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1 Introduction

Uncertainty of various real phenomena has been for a long time a problem of
scientific endeavors. However, the notion of uncertainty has a broad meaning
and mathematically it can be performed in various ways. In general, we can
say that uncertainty in some situations occurs whenever information pertaining
to this situation is deficient. If uncertainty is interpreted as randomness then a
natural way of quantifying it is probability theory; the information pertaining
to random phenomena is then defined in terms of probability.

Information theory is relevant to data processing and statistical inference.
Fisher [27] was the first to give a technical definition to information in his work
on theory of estimation. He introducted then the concept of a measure of the
amount of information supplied by data about unknown parameters. Hence,
a relevant question is how information can we infer from a particular set of
observations about sampled phenomenon, in particular the information theory
is a tool for estimation of an unobserved quantity X through observations on
another quantity Y . Information theory or communication theory is concerned
with what is known as the information content of a message, which is the amount
of useful information contained within a message. Information theory was first
used by electrical engineers to design better telecommunication systems, but
now has a wide variety of applications. In such diverse areas as complexity
theory, networking analysis, financial mathematics and mathematical statistics.

It is useful to be able to quantify the amount of information provided by an
observation or by an observing system. In the development of remote-sounding
instruments, two popular measures of information content are entropy-reduction
and degrees of freedom for signal (see, for example Rodgers [33] Rabier et al.
[37]). The information theory has come to the notice of the data assimilation
community, where it has been used to calculate information content of various
observations. Information content of observations can potentially have many
applications, including planning measurement missions, designing observational
systems and defining targeted observations and data selection strategies. These
applications have been underutilized so far, and were mainly oriented towards
defining data selection strategies (e.g., Rabier et al. [37] and references therein).
Nevertheless, progress in data assimilation methods should foster applications
of information theory in many different areas.
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2 The models

2.1 The Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky (K-S) equation is an evolution equation in one space
dimension, with a Burgers nonlinearity, a fourth order dissipation term and a
second anti-dissipative term. It assumes the form

ut + µuxxxx + νuxx + uux = 0, (x, t) ∈ R× R+ u(x, 0) = u0(x), x ∈ R (1)

The K-S equation models pattern formations in different physical contexts
and is a paradigm of low-dimensional behavior in solutions to partial differential
equations. It arises as a model amplitude equation for inter-facial instabilities
in many physical contexts. It was originally derived by Kuramoto and Tsuzuki
([1], [2]) to model small thermal diffusive instabilities in laminar flame fronts in
two space dimensions. It has also been derived in the context of angular-phase
turbulence for a system of reaction-diffusion modeling the Belouzov-Zabotinskii
reaction in three space dimensions. Sivashinsky([3],[4])derived it independently
to model small thermal diffusive instabilities in laminar flame fronts. The equa-
tion also arises in modeling small perturbations from a reference Poiseuille flow
of a film layer on an inclined plane [5], while Babchin et al.[6] derived (1) as
a general mechanism modeling the nonlinear saturation of instabilities in flow
films as in the Rayleigh-Taylor-type instability.

The K-S equation is non-integrable, and no explicit solutions exist. It is
characterized by a second-order unstable diffusion term, responsible for an in-
stability at large scales,a fourth-order stabilizing viscosity term, which provides
damping at small scales; and a quadratic nonlinear coupling term which sta-
bilizes by transferring energy between large and small scales. This is readily
apparent in Fourier space, where one may write(1)with periodic boundary con-
dition as

dûk

dt
= (νk2 − µk4)ûk +

i

2

∑
k′∈Z

k′ûk′ ûk−k′ (2)

where

u(x, t) =
∑
k∈Z

ûk(t) exp(ikx), k = n
2π

L
, k′ = m

2π

L
, m, n ∈ Z, i =

√
−1,

2.2 Shallow-Water equations in spherical geometry

The shallow water equations are a set of hyperbolic partial differential equations
that describe the flow below a pressure surface in a fluid.
The equations are derived from depth-integrating the Navier-Stokes equations,
in the case where the horizontal length scale is much greater than the vertical
length scale. The shallow-water equations in spherical geometry are given by
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where V = u~i + v~j is the horizontal velocity vector ( with respect to the
surface of the sphere), gh is the free surface geopotential, h is the free surface
height, g is the gravity acceleration. f = 2Ω sin θ is the Coriolis parameter, Ω
is the angular velocity of the earth. θ denotes the angle of latitude, µ = sin θ is
the longitude. λ the longitude,and a is the radius of the earth.

