to solve numerically, cf. [5-7]. While a suitable amount of work has 
been carried out, a large number of unsolved problems still remain to be solved, especially for 
two-dimensional problems, cf. [5]. 

In the context of the finite element method for singularly perturbed problems, a large number 
of different methods have been investigated. For instance, Streamline Diffusion F E M  [8,9], High- 
order F E M  [10,11], Adaptive F E M  [12], and Discontinuous Galerkin method [8], to name but 
a few. For more details see [5;13, Chapter 12]. But few of the above methods are uniformly 
convergent; tha t  is, the error between the original solution and the computed FEM solution Uh 
satisfies: 

[]u -- Uhll~ ~-- chm 

for some positive constant m that  is independent of e and of the mesh. 

As far as we know, uniform convergence can be achieved by using exponentially fitted splines 
or combinations with other functions as trial and test space, cf. [14,15]. However they have very 
low convergence rate, which is Ilu - UhH e <~ ch 1/2, where I1" lie is a variant of an energy norm. 
Another type of uniform convergence is achieved by using hp FEM [11]. In [11], Schwab et al. 
considered only the simplest case f - 1 and tested it on several types of meshes. Surprisingly, 
their computational results show that  the boundary layer (BL) mesh (other than BL-corner 
mesh and BL-refined corner mesh) performs best for the energy norm [11, p. 25]. There is no 
explanation for this phenomenon. Actually, the BL mesh is similar to the Shishkin mesh [7,16,17] 
in some sense. Recently, Guo, Sun, and Stynes [18,19] achieved almost optimal convergence results 
for ordinary differential equations and parabolic equations by using piecewise polynomial Galerkin 
FEM on a Shishkin mesh. These studies were carried out in one space dimension. Madden et al. 
[20] and Roos [21] carried out some computational experiments for FEM on Shishkin meshes in 
two dimensions, and the results seemed very promising. To our knowledge, there is no theoretical 
analysis for FEM on Shishkin meshes in two space dimensions. Just as Roos et al. said in [5]: 
"Finite element methods that  use Shishkin meshes in two or more dimensions have not been 
explored in the literature." 

This paper is our first a t tempt  in the above mentioned area. Problem (1) is of the so-called 
reaction-diffusion type problem according to the classification of [5]. The investigation for a 
convection-diffusion type problem is under development [22]. By using a very sophisticated 
asymptotic expansion of Han et al. [1] and a technique we used in [2], we prove that  the bilinear 
FEM on a Shishkin mesh achieves almost second-order uniform convergence rate in L2-norm. 
Numerical results confirm our theoretical analysis. 

The  organization of this paper is as follows. In Section 2, we present the Butuzov asymptotic 
expansion [1,23,24] for the solution u of (1),(2). In Section 3, we develop the derivative estimates 
for u. Then in Section 4, we provide our FEM based on a Shishkin mesh. In Section 5, we prove 
tha t  our FEM achieves the uniform convergence rate in both cases. Finally numerical results are 
provided and discussed in Section 6. 

Through this paper we shall use C, sometimes subscripted, to denote a generic positive constant 
tha t  is independent of both e and the mesh. 

2 .  T H E  A S Y M P T O T I C  E X P A N S I O N  

In this section, we describe the Butuzov asymptotic expansion [1,23,24]. This section is based 
mostly on Han et al. [1]. Here we use D'nu(x,  y) to denote the generic derivative of order m of u. 

We start  with the "outer expansion". Let Uo ( X, y) = f ( x, y ) / a( x, y ) , ul  ( x, y) -- 0 and ui ( x, y) -- 
Au i_2(x ,  y ) /a (x ,  y) for i > 2. Hence, ui = 0 for i odd and 

LEu~ = --c2/kui +/ku~_2, i = 2 , 4 , . . . ,  
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w h e r e / k  is the  Laplac ian  opera tor .  Let  

