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A b s t r a c t - - I n  this paper, we construct a bilinear finite element method based on a special piecewise 
uniform mesh for solving a quasi-linear singularly perturbed elliptic problem in two space dimensions. 
A quasi-optimal global uniform convergence rate O(N~ 2 In 2 N= + N~ "2 In 2 Nv) was obtained, which 
is independent of the perturbation parameter. Here N= and N~ are the number of elements in the 
x-and y-directions, respectively. (~) 1999 Elsevier Science Ltd. All rights reserved. 

K e y ' w o r d s - - F i n i t e  element method, Singular perturbation, Uniformly convergent. 

1. I N T R O D U C T I O N  

Singularly perturbed problems (SPP) appear in many branches of applied mathematics, for exam- 
ple, in fluid mechanics [1], chemical kinetics [2], biochemical kinetics [3, Chapter 10], and system 
control  [2,4,5], etc. Such problems arise natura l ly  when there  are sudden t ransi t ions  f rom certain 

physical  characteris t ics  to  others.  These t ransi t ions can occur  either inside a very  th in  layer near 

the  b o u n d a r y  or inside the  problem domain.  Such a thin layer is called the  b o u n d a r y  layer or 
internal  layer. These layers make the  problem very difficult to  solve bo th  analyt ical ly  [2,6,7] and 

numerical ly  [8-11]. 
While  a sizable amoun t  of  work has been carried out  using methods,  such as finite difference 

methods [8,12], spectral methods [13-15], finite volume methods [9,16], and finite element methods 
(FEM)  [10,17-19], to  name  but  a few, a large number  of  unsolved problems still remain  t o  be 
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addressed. For example, by using the standard bilinear FEM to solve the simple reaction-diffusion 
problem 

- e 2 / k u + u = f ( x , y ) ,  i n ~ C _ R  2, u[of~=0, 

where 0 < e << 1 is a perturbation parameter, we have the following global error estimates: 

Ilu - Uhll~ <_ C (¢ + h) hllUllH2(~), 

where [[u[[e = (e2[[Vu[[22(n) + [[u[[22(~)) 1/2. By simple calculation, we have [[U[[H2(n) _< 

Ce-2[[f[[L2(n) [20, Lemma 2.1], hence, to ensure global convergence, the mesh size h must be in 
the order of o(e). However, e can often be as small as 10 -s ,  in which case, h must be of order 
o(10-s), which is very impractical. Hence, much research work focused only on local error esti- 
mates [21,22]. However, the global uniformly convergent (GUC) method is still very fascinating, 
since the error estimate is independent of the perturbation parameter e. In the following, we will 
focus on GUC schemes obtained by FEM. As for other discretization methods, details can be 
found in the above-mentioned references. 

It is well known that  a global uniform convergence can be achieved by the exponential fitted 
FEM [18,23]. However, they are complicated to use and have a very low convergence rate, e.g., 
which is [[u - Uh[[e <_ ch 1/2 [18,20] for the convection-diffusion model 

- e  A u + b. Vu  + cu = f ,  i n ~ C _ R  2, u[oQ = O. 

Another type of uniform convergence was achieved for some very simple models by using hp 
FEM [24]. This method is very complicated and it is now only applied for the one space dimen- 
sional reaction-diffusion model [24]. Recently, almost optimal uniform convergence results were 
achieved by FEM on some specially designed piecewise uniform meshes [25-27], a method which 
was introduced by Shishkin [28]. This type of mesh specifies a fine uniform mesh inside part, but 
not all of the boundary layer and coarse uniform mesh elsewhere a priori, yet it still yields global 
convergence that  is independent of e. Such a mesh is very easy to implement, but the aforemen- 
tioned studies were restricted only to one space dimensional problems until 1996 as evidenced 
by [24, p. 717]: "These meshes work weU for a wide range of one-dimensional problems. In two or 
more dimensions, however, the analysis of finite element methods on Shishkin meshes is an open 
question." Also, [10, p. 278]: "Finite element methods that use Shishkin meshes in two or more 
dimensions have not been explored in the literature." To our best knowledge, the only available 
analysis for two space dimensional problems by using FEM on such piecewise uniform meshes 
are [29,30] for the convection-diffusion type problem, [31] for the reaction-diffusion problem and 
[32] for the anisotropic model problem. 