One of the major advances in meteorology was the use by [Rossby 1939]
of the barotropic vorticity equation with the β -plane approximation to the
sphericity of the Earth, and the deduction of solutions reminiscent of some
large scale waves in the atmosphere. These solutions have become known as
Rossby waves. Haurwitz (1940) then produced the equivalent solution for the
sphere, now known as Rossby-Haurwitz waves (R-H waves). Rossby-Haurwitz
waves are steadily propagating solutions of the fully nondivergent barotropic
vorticity equation on a sphere first put forward by [Rossby 1939] and [Haurwitz
1940].

While the shallow water do not have corresponding analytic solutions they
are expected to evolve in a similar way as the above R-H equations which ex-
plains why they have been widely used to test shallow water numerical models
since the seminal paper of [Phillips 1959].

Following the research work of [Hoskins 1973] Rossby -Haurwitz waves with
zonal wave numbers less or equal to 5 are believed to be stable. This makes the
R-H zonal wave no 4 a suitable candidate for assessing accuracy of numerical
schemes as was evident from its being chosen as a test case by [Williamson et
al. 1992] and by a multitude of other authors.

It has been numerically shown that the R-H wave no 4 breaks down into more
turbulent behaviour after long term numerical integration as recently discovered
by [Thuburn and Li 2000].

The Rossby-Haurwitz waves are analytic solutions of the nonlinear barotropic
vorticity equation on the sphere [Haurwitz 1940] and R. K. Smith and D. G.
Dritschel [Smith 2006]. Although they are not analytic solutions of the shallow
water equations they have been used so frequently for meteorological tests.

The initial velocity field for the Rossby-Haurwitz wave is defined as u = aω cosφ+ aK cosr−1 φ(r sin2 φ− cos2 φ) cos(rλ)

v = −aKr cosr−1 φ sinφ sin(rλ)
(4)

The initial height field is defined as,

h = h0 +
a2

g
[A(φ) +B(φ) cos(rλ) + C(φ) cos(2rλ)] (5)
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where the variables A(φ), B(φ), C(φ) are given by

A(φ) =
ω

2
(2Ω + ω) cos2 φ+

1

4
k2 cos2r φ[(r + 1) cos2 φ+ (2r2 − 2r − 2)− 2r2 cos2 φ]

B(φ) =
2(Ω + ω)k

(r + 1)(r + 2)
cosr φ[(r2 + 2r + 2)− (r + 1)2 cos2 φ]

C(φ) =
1

4
k2 cos2r φ[(r + 1) cos2 φ− (r + 2)]

(6)

In here, r represents the wave number,h0 is the height at the poles. The strength
of the underlying zonal wind from west to east is given by ω and k controls the
amplitude of the wave.

3 Data Assimilation

Data assimilation is the process by which observational data distributed in space
and time are fused with mathematical model forecast information aimed at
obtaining the best initial conditions that are as near as possible to observations
while satisfying model forecast as a strong constraint. The probabilistic state
space formulation and the requirement for the updating of information when new
observations are encountered are ideally suited for the Bayesian approach, and
thus constitute an appropriate framework for data assimilation. The Bayesian
approach and in particular ensemble or particle filtering methods are a set of
efficient and flexible Monte-Carlo methods to solve the optimal filtering problem.
Here one attempts to construct the posterior probability density function (PDF)
of the state based on all available information, including the set of received
observations. Since this PDF embodies all available statistical information, it
may be considered to be a complete solution to the estimation problem.