2n 

U2n(X, y) = X]  g'~'(~' y)" 
i----0 

Since u - U2n is not  small  on 0 ~ ,  we have to  introduce the  b o u n d a r y  layer funct ions to  correct  
the  d i sc repancy  between the  b o u n d a r y  d a t a  and the  b o u n d a r y  values of  the  reduced p rob lem 
near  the  four b o u n d a r y  sides. Hart et al. [1, pp. 396-397] cons t ruc ted  the  following b o u n d a r y  

layer functions: 

2n 
V2n(x,~) = Ze iv i ( x ,~?) ,  a t  side y = 0, where  ~ = 

y 

i----0 
2n 

W2n(~,y) = Y~e~wi(~,y) ,  at  side x -- 0, where  ~ = 
z_ 

i=0 

V2n (x ,~)  = ~-~e%~(x,-@), at  side y -- 1, where  ~ = ~ ,  

2n 
W2n (~,y)  = Z e 'w ,  ~ , y ) ,  a t  side x = 1, where  ~ = (1 - x) 

i=0 £ 

Since the  remainder ,  u - U2n - V2n - W2n - V2n - W2n, is not  small  near  the  four vert ices 
of  f~, H a n  et al. [1, pp. 397-398] in t roduced the  following corner  layer funct ions to  correct  this 
d i sc repancy  in the  b o u n d a r y  d a t a  near  the  four corners: 

2n 
Z~n(~,~?) = ~-~¢~z1. l¢r;), at  corner (0,0),  where ~ -- x ,  7/_- y_ 

i=o 
2n 

Z~n ~ ,  ~?) ~ eiz? ~ , , )  at  corner (1,0),  where  ~ = (1 - x) y = z _ ~  , , ~ ,  ~ =  - 
i----0 g ' 

2. (I - u) Z3n (~'~) =V'~iz3(~,~),x.., ~ a t  corner (0,1),  where ~ = x ,  ~ = ~ , ¢  
i=0 
2n 

Z¢n ~ ,  7) %--" eiz 4. ~ ,  ~) ,  at  corner (1, 1), where  ~ -- (1 - x) (1 - y) 
i=0 ~ c 

Also t hey  showed the  following results. 

LEMMA 2.1. (See [1, (2.6c) (2.9c)].) For the  boundary layer fimctions defined above, we have  

ID~V2,(x ,  V)I <- Vine -~ ' ,  m = O, 1 , . . . ,  

[De~W2n(~,y)l < Vine -~e, m = O, 1 , . . . ,  

ID~V2n(  x, ~;)l -< Cm e-a~, m = O, 1 , . . . ,  

, 

[z~,,(~,,~) <Ce-"(~+,), re=o,  1,... ,  

Iz;.ff,,) <_Ce-°a+'), 
[ z ~  (~,~) < c e  -~(~+'), m = o, 1 , . . . ,  

[ Z 2 ~ . ~ , ~ )  <_Ce -'~(~+'I), r e = O ,  1 , . . . .  
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THEOREM 2.1. (See [I, Theorem 21].) Let u solve (1),(2). There/s  a constant C ,  > 0 that  is 
independent of e such that 

IR2.(x, y)l -< C,,s 2"+~, 

where Rg.n = u - u2n denote the remainder in the asymptotic expansion 

4 

~2. = u2. + v2. + w2. +V2. +W~. + )-~ zL. 
/=I 

3.  D E R I V A T I V E  E S T I M A T E S  
O F  T H E  S O L U T I O N  

In this section, we will obtain some derivative estimates for the solution of (1),(2). We assume 
the following compatibility conditions [5,15]: 

f(0,0)  -- f (0,1)  = f(1,0)  -- f(1,  1) = 0 

which ensure that  the solution of (1),(2) u(x ,y)  E ca (~)  N C2(~), where ~ = f l O0 ~ .  Such com- 
patibility conditions are necessary for the point-wise derivative estimates of the solution [2,15,25]. 
Here we will make repeated use of the following weak maximum principle. 

THEOREM 3.1. For any functions w(x ,y )  E C2(~) N C°(~),  i f  w >_ 0 on O~ and Lew >_ 0 on ~2, 
then w >_ 0 on 12. 

PROOF. It can be proved easily by contradiction, cf. Gilberg et al. [26, Theorem 3.1]. 