In this paper, we will consider the following quasi-linear singularly perturbed elliptic problem: 

e 2 A u = F ( u , x , y ) ,  in f~ = (0,1) x (0, 1), (1.1) 

u = 0, on 0f~. (1.2) 

This problem was once discussed by Boglaev [33], where a nonlinear finite difference scheme was 
constructed. But the uniform convergence rate at the nodal points is only 0(N-1 /2 ) ,  where N 
is the total number of grid points. A similar problem was discussed in [20, p. 82], where only 
abstract error estimates were presented. Hereby by using the techniques developed in [29,31,32], 
we construct a bilinear FEM for solving the problem (1.1),(1.2) on a piecewise uniform mesh, 
where the quasi-optimal global uniform convergence 

][u - Uh[[L2(n) ~ C ( g ~  2 In 2 g~ + Y ~  2 In 2 Y~) 

is obtained. Here Uh denotes the FEM solution of (3.2), and Nx and Nu are the number of 
elements in the x- and y-directions, respectively. 
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The organization of this paper is as follows. In Section 2, we present the asymptotic expansion 
and the derivative estimates for the solution of (1.1),(1.2). Then a piecewise uniform mesh 
and a bilinear finite element scheme are constructed in Section 3. The quasi-optimal uniform 
convergence is proved in Section 4. Finally, an iterative scheme for solving the resulting nonlinear 
finite element system equations is presented in Section 5. 

Throughout the paper, C will denote a generic positive constant, which is independent of the 
mesh size and the perturbation parameter g. Also, we use the notation [[. [[oo,~ for the L °° norm 
on r,  and H" I] for the L 2 norm on f]. 

2. T H E  A S Y M P T O T I C  E X P A N S I O N  
A N D  D E R I V A T I V E  E S T I M A T E S  

The asymptotic expansion for the problem (1.1),(1.2) is based on the work of Denisov [34], 
where F was assumed to be dependent on e and in the form of A(u 2 + pu + q). For simplicity, 
hereby we assume F is independent of c. Also, the coefficients A, p, and q depend on x and y, and 
are assumed to be sufficiently smooth. Also, the following conditions are assumed [34, p. 1342]. 

(A1) The equation F(u ,x , y )  = 0 has a solution u = To(x,y) in ~/. 
(A2) The derivative of F satisfies m2 >_ Fu(u(x ,y) ,x ,y)  _> ml  > 0 in G. 

Under the above assumption, Denisov obtained the following. 

LEMMA 2.1. (See [34, p. 1349].) Denote the n th order asymptotic expansion 

Un (x,y,g) --= Z gk (Tk +1](kl' + ' ' '  -I-1](k4) -[- P(l'  -{- ' ' '  Jf" p(k4)) . (2.1) 
k=0 

Then we have 

where 

max lu (x, y,¢) - Un (x, y, ¢)[ = 0 (~n-{-1) , 
ri as e --* 0, (2.2) 

yI(1) _- 1](1)(x, ~7) , 77 -- Y, 

1](3) = 1](3) (x, rl.), 77. 1 - y 

p(~) _- p(~) ( ( ,n) ,  p(2) = p ( 2 )  ((,n,), 

x 1](2) = 1](2) (~, Y), ~ ---- --, 
g 

H(4) = 1](4) (~., y) ,  ~. _ 1 - x ,  
g 

p(3) __ p(3) ((,, n,), p(4) = p(4) ((,, n). 

The additional details for each term are presented in the following. 
Tk(x, y) is the regular part of the asymptotic form. It satisfies the following equations: 

F (To(x, y), x, y) = O, 

F u (T O(x, y), X, y) Tk(X, y) ~- "Gk (TO(X, y ) , . . . , T  k_l(x, y)) ,  k : 1 , 2 , . . . , n ,  

where the functions Gk depend on Tj(x, y), where j < k. 

The functions H(k 0 eliminate the discrepancies on the four sides of f~. H(01) satisfies: 

~2H(01) 
~?}-"----~ ~ F luo(x, 0) -~- 1](o 1) (x, ~}), x, 0 ) ,  

n~o~)(~, o) = - ~ o ( ~ , o ) ,  n~ol)(~, ~ )  = 0, 

from which the solution is defined uniquely, and has the estimate [34, (2.2)]: 

]n(ol)(x,,)] < Ce-°', (2.3) 

where ~ > 0 is a constant. 