3.1 The Ensemble Kalman Filter

In order to analyze and make inference about the dynamic system at least a
model equation along with an observation operator are required. First, a model
describing the evolution of the state with time, and an observation operator for
noisy observations of the state. Generically, stochastic filtering problem is a
dynamic system that assumes the form

ẋt = f(t,xt,ut,vt) (7)

zt = h(xt,nt) (8)

The equation (7) is the state equation or the system model, (8) is the observation
operator equation,

The ensemble Kalman filter (EnKF) was first proposed by Evensen [12]
and further developed by Burgers et al. [13] and Evensen ([14],[15]). It is
related to particle filters in the context that a particle is identical to an ensemble
member. EnKF is a sequential filter method, which means that the model
is integrated forward in time and, whenever observations are available, these
are used to reinitialize the model before the integration continues. The EnKF
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originated as a version of the Extended Kalman Filter (EKF) ([18],[19]) for large
problems. The classical KF [11] method is optimal in the sense of minimizing the
variance only for linear systems and Gaussian statistics. Similar to the particle
filter method, the EnKF stems from a Monte Carlo integration of the Fokker-
Planck equation governing the evolution of the PDF that describes the prior,
forecast, and error statistics. In the analysis step, each ensemble member is
updated according to the KF scheme and replaces the covariance matrix by the
sample covariance computed from the ensemble. However, the EnKF presents
two potential problems namely: 1) Even though the EnKF uses full non-linear
dynamics to propagate the forecast error statistics, the EnKF assumes that all
probability distributions involved are Gaussian.
2) The updated ensemble preserves only the first two moments of the posterior.
Let p(x) denote the Gaussian prior probability density distribution of the state
vector x with mean µ and covariance Q

p(x) ∝ exp

(
−1

2
(x− µ)TQ−1(x− µ)

)
We assume the data z to have a Gaussian PDF with covariance R and mean
Hx, where H is the so-called the observation matrix, is related to h of equation
(8), and where the value Hx assumes the value of the data z would be for the
state x in absence of observation errors. Then the conditional probability or
likelihood p(z|x) assumes the form

p(z|x) ∝ exp

(
−1

2
(z−Hx)TR−1(z−Hx)

)
.

According to the Bayes theorem the posterior probability density follows from
the relation

p(x|z) ∝ p(z|x)p(x). (9)

There are many variants of implementing the EnKF of various computational
efficiency and in what follow we employ standard formulation of the EnKF for
linear and nonlinear observation operators with covariance localization. See
([12], [13], [17] [16], [26]). The implementation of the standard EnKF may be
divided into three steps, as follows:

• Setting and matching

� Define the ensemble
X = [x1, · · · ,xN ] (10)

be an nx × N matrix whose columns are a sample from the prior distri-
bution. N being the number of the ensemble members.

� Form the ensemble mean

X̄ = X · 1N , (11)

where 1N ∈ RN×N is the matrix where each element is equal to
1

N
.
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� Define the ensemble perturbation matrix X ′ and set the Rnx×nx ensem-
ble covariance matrix C

X ′ = X − 1

N
X̄ , (12)

C =
X ′X ′T

N − 1
, (13)

• Sampling

� Generate
Z = [z1, · · · , zN ] (14)

be an nz × N matrix whose columns are a replicate of the measurement
vector z plus a random vector from the normal distribution N (0,R).