By choosing the barrier functions [2,15,25] properly, we can obtain the following estimates for 
the solution u of (1),(2). 

LEMMA 3.1. 

(I) I~(x, Y)l --< C(1 - e-aX/e), on ~,  
(II) lu(x,y)l <_ C(1 - e-'~O-~')/~), on ~, 

(III) lu(x,y)l <_ C(1 - e-aV/*), on ~ ,  
(IV) lu(x,v)l <_ C(1 - e-aCl-y)/e), on ~. 

PROOF. 

(I) Use the barrier function ¢(x, y) = C(1 - e-aX/e), then we have 

L~(~±~)=C~2e-°~/~ +oC(1-e-° ' /0  ~ S, 

: o1 i) ÷ ± :. 

Note that  

( o , - a )  _> o. 

Hence, 

L~(¢ 4- u) > Cc~ 2 ± f > 0, for C sufficiently large, 

then from (¢ =t= u)ion > 0 and Theorem 3.1 concludes our proof. 
(II) Use the barrier function ¢(x, y) = C(1 - e-aO-x)/~). 

(III) Use the barrier function ¢(x, y) = C(1 - e-~U/e). 
(IV) Use the barrier function ¢(x, y) = C(1 - e-a(1-v)/~). 
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LEMMA 3.2. 

(I) b~(x ,y) l  < Ce -1, on 0a ,  
(II) lu~(x,y)[ <_ Ce -1, on Ofl. 

PROOF. 

(I) By Lemma 3.1 , we have 

lu~(0, y ) [ =  lim u ( x , y ) - u ( O , y ) [ <  lim I u ( x ' y ) - u ( O ' y ) l  
x- . .*O+ X - -  x---*O+ X 

c ( 1 - e  -~x/~) c~  
< lim = < Cs -1. 
- -  x - * 0  + X 

By Lemma 3.1(II), we can get the estimate for ux(1,y) in a similar way. 
Differentiating the given boundary conditions u(x, y) -- 0 at y = 0 and y = 1 with 

respect to x gives us ux(x, O) = ux(x, 1) = 0, from which finishes our proof. 
(II) Use the similar proof as (I) by Lemma 3.1(III) and (IV). 

LEMMA 3.3. 

(I) lux(x,y)[ <_ C (i + e - i e  -ax/e + e - l e - a ( l - x ) / e ) ,  on "~, 
(II) ]uy(x,Y)l <_ C (I + e - l e  -a~/~ + e- ie -~( i -Y) /e)  , on ~.  

PROOF. 

(I) Consider the barrier function ¢(x, y) = C(1 + e-ie-C'x/e + ~-le-a(i-x) /e) ,  then we have 

L~(~ ± ~ )  > - . ' c  (~-'e-o~/" + ~-le-°(1-~)J ") 

+~C (i  + ~-1~-°~/~ + ~-~e-°('-~>/~) i(S~ - a~.) 
>_ aC i (fz - axu) >_ O, for C sufficiently large, 

and note that  (¢ 4- ux)lon >_ O, from which concludes our proof of (1). 
(II) To prove (II), use the barrier function ¢(x ,y)  = C(1 + e- l e  -'~y/e + s-le-'~(1-W/E). 

LEMMA 3.4. 

(I) [uxx(x,y)l <_ Ce -2, on 0f~, 
(II) lu~(x,y) l  <_ Ce -2, on 0f~. 

PROOF. 

(I) Due to the boundary conditions u(x, y) = 0 at y = 0 and y = 1, we have uxx = 0 at y = 0 
and y = 1. By setting x = 0, 1 in (1) and using the fact that  u = uvv = 0 on the sides of 
x = 0 and x = 1, we have uxx = 0 at x = 0 and x = 1. 

(II) Use a similar proof as in (I). 

LEMMA 3.5. 

(I) lu=(x,v)l _< c ( i  +E-%-~/• +s-%-~o-~)/'), one, 
(II) [uu~,(x, y)] _< C (1 + e-~e - ~ / ~  + e -2e-~( i -~) /~) ,  on ~.  