200 J. L! AND I. M. NAVON 

H (1), k > 1, satisfies: 

Oy 2 

oo)  = 0, 

where ~r (1) depend on YI~ 1), where j < k. Also, H(1)(x, 7) have estimates of (2.3). 

The other boundary correction functions H(2), n(3) N(a) "'k , "'k , k > 0, are determined similarly. They 
all have estimates of the type (2.3). 

The functions p(i) eliminate the discrepancies near the four corners of f~, introduced by the " k  
H-functions. p(1) satisfies the following relation [34, p. 1344]: 

O2 o(1) O2 o(,) _ po(1)F, 
o5----- V- + on------ V 

P0 (1) (0, 7) = -w(7),  p(1) (~, 0) = -w(e) ,  

P0 (1) (~, 7) --* 0 as (¢ -{- 7) --* 0. 

Here P(1)E -- F(~0 -{- wl + w2 + p(i))  _ F(~0 + ~1) - F(~0 q- w2), where F(u) is a shorthand 

notation of F(u, 0, 0) and u0 = u0(0, 0), wl = H (1)C 0, 7) = w(7), w2 = YI (2) (~, 0) = w(~), and wit ) 
is a solution of the problem 

d2w 
- F (~o + w ) ,  w(0)  = - T o ,  w(c¢)  -- 0. (2.4) 

dt 2 

Also, Po(1)(~,7) is bounded by 
PO)(~,7 ) <_ Ce -a(¢+n). (2.5) 

The function p(1), k _> 1, satisfies the following: 

02p(1) (92p(1) 
0~2 + 072 "~ ru  ~UO +~dl "~-hg2 "~- " O1)] " kl) "~- hk P(- ~ P-( (. 

p(1)(0,7 ) = -H(kl)(0,7), PO)(~,0) = -H(2)(~, 0), 

P ( 1 ) ( ~ , 7  ) --* 0 as (~ ~- 7) -'* 0. 

The functions h (1) here depend on p(i),  where j < k. Also, the solution p(1) exists and has an 
estimate of the type (2.5). 

The other corner correction functions D(2) p(3) p(4), k > 0, are determined in the same way. *k , ' k  , k 
They all have estimates of the type (2.5). 

From Boglayev [33], we have the following estimates. 

LEMMA 2.2. (See [33, Lemma 1].) For the solution u(x, y) E C°(~)  N C2(~) of  the prob- 
lem (1.1),(1.2), we have 

max [u(x,y)[ < m l  I max [F(u(x,y),x,y)[. (2.6) 
(x,~)ei~i - (x,u)e~ 

LEMMA 2.3. (See [33, Lemma 2].) Let u(x, y) e C2(~) M Ca(~) be the solution of the prob- 
lem (1.1),(1.2). Then the derivatives of u satiMy the [ollowing error estimates: 

(I) lu~"(x'y)l < C (1 + ~ - " e - ~ / ~  + e-~e-~(~-~) /~) ,  on ~, 

(H) lu~-(x,Y)l _< C ( 1 +  ~ - " ~ - ~ / ~  + ~ - ~ e - ' ( i - ~ ) / ~ ) ,  on ~, 

where 0 < f~ < roll/2 and n = 1, 2. 
Even though a is not clearly stated in [34], it is not difficult to see from Denisov's proof and 

Boglayev's proof [33] that  a can be any constant such that 0 < a < m~/2 
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3.  T H E  M E S H  A N D  S C H E M E  

Since this problem has boundary layers located along all sides of the rectangle of 12, our 
piecewise uniform mesh can be constructed in the same way as we did for the linear problem [31]. 
Details can be found there. 

Assume that  the positive integers Nx and Ny are divisible by 4, where Nx and Ny denote the 
number of elements in the x- and y-directions, respectively. In the x-direction, we first divide the 
interval [0, 1] into the subintervals 

[0, ax], [ax, 1 - ax], [1 - ax, 1]. 

Uniform meshes are then used on each subinterval, with Nx/4 points on each of [0, ax] and 
[1 - a z ,  1], and Nx/2 points on [ax, 1 - a x ] ,  where ax = 2 a - l e l n N x .  Here, for simplicity, we 
assume tha t  ax _< 1/4, since we are considering SPP where ~ is very small. 