� Form the Rnz×nz measurement error covariance

R =
ZZT

N − 1
, (15)

• UpdatingObtain the posterior X p by the linear combinations of members
of the prior ensemble

X p = X + CHT (HCHT +R)−1(Z −HX ) (16)

The matrix
K = CHT (HCHT +R)−1 (17)

is the Kalman gain matrix. Since R is always positive definite( i.e. covariance
matrix), the inverse (HCHT + R)−1 exists. An easy computation shows that
the mean and covariance of the posterior or updated ensemble are given by

X̄ p = X p +K [z−HX p] , (18)

and
Cp = C − K

[
HCHT +R

]
KT , (19)

To prevent the occurrence of filter divergence usually due to the background-
error covariance estimates from small number of ensemble members as pointed
out in Houtekamer and Mitchell [21], the use of covariance localization was
suggested. Mathematically, the covariance localization increases the effective
rank of the background error covariances. See the work of Gaspari and Cohn [24]
also Hamill and Snyder [22],Hamill [23] and Ehrendorfer [25] . The covariance
localization consists of multiplying point by point the covariance estimate from
the ensemble with a correlation function that is 1.0 at the observation location
and zero beyond some prescribed distance. Mathematically, to apply covariance
localization, the Kalman gain

K = CHT (HCHT +R)−1

is replaced by a modified gain

K̂ = [ρ ◦ C]HT (H [ρ ◦ C]HT +R)−1 (20)
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where ρ◦ denotes the Schur product ( The Schur product of matrices A and B
is a matrix D of the same dimension, where dij = aijbij) of a matrix S with
local support with the covariance model generated by the ensemble. Various
correlation matrices have been used, for horizontal localization Gaspari and
Cohn [24] constructed a Gaussian-shaped function that is actually a fourth-
order piece-wise polynomial. Houtekamer and Mitchell [21] and Evensen [14]
used a cut-off radius so that observations are not assimilated beyond a certain
distance from the grid points.

4 Information theory

The Bayes rule with state x and observations y states that:

PA(x) = P(x|y) = PB(x) · P(y|x)
P(y)

(21)

The information gain measured by the relative entropy is:

info =

∫
ln

P(x|y)
P(x)

P(x|y)dx

=

∫
[lnP(x) + lnP(y|x)− lnP(y)− lnP(x)]P(x|y)dx

=

∫
[lnP(y|x)− lnP(y)]P(x|y)dx = EA [lnP(y|x)]− lnP(y),

(22)

where EA represents the expected value with respect to the posterior distribu-
tion. The marginal distribution of y does not depend on x and its expected
value is a constant.

4.1 Information metrics and Gaussian probabilities

Consider a normal background distribution PB(x0) = N (xB
0 , B) and a normal

analysis distribution PA(x0) = N (xA
0 , A). More precisely,

PB(x) =
1(

(2π)n/2
√
detB

) exp(−1

2
(x− xB

0 )
T B−1(x− xB

0 )) (23)

and

− lnPB(x) =
n

2
ln(2π) +

1

2
ln detB +

1

2

(
x− xB

0

)T
B−1

(
x− xB

0

)
(24)

� Fisher information matrix
The Fisher information matrix for a probability density P(x) is given by

F (P) =

∫
Rn

[
∂(− lnP(x))

∂x

] [
∂(− lnP(x))

∂x
)

]T
P(x)dx . (25)

For Gaussian probabilities, the Fisher information matrix is the inverse of the
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covariance,

[
∂(− lnPB(x))

∂x

]
= B−1(x− xB

0 )

[
∂(− lnPB(x))

∂x

] [
∂(− lnPB(x))

∂x

]T
= B−1(x− xB

0 )(x− xB
0 )

TB−1

EB

[
B−1(x− xB

0 )(x− xB
0 )

TB−1
]
= B−1EB

[
(x− xB

0 )(x− xB
0 )

T
]
B−1 =

= B−1BB−1 = B−1.