PROOF. 

(I) Use the barrier function ¢(x, y) = C(1 + e -2e  - ~ / ~  + e-2e-~(i-~)/~) ,  then 

L~ (~ ± ~ )  > -~c (~-'e-°~/~ + ~-~e-°(~-~)/~) 

+ oc (~ + ~-~e-°~/~ + ~-~e-°(1-~>/~) ~ (S~ - ~ , ,  - 2 o ~ )  
>_ aC :t: (fxx - a=:u - 2axux) >_ O, for C sufficiently large, 

then from (¢ :k ux~)[on >_ 0 and Theorem 3.1 concludes our proof. 
(II) Use the barrier function ¢(x, y) = C(1 + e-2e  -=x/e + e-2e-=(1-~)/e).  
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4 .  F I N I T E  E L E M E N T  M E T H O D  

O N  S H I S H K I N  M E S H  

To cons t ruc t  a Shishkin mesh, we assume tha t  the positive integers Nx and N u are divisible 
by 4, where Nx, Nu denote  the  number  of mesh points in the x- and y-directions, respectively. 
In x-direction,  we can const ruct  the  Shishkin mesh by dividing the interval [0, 1] into the  subin- 
tervals 

[0, ax], [a~, 1 - ax], [1 - ax, 11. 

Uniform meshes are then  used on each subinterval,  with N x / 4  points on each of  [0, ax] and 
[1 - ax, 1], and N x / 2  points on lax, 1 - ax]. Here, crx is defined by a~ = min{1/4,  2 c r i e l n N x } .  
More explicitly, we have 

0 -.~ X 0 ~ X 1 <~ • "" ~ Xio <~ • "" <~ X N x _ i o  ~ "" • <~ X N x  .~- 1, 

with io = N x / 4 ,  Xio = ax,  XNx-io = 1 -- ax,  and 

hi = 4 a x N ~  1, f o r i = l , . . - , i 0 ,  N x  - io + l , . . .  , N x ,  

hi = 2(1 - 2 a x ) N x  1, for i = i0 -t- 1 , . . .  , Nx - i0, 

where hi ~ s i  - x i - 1 .  

In the  y-direction,  we follow the same way above by dividing the interval [0, 1] into the  subin- 
tervals 

[0, au], [au, 1 - au], [1 - au, 1]. 

Uniform meshes are then  used on each subinterval,  with N y / 4  points on each of [0, ay] and 
[1 - a  v, 1], and N y / 2  points on [ay, 1 - a u ] .  Here ay is defined by cru = min{1/4 ,  2 a - l ¢ l n N y } .  
More  explicitly, we have 

0 = Yo < Yl < "'" < YJo < "'" < YN~-jo < "'" < YN~ = 1, 

wi th  jo  = N y / 4 ,  Yjo = ay,  Yg~-jo = 1 -- au, and 

kj  = 4 ~ y N ~  1, f o r j = l , . . . , j 0 ,  N y - j o +  l , . . . , N ~ ,  

kj = 2(1 - 2 a u ) N ~  t ,  for j = jo + 1 , . . . ,  N u - Jo, 

where kj = yj  - y j _  1. 

We shall assume tha t  

a~ = 2 a - l e l n N x ,  a~ = 2 a - l e l n N y .  

Otherwise  e _> max(c~/8 In N~, a / 8  In Nu) , which is not  a singularly pe r tu rbed  problem. Then  the  
problem can be analyzed in the classical way, which is not  our interest here. 

Let  Ii = [ x i - 1 ,  x i ] ,  I = [0, 1], ~ = I i x I ,  h = m a x l < i < g ,  hi , K j  = [ Y j - 1 ,  Y j ] ,  t ( j  = I x K j ,  

k = maxl<_j<_N ~ k j  and [[ • [[c~ be the  L °° norm. We will use different subscripts  to  distinguish 
the  norm on the corresponding subdomain.  