In the y-direction, we follow the same method described above by dividing the interval [0, 1] 
into the subintervals 

[0, ay], [au, 1 - au], [1 - a~, 1l. 

Uniform meshes are then used on each subinterval, with Ny/4 points on each of [0, au] and 
[1 - ay, 1], and Nv/2 points on [ay, 1 - av], where au = 2 a - l e l n N y .  

Let Ii = [ ~ - ~ , ~ d ,  Z = [0,1], i~ = Zi × L  a = ma~,<i<N, hi, KS = [YJ-a, YA, & = Z× g , ,  and 
k = maxl<s<N~ k s. Here hi = xi - xi-1 and k s = YS - YS-1- 

The weak formulation of (1.1),(1.2) is: find u E Hl(f~) such that  

e2 (Vu, Vv) + (F(u, x, y), v) = O, V v e H i (~), (3.1) 

where (., .) denote the usual L2(~) inner product and H~(~) is the usual Sobolev space. 

Let Sh(~) be the ordinary bilinear finite element space [35]. Let 

N~ N u 

i=o S=o 

be the standard bilinear interpolate of w, where Hx and Hy are the interpolants in the x- and 
y-directions respectively. Here li(x) is the so-called linear finite element function [35]. We seek 
the finite element solution Uh E Sh(~) such that  

~2 (VUh, VVh) + (F(uh, x, y), Vh) = O, VVh E Sh (~). (3.2) 

Let us recall some results in [35], which will be used in this paper. 

LEMMA 3.1. (See [35, Theorem 2.1].) Hw = HxHyw = HuHxw. 

1 2 LEMMA 3.2. (See [35, Theorem 2.6].) Hw - Hxwlloo,i~ <- -~hi IIw~xlloo,i,. 

LEMMA 3.3. (See [35, Lemma 2.1].) 

IIn~ullo~,i, < max ([u (xi-1, y) I, lu (xi, y)I) 
- -  y E l  

IIn~lloo,n _< Ilulloo,n. 

The results obtained in Lemmas 2.3 and 3.2 hold true for the interpolant H~ in the y-direction. 
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4. MAIN RESULTS 

Using the techniques developed in [29,31], we can obtain the following interpolation estimates. 

LEMMA 4.1. For a su~ciently smooth solution u of (1.1),(1.2) and any integer n >_ O, we have 

(I) [[u- Hzu[[oo,i ~ < C N[21n2 Nx + en+l + ekN~ 2 , Vi  = I , . . . ,N~: ,  
k=O I 

(II) Ilu- n~ull~,g~ < c N~ -2 In ~ N~ + e n+l + ¢kN~ 2 , V j  = 1 , . . . ,  N~. 

PROOF. For i = 1 . . . .  , i0, Nx - i0 + 1 , . . . ,  Nx, by Lemmas 2.3 and 3.2, we have 

Ilu - n~ull~,i ,  < ch~ Ilu~ll~,i,  < ch~ m~x (1 + ~-~e - ~ / ~  + ~-~e-~(1-x)/~) 
- -  - -  x E l l  \ 

< Ch 2 (1 + e -s )  < CN~-2 In 2 Nx, 

since hi = 4a~/Nx in this case. Hence, (I) is true in this case. 
For i = io + 1 , . . . ,  Nx - io, in which case [xi-1, xi] C [ax, 1 - ax]. We can write Hxu as 

n~ = n~v. + n~ (u - v~). (4.1) 

By Lemmas 3.3 and 2.1, we have 

II (u - u , )  - n ~  (u - u=)Iloo, i ,  < 2llu - u~llood,  < c e " + l  (4.2) 

In the following, we will estimate IIxUn by using the asymptotic expansion (2.1). Note that  
gk(x, y) are independent of Z, by Lemma 3.2, we have 

l l~k(x, y) - n~k(x, y)lloo,i, -< Oh~ l l (~k(~, y) )~ l loo, i ,  -< c g 2 2 ,  (4.3) 

where in the last step we used the fact that  

N~ -1 _< hi _< 2N~ -1, for i = i0 + 1 , . . . ,  Nx - i0. 