(26)

The information content of observations can be measured by the trace of the
difference of the Fisher matrices corresponding to analysis and background

info = trace (F (PA))− trace (F (PB)) = trace (F (PA)−F (PB)) (27)

which in the Gaussian case becomes

info = trace
(
A−1 −B−1

)
(28)

� Shannon information
The Shannon entropy of the background pdf is

S(PB) =

∫
Rn

(− lnPB(x))PB(x)dx =

n

2
ln(2π) +

1

2
ln detB +

1

2

∫
Rn

(x− xB
0 )

TB−1(x− xB
0 )PB(x)dx =

n ln
√
2π +

1

2
ln detB +

n

2
= n ln

√
2πe+

1

2
ln detB

(29)

and the Shannon information content of observations reduces to

S(PB)− S(PA) =
1

2
ln detB − 1

2
ln detA =

1

2
ln detBA−1 (30)

5 Numerical Experiments

The novelty of this work consists in comparing for the first time the above
described and commonly used filters in the framework of the K-S equation model
focusing on performance in the presence of nonlinear observation operators.

5.1 Numerical Solution of the K-S Equation

We consider the one-dimensional PDE with initial data as used in [7] and [8]
ut = −µuxxxx − νuxx − uux, x ∈ [0, 32π]
u(x+ L, t) = u(x, t), L = 32π, ∀t > 0

u(x, 0) = cos(
x

16
)
(
1 + sin(

x

16
)
) (31)
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The system (31) is known to be stiff. In fact, the stiffness is due to rapid
exponential decay of some modes (the dissipative part), the stiffness is also due
to rapid oscillations of some modes (the dispersive part).

As the equation is periodic, a Fourier spectral method is used for spatial dis-
cretization. Despite the remarkable success of the spectral and pseudo-spectral
methods for a wide range of applications [9], the set of ODEs for the mode
amplitudes is stiff, due to the time scale associated with the nth mode scales as
O(n−m) for large n, where m is the order of the highest spatial derivative, so
that the highest modes evolve on short time scales.

In order to carry out numerical solution of K-S, a modification of the ex-
ponential time-differencing fourth-order Runge-Kutta method (ETDRK4) has
been used. This method has been proposed by Cox and Matthews [10] and
further modified by Kassam and Trefethen [7]. A short review of the ETDRK4
is as follows:

First we transform (31) to Fourier space

ût = − ik

2
û2 + (νk2 − µk4)û withû2 =

∑
k′∈Z

ûk′ ûk−k′ , (32)

set

L û(k) = (νk2 − µk4)û(k), N (û, t) = N (û) = − ik

2
(F(F−1(û2))), (33)

L and N stand for linear and nonlinear operators, respectively. F denotes the
discrete Fourier transform. Write (32) in an operational form

ût = L û+ N (û, t). (34)

Define v = e−L tu where e−L t the integrating factor to obtain

vt = e−L tN (eL tv). (35)

Let h denote the time step length, then integrating (35) we obtain

un+1 = eLhun + eLh

∫ h

0

e−L τN (u(tn + τ), tn + τ)dτ, (36)

where un is the solution at the time t = nh and 0 < τ < h.
The equation (36) is exact, and the various order EDT schemes differ only on
the way one approximates the integral in (36). Cox and Matthews [10] proposed
the generating formula

un+1 = eLhun + h
s−1∑
m=0

gm

m∑
k=0

(−1)k
(

m
k

)
Nn−k (37)

where s is the order of the scheme. The coefficients gm are provided by the
recurrence relation{

L (hg0) = eLh − I,
L (hgm+1) + I = gm + 1

2gm−1 +
1
3gm−2 + · · ·+ 1

m+1g0, m ≥ 0.
(38)

We solve the K-S equation employing 64 Fourier spectral modes and integrate
from t = 0 to t = 150 (nondimensional time units) using the EDTRK4 time
stepping.

9



10 20 30 40 50 60 70 80 90 100

−3

−2

−1

0

1

2

3

4

x

s
o

lu
ti
o

n
 a

t 
ti
m

e
 t

 =
 7

0

 

 

10 20 30 40 50 60 70 80 90 100

−4

−2

0

2

4

6

x

s
o

lu
ti
o

n
 a

t 
ti
m

e
 t

 =
 1

0
0

 

 

data1
data2

data1
data2

Figure 1: Background and EnKF analysis solutions at different locations and
different times
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Figure 2: Model parameters effect
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