T h e  weak formulat ion of (1) is: find u E H g ( ~ )  such tha t  

B ( u , v )  - ( e2u~ ,vz )  + ( O u u , v u )  + (au, v) = ( f , v ) ,  V v  e H i ( a ) ,  (3) 

where (., .) denote  the usual L2(~)  inner product  and Hol(~) is the usual Sobolev space [27-30]. 
Denote  the  weighted energy norm 

IIIvlll = {~211v=ll~ + c211v~ll 2 + I lvll~} ~/~ , Vv e g J ( ~ ) ,  

where H" II denote  the usual L2-norm. 
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Note that  

B(v, v) = e211vxl[ 2 + ~211v~ll~ + (av, v) 

> min (1,~ 2) (~2Jlvxl] 2 + g2HVyll 2 q-]l?)ll 2) 

> rain (1,~ 2) IIIvlJl 2 

and by Cauchy-Schwarz inequality 

U(v,w) < ~211v~ll IIwxll +6211v~llllw~ll + ( max a~ IIvll IIwll 
- \(~,~)~ri / 

< IIIvlll IIIwlll + IIIvlll IIIwlll + ( max a~ IIIvlll IIIwlll 

= (2 + (x,y)~nmax a~/IIIvlll IIIwlll. 

Note that  the mapping v --* (f, v) is a bounded functional on H~. Combining this fact with the 
above two inequalities, the Lax-Milgram Lemma [27-29] tells us that  (3) has a unique solution 
u(x,y)  in Hd(f~ ). 

Let Sh(f~) be the ordinary bilinear finite element space [31]. We seek the finite element solution 
u h 6 Sh such that  

where ~ mad f denote some piecewise polynomial approximation of a and f ,  respectively, such 
that  

I1(~- a)lloo,. < c (h p + kP), (5) 

and 

l i f t -  s) I1 ,. -< C(h  (6) 

where p is the approximation order. 
~-~N= ~-,N u 

Let Hw = z-~i=0 z.~j=0 wijli(x)lj(y) be the standard bilinear interpolate of w, where I-Ix and 1-1 u 
are the interpolates in x- and y-directions, respectively. Here li(x) is the well-known "hat" 
function [27,31]. 

Let us recall some results in [31] we will use in the next section. 

LEMMA 4.1. (See [31, Theorem 2.1].) Hw = Hxi,i~w = 1-lui,ixw. 

LEMMA 4.2. (See [31, Theorem 2.6].) IIw - H I ~ w l l o o , h  < a/8h~llw~l[oo,i,. 

LEMMA 4.3. (See [31, Lemma 2.1].) 

Ilrl~ull~,h _< m~(lu(x,-x,  y)l, lu(z~, y)l), 

Ilnxull~,. _< I1~11~,.. 

The same results in Lemmas 4.2 and 4.3 hold true for interpolate 1-I v in y-direction. 

5. M A I N  R E S U L T S  

Let us first prove some error estimates for the solution u of (1),(2). 
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LEMMA 5.1. For the solution u of(I),(2) and any integer n > O, we have 

(I) [[u - IIxu[[m,i, < C (N;21n2Nx .{_ ¢2n+1) , V /  = 1, . . .  ,Nx, (7) 

(II) []u - IIyu[loo,k ~ < C (Ny  2 In 2 Yu + e2n+l),  Vj  = 1 , . . . ,  Nu. (8) 

PROOF. First, for i = 1 , . . . ,  i0, Nx - i0 + 1 , . . . ,  Nx, by Lemma 3.5 and Lemma 4.2, we have 

II,, - rI~,,lloos, _< ch,~llu~lfoos, < c~,~ m ~  (1 + ~-~e-°x/~ + ~-~e-°(~-~/~)  
- -  X E I I  

< Ch~ (1 + 6 -2) < CN22 In 2 Nx, 

since hi = 4ax/Nx in this case. Hence (7) is true in this case. 
Second, for i = 4o + 1 , . . . ,  Nx - i0, in this case x • [ax, 1 - az]. Use Theorem 2.1 for n _> 0, 

we can write Ilxu in the form 

_ 

Hxu = HxU2n + IIxV2n + HxW2n + II~V2n + IIxW2n + l-Ix n + IIxR~n, 

- -  H 4 where HxU2n, HxV2n, HxW2n, HxV2n, IIzW2m x(Y~4=l Z~2n), and H~R2n denote the linear 
interpolation in x-direction to U2n, V2n, W2n, V2n, W2n, ~4= 1 Z~ n, and R2n, respectively. 