By the same arguments, we obtain 

n() )(~, n) - n~n(f (~, n) ~ , i ,  < CN[2 '  (4.4) 

n(k ~) (~, n , )  - n~n(k 3) (~, v . )  oo,i, < CN;2" (4.5) 

By Lemma 3.3, we have 

n~2)(¢' Y) - n*n(k")(¢' Y) oo,z, < 2tln~2)(¢' y)lloo,z, (4.6) 

<_ Ce - '~ ' - '  <_ Ce -c''*le = C N ~  2. (4.7) 

Similarly, we have 

H (4) (~., y) - II~II(4)k (~*, Y) c~,i, - < CN;2" (4.8) 

By Lemma 3.3, we have 

nk(1)(¢, 7}) (I) z/) oo,i, I)(~, I/) oo i, - n . P ~  (~, < 2 Pk ( (4.9) 

< Ce - '~ ' - '  <_ Ce -aa=le = C N ;  2. (4.10) 
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Using the same reasoning, we can obtain 

p(2) (~,7/.) - I IxP (2) (~,~.) oo,i, <- CN~2'  (4.11) 

p(3) (~.,~.) _ iixpk(3)(~., ~].) oo,i, -< C y ; 2 '  (4.12) 

p(4) (~.,7/) - IIzP(4)k (~*,~]) oo,i~ - < GNU2" (4.13) 

By combining the above inequalities, we have 

n 

[[Un - IIxVn[[oo,i, < C ~ ' e k Y  -2 (4.14) 
k=O 

which together with (4.2) concludes our proof. 
The proof of (II) can be carried out in the same way as (I). I 

Therefore, we have the following. 

LEMMA 4.2. For the solution u of (1.1),(1.2) and any integer n >_ O, we have 

Ilu - n u l l ~ , ~  _< c N~-21n2 Nx + N~-21n2N~ + e  T M  + ~-~e k (N~ -2 + N ~  -2) . 
k=0 

PROOF. By Lemmas 3.1, 3.2, and 4.1, we have the following. 

Ilu - n u l l ~ , a  < Ilu - n x u l l ~ , a  + Iln~ (u - n~u) i lo~ ,a  

_< Ilu - H~ulloo,n + Ilu - n~ul loo ,~  (4 .15)  

max ] [u -  H~u[[oo,R j (4.16) --< l<i<N~max [[U -- IIxu[[~, L + l<-j<-Nu 

<_c 21n~ N~ + g;21n~ N~ + ~+~ +r_~(Y2~ + N; ~ , (4.1~) 
k=0 

which concludes our proof. | 

THEOREM 4.3. Let Uh be the finite element solution of (3.2), and u be the analytic solution 
of (1.1),(1.2). Then we have 

Ilu- uhll < c (1 + ~N~ + ~/2N~ In -~/~ N~ + ~N~ + ~/~N~ In -~/~ N~) Ilu- null~,~. (4.1S) 

PROOF. By subtracting (3.2) from (3.1), we have 

e 2 (V (u - Uh), VVh) + ( F ( u , z , y )  - F (Uh,X,y) ,Vh) = O, VVh e Sh(~). (4.19) 

By the mean value theorem, we can rewrite (4.19) as 

~ ( v ( ~ - u ~ l , W ~ l + ( ~ . ( u - u ~ ) , ~ ) = o ,  v ~  e s~(a), (4.20/ 

where F~ denotes the value of the derivative Fu at some point 9u + (1 - 9)Uh, 0 < 9 < 1. 
From (4.20), we have 

(v (Ha- u~), w~) + ( ~  (n~- u~),~) ~2 (4.21) 

= ~ ' ( V ( n u - ~ ) , W ~ ) + ( ~ . ( H u - u ) , ~ ) ,  w ~ e S ~ ( a ) .  (4.22) 



204 J. LI AND I. M. NAVON 

By denoting X = Hu - ua, choosing Vh = X in (4.21), and using Assumption (A2), we can 
obtain 