Note that  U2n(x, y) = Y~2i~= o eiui(x, y) and ui(x, y) is independent of e, we have 

[[g2, - H~U2,[[~,I, < Ch~[[(U2,)xx[[oo,i , <_ CN22, 

where in the last step we use the fact that  N~- 1 _< hi _< 2N~- 1 for i -- i0 + 1 , . . . ,  Nx - io. 
By Lemma 2.1 and Lemma 4.3, 

V2n (x ,  ( 1 - y , )  - II~V~.n (x,  ( I - y ) )  7 ~ oo,i, <- Ch2 II ('-V2n)z:~[l°°'/' <: CN[2'  

< Ce-~X,-ll e < Ce-~a.I ~ = CN22, 

< Ce-~O-~,)l • <_ C e - ~ . / ~  = CN22, 

Similarly by Lemma 2.1 and Lemma 4.3, we have 

X X 

<_ C e - ~ / ~  = CN2 ~, 

-x) < (l-x) v 

< Ce-~(1-x,)/e < Ce-a~.l  ~ = CN22, 
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e e ] II~,/, e o~,£ 

<_ Ce-~X,- , / •  <_ C e - ~ , l  ~ = C N 2  2, 

< Ce-~Cl-x,)/~ < C e - ~ ' - I  e = C N [  2, 

and 
IIR2n(x,Y) -IlxR2n(x,Y)lloa,i l  <- 2[[R2n[[oo,i~ ~- Ce 2n+l, 

which concludes the proof of (I). 

Similarly, we can prove (II) in the same way by symmetry. 
Then we have the following lemma. 

LEMMA 5.2. For the solution u of (1),(2) and any integer n > O, we have 

HU -- Hu[[oo,~ ~ C (N~ -2 In 2 Nx + Ny "2 In 2 Ny + e2n+l). 

PROOF. Using Lemmas 4.1, 4.3, and 5.1, we have 

Ilu - nullo~,a < Ilu - n~ull~,a + IIn~(u - n~u)lloo,a (9) 

< Ilu - n~ul loo ,n  + Ilu - n ~ u l l ~ , a  (10)  

- max I lu- n~ullo~,kj (11) <_ max  Ilu nxull~d, + ,<j<_N~ l<i<_N~ 

< C (N~ -2 In 2 Nx + N~  2 In 2 Ny + e2n+l). (12) 

THEOREM 5.1. Let Uh be the finite element solution of (4) and u be the solution of (1),(2). 
Assume ~ and f satisfy (5),(6), then for any integer n >_ O, we have 

I[u - uh[I < C(1 + eNx + eNy) (N~ -2 In 2 Nx + N y  2 in 2 Ny + e2,~+1) + C (h p 4- kP). 

PROOF. Note that  

c l l  I I n -  - ,-,h I I I <_ (n , ,  - ,,", n u  - ,,") ( 1 3 )  

= B (IIu - u, Hu - u h) + B (u - uh,I Iu  - uh) .  (14) 

Let X = IIu - u h, then from (4) we have 

( n u  - ~,  n u  - ~h)  = ~ 2 ( ( n ~  _ u)~ ,  x~)  + ~ ( ( n ~  - u)~,  x~)  + ( ~ ( n ~  - ~) ,  x ) .  (15) 

Integrating by parts, we obtain 

/?/? e2((IIu - u)x, Xx) = E e~(nu - u)zxx  dx dy 
I<_i<_N~,I<j<_N~ i-1 j-1 

[ ~ e2 (flu - )l==xi_l x= dy 
I<i<N~,I<j<N~ . 'yj-1 

< ~ - [ ~  Icx~l dy" ~ l l n u  - u l l ~ , a  
I<i<N~,I<_j<_N~ .Syj_l 

= Y~ lex~l dy" e l l r l u -  ull~,a 
l<_i<N, 

Io Io ' = ~ lex=l dyd:~, e l lHu  - ulloo,a,  since lex~l  i n d e p e n d e n t  of x, 