Integrating by parts, we obtain 

e 2 ( (nu  - u)~,  x~) = s 2 ( n u -  % x= a x a y  
i - -1  j - - I  

= - u)[===,_, x=dy 

< ~ 2 ~,,F j ' I~x~l dr .  ~ l ln-  - uIicc,g2 
i,j Y J- 

' / ? i ?  
= I~x=l dydx. ¢ Ilnu - u l l~ , n ,  

E Xi -- Xi-1 i,j i-1 j-1 

where Y]~i,j is a short notation for El<i<g=, l<_ j<_gu  . 
Note that  

1 L = ~ L ~ J  

i,j xi -- Xi--1 i-1 j-1 

<N~ L I~x:ldydz+ N= is I~x:ldydz 
- , ¢ I n N =  2 

N= (meas ($2)) 1/2 Ilex=llL2(S2) < N= (meas (S1)) 1/2 Ilvax=IIL2(S,) + 

C N= (¢lnNx) 1/211~x=IIL~(s2) < N= 116x=llL,(S,) + ¢lnN= 

<_ c (N~ + ~-112N~ In -1/2 g=)II¢x~II,  

where $1 = lax, 1 - a=] × [0, 1] and $2 = ~\S1.  
Therefore we have, 

e 2 ( ( n u - u ) x , X x )  < C(eNx  +¢W2Nxln-ll2N=) I l n u -  ulloo,n Ilex=ll. (4.24) 

Similarly, we can obtain 

~2((Hu-u)y,Xy) ~C(~Ny -t-~'i~N~ln-li~N,,)llH~-ull=,~ll~x,,ll. (4.25) 
By Assumption (A2), we have 

(Fu" (IIu - u ) ,X)  -< m2 Ilnu - ullo~,n. Ilxll • (4.26) 

Combining the above inequalities, we have 

~2 IIV (flu - U h ) [ I  + Ilrlu - uhl[ (4.27) 

< C (1 + eNx + el/2N= In -1/2 N= + eN v + ¢1/2N~ In -1/2 Nu) IIIIu - ulloo,n, (4.28) 

which along with the triangular inequality completes our proof. II 

Since we consider here singularly perturbed problems, the parameter ¢ is usually very small. 
Under the assumption 

(A3) ~ _< max(N~2lnN=,N~21nNv), 

and letting n = 0 in the asymptotic expansion (2.1), we can easily obtain the following quasi- 
optimal global uniformly convergent result. 
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COROLLARY 4.4. Let Uh be the finite element solution of(3.2) and u be the solution of(1.1),(1.2). 

Then under Assumptions (A1), (A2), and (A3), we have 

I l u -  uhll _< C m In m Nx + N 21n m N,,) ,  

where the constant C is independent of  the perturbation parameter 6. 

5. F U R T H E R  D I S C U S S I O N  

To solve the nonlinear equation (3.2) efficiently, we consider hereby an iterative scheme [36, 

p. 59]: 

E 2 (V~t~ +1, VVh) q- (F  (u~,  x, y) ,Vh)  + )~ (U~ n+l -- U~,Vh) = O, VV h E Sh(~) ,  

where A > 0 i s  a parameter to be chosen later. 
Let z m+l = u ~  T1 - urn. By the mean value theorem, we have 

62(Vzm+l ,Vvh) - { - (F : .Zm,Vh) - l - ) t (gm+l - -g ra ,Vh)=O , V'l)h E Sh(~"~), (5.1) 

where .~u m denotes the value of Fu at some point 01u~ n + (1 m-1 - -  O1)U h , 0 <( 01 < 1. 
Let Vh = z m+l in (5.1), we have 

6 2 [l'~Zm+Ill2-'l'-.~ llzmTlll 2 - ' l ' - ( ( -Py-  ~ ) z m , z  mTl )  = O, (5.2) 

from which we have 

62 ]]Vzm+ll12 A c ~ llzrnTl]12 = ( (~ - Fum) zm, z rnT1) 

<_ sup A - Fu  n • l l z ~ + ' l l ,  itzmtl. 

(5.3) 

(5.4) 

By Assumption (A2), if we choose A = 2m2, then we have 

1 Ilzm+'ll itzmtt, (5.5) 

from which we see that  the functions u~ ,  m = 0, 1 , . . . ,  form a Cauchy sequence and converge to 
the finite element solution of (3.2). The uniqueness of the finite element solution of (3.2) can be 
proved in the same way as [36, p. 61]. 

A numerical experiment for the linear case (which is a special case of (1.1),(1.2)) was carried 
out in [31], which is consistent with our theoretical convergence rate (4.29). 

As Roos [27, Section 2.1.3] mentioned, "not much is known about Shishkin-type grids for 
nonlinear problems". This paper is the first to generalize our linear techniques [29,31] to nonlinear 
partial differential equations for such Shishkin-type grids. It is not difficult to see that  our 
methods can be generalized to more complicated nonlinear problems only if they have similar 
asymptotic expansions as (2.1). 
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