£/01 = e N x l l n u  - u l lo~ ,n  • k x ~ l  dyd~, 

< CeNx (N~ in 2 N= + N~ In 2 Nv + e 2n+') IIeX~ II, by Lemma 5.2. 
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Similarly, we have 

e2((IIu - u)~, Xu) <- C e N ,  (N~ In 2 Nx + N~ In 2 N ,  + ~2,+1) IleXvll. (16) 

Also note tha t  

(g(YlU -- U), X) -< CHa]]oo,nll 1-lu - ull HXI] ~ C][nu - uHc~.f~llxH (17) 

<C(N;21n2Nx+NyZln2Nu+~2"+l) llnu-uhl[, ( l S )  

where in the last step we used Lemma 5.2. On the other hand, 

B ( u -  ~ h , n ~ -  uh) = (B  - B ) ( u , n ~ -  ~ h ) + S  ( ~ , n ~ -  u h ) - B  ( ~ h , n ~ -  ~ h) (19) 

= ( ( ~ -  a )u ,  n u  - uh)  + ( f  -- 7 , m ,  -- ,~h) (20) 

c (ll - oll .o + Ily' - 71#~ ,~ ) I In~  - ~ l l .  (21) 

Using (5), (6), (13)-(21), and Lemma 4.2, we have 

IIInu-~111 < c(1 + ~Nz + GNu)(N~-2 ln2 Nx + N~-2 In2 N~ + e 2n+1) + C (h p + kP) . 

Therefore, combining this with Lemma 4.2, we obtain 

[l~, - ~hll  _ Ilu - nu l l  + ] [ n u  - d ' l [  _< I1~ - n ~ l l ~ , , ~  + IIIn~ - u~lll  (22) 
<c(1 +~Nx +6N~) (N~21n2N:+g~21n~N~+~ 2"+1) + C(h~ + aP) (23)  

which concludes our proof. 

Since we are considering singularly perturbed problems, the parameter s is usually very small. 
Without  loss of generality, we can assume e _< max(N~ q ,  N~-I). Then we obtain the following 
quasi-optimal uniform convergence result. 

COROLLARY. Let Uh be the finite element solution of (9) and u be the solution of  (1),(2). Let "5 
and f be the bilineax interpolation of  a and f ,  respectively. Then we have 

II~,- ~,"11-< c (N~-2 In z Nx + N~-2 In 2 N~).  

PROOF. Since ~ and f are the bilinear interpolates of a and f ,  respectively, we have p = 2 
in (5),(6). We can choose n large enough such that  e 2n+x <_ m a x ( N [  2 In 2 Nz, N~ -2 In 2 Nu) is 
satisfied. Using Theorem 5.1 concludes our proof. 

REMARK 5.1. When f depends on e and satisfies the assumptions in [32, p. 128], we can see 
that  the above results still hold true by carrying out a similar proof. 

Table 1. Errors in L2-norm. 

N 

e 12 24 48 96 
1.0D--02 4.08804D-02 1.13088D-02 2.48833D-03 4.14854D-04 
1.0D-03 5.01689D-02 1.68489D-02 5.59478D-03 1.79468D-03 
1.0D-04 5.12377D-02 1.75666D-02 6.07620D-03 2.10844D-03 
1.0D-05 5.13461D-02 1.76404D-02 6.12728D-03 2.14388D-03 
1.0D-06 5.13569D-02 1.76478D-02 6.13242D-03 2.14747D-03 
1.0D-07 5.13580D-02 1.76486D-02 6.13293D-03 2.14783D-03 
1.0D-08 5.13581D-02 1.76487D-02 6.13298D-03 2.14787D-03 

N -2 In 2 N 4.29D-02 1.75D-02 6.5D-03 2.3D-03 



Reaction-Diffusion Type 67 

o.qm,.1 
O~ 1 

0.6 0.8 0.6 0~8 
0.6 0.4 0.6 

0,4 0.4 0.4 
0.2 0.2 0.2 0.2 

0 0 0 0 

(a) N = 2 4 .  (b) N = 4 8 .  

Figure 1. Computed FEM solution for e = 1.0D - 03. 

1.2~ 1,2. 

o. mw. - 
0.8 1 

0.6 0.8 0.6 0.8 
0.6 0.4 0.6 

0.4 0.4 0.4 
0.2 0.2 0.2 0.2 

0 0 0 0 

(a) N = 24. (b) N = 48. 

Figure 2. Computed FEM solution for e = 1.0D - 05. 

0.8 1 O~ 1 
0.6 0.8 0.6 0.8 

0.6 0.4 0.6 
0.4 0.4 0.4 

0.2 0.2 0.2 0.2 
O 0  O 0  

(a) N =  24. (b) N =  48. 

Figure 3. Computed FEM solution for e = 1.0D - 07. 

6. N U M E R I C A L  R E S U L T S  

T o  see  h o w  o u r  m e t h o d  p e r f o r m s ,  we t e s t e d  h e r e  t h e  e x a m p l e  p r o b l e m  (1 ) , ( 2 )  w h e r e  a = 2 

a n d  [ is c h o s e n  s u c h  t h a t  t h e  s o l u t i o n  o f  (1 ) , (2 )  is 
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-v m 

0.8 1 0.8 
0.8 O~ OJ 0.8 

o.s o.~ 0.6 
0.4 0,4 0.4 

0.2 0.2 0.2 O~ 
O 0  O 0  

(a) N=24 .  (b) N=48 .  

Figure 4. Pointw~e error uh - u ~ r  6 = 1 . 0 D  - 03. 
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Ca) N = 24. (b) N = 48. 

F i g u r e  5. P o i n t w i s e  error  u h  - -  u for • = 1 . 0 D  - 05. 
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(a)  N : 24. (b) N = 48. 

F i g u r e  6. P o i n t w i s e  error  uh  - u for ~ = 1 . 0 D  - 07.  

). l+e-V  )" 
This u has the typical boundary layer behaviour. Since the exact solution is known, we can 
accurately measure the solution errors. We choose a bilinear interpolation 1-If  o f  f a s  7 and 
N= = N~ = N.  All our computations are carried on IBM RS/6000 in double precision. The 
numerical results of our experiments for values of ~ varying in the interval 10 - s -  10 -2 and various 
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mesh resolutiones N E [12, 96] are shown in Table 1. They  display an uniform convergence (i.e., 
independent of e) in L2-norm. 

The  computed solutions Uh were plotted in Figures 1-3 for E = 10 -3, 10 -6, 10 -7,  and N = 
24, 48. The  pointwise errors were plotted in Figures 4-6 for the same 6 and N. From these figures, 
we see tha t  our method solves this type of problem quite well. The boundary layers are much 
sharper and no oscillations are observed near the boundary layers. These phenomena were also 
observed by Madden et al. [20] for FEM on Shishkin meshes for convection-diffusion problems. 
But  they did not present any theoretical analysis. 

Table 2. Convergence rates R ~  in L2-norm. 

N 

e 12 24 48 

1.0D-02 2.8741 3.0533 3.3901 

1.0D-03 2.4403 2.2234 2.1516 

1.0D-04 2.3942 2.1410 2.0029 

1.0D-05 2.3895 2.1326 1.9872 

1.0D-06 2.3891 2.1317 1.9857 

1.0D-07 2.3890 2.1317 1.9855 

1.0D-08 2.3890 2.1316 1.9855 

To see more accurately the convergence rate, let e N be the L~-norm between the exact solution 
u(x, y) and the computed solution uh(x, y). The computed convergence rate can be obtained by 

(lne  -lne ) 
Re  N = In (ln(2N)/2 In N)" 

The results are given in Table 2. From Table 2, we see that  uh(x, y) approximates u(x, y) with 
an accuracy order of O(N -2 In 2 N) in L2-norm, which is the same as obtained by our theoretical 
analysis. 
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