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SUMMARY
We consider a limited-area finite-element discretization of the shallow-water equations model. Our purpose
in this paper is to solve an inverse problem for the above model controlling its initial conditions in
presence of observations being assimilated in a time interval (window of assimilation). We then attempt
to obtain a reduced-order model of the above inverse problem, based on proper orthogonal decomposition
(POD), referred to as POD 4-D VAR. Different approaches of POD implementation of the reduced inverse
problem are compared, including a dual-weighed method for snapshot selection coupled with a trust-region
POD approach. Numerical results obtained point to an improved accuracy in all metrics tested when
dual-weighing choice of snapshots is combined with POD adaptivity of the trust-region type. Results of
ad-hoc adaptivity of the POD 4-D VAR turn out to yield less accurate results than trust-region POD when
compared with high-fidelity model. Directions of future research are finally outlined. Copyright � 2009
John Wiley & Sons, Ltd.
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1. INTRODUCTION

We address here the proper orthogonal decomposition (POD) model reduction along with inverse
solution of a two-dimensional finite-element (FE) shallow-water equations model on a limited area
domain. The shallow-water equations are frequently used to simulate the earth’s atmosphere, which
can be thought of as a thin (practically zero in height), semi-incompressible fluid that is flowing
over the surface of a rotating globe (the earth). The shallow-water equations are the simplest form
of the equations of motion that show how the fluid flow will evolve in response to rotational and
gravitational accelerations of the earth, forming waves. Although there is a body of experience
using POD model reduction for the shallow-water equations as well as for POD applied to 4-D
VAR data assimilation of the shallow-water equations our intention is to draw on state-of-the-
art methodologies for efficient POD implementation, i.e. combining efficient snapshot selection
in the presence of data assimilation system namely merging dual weighting of snapshots with
trust-region POD techniques.
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The trust-region proper orthogonal decomposition (TR-POD) was recently proposed in [1, 2]
as a way to overcome difficulties related POD reduced-order model (ROM) use in solving the
partial differential equation (PDE) constrained optimization problem. Combining POD technique
with the concept of trust-region with general model functions (see Toint and Conn [3, 4] for a
comprehensive survey or Nocedal and Wright [5] for an introduction to trust-region methods)
presents a framework for decision as to when an update of the POD ROM is necessary during the
optimization process. Moreover, from a theoretical point of view for TR-POD, we have a global
convergence result [1] proving that the iterates produced by the optimization algorithm, started at
an arbitrary initial iterate, will converge to a local optimizer for the original mode.

The novelty of this contribution is in assessing the combined effect of use of TR-POD in conjunc-
tion with dual weighting data assimilation system (DAS) snapshot selection in the framework of
a relatively affordable, yet relevant model. One expects a beneficial cumulative effect from the
combination of these two techniques. Comparisons to ad-hoc update adaptivity of the POD 4-D
VAR and full 4-D VAR (high-fidelity model) are carried out for a variety of metrics to validate
theoretical results in the light of numerical experiments. Indeed the combination of TR-POD and
dual-weighted snapshots yields the best results in all metrics (see [6, 7]).

The plan of the paper is as follows: After the introduction we present in Section 2 the shallow-
water equations model description followed by a brief presentation of the POD model reduction
method. Section 3 provides the description of the generation of POD using a FE formulation.
Section 4 provides the framework of POD for reduced-order 4-D VAR data assimilation and is
composed of several subsections detailing dual weighting of snapshots and implementation of
reduced order 4-D VAR. Section 5 addresses in some detail the trust-region POD (TR-POD)
methodology. Section 6 details the numerical experiments carried out in order to validate accuracy
of the POD reduced-order model and the POD 4-D VAR approach for the various numerical
methods enumerated above. For recent work on POD 4-D VAR, see [8–14]. In particular we
compare ad-hoc adaptivity for POD 4-D VAR with trust-region adaptivity in combination with
dual-weighted snapshots. Section 7 provides error analysis of dual-weighted trust-region POD
4-D VAR compared with the high-fidelity model. A discussion of numerical results thus obtained
ensues. Finally, the paper concludes with a conclusion section.

2. DESCRIPTION OF PROBLEMS

2.1 Shallow-water equations model on an f plane

The shallow-water equations (also called Saint Venant equations) are a set of hyperbolic PDEs that
describe the evolution of an incompressible fluid (sometimes, but not necessarily, a free surface)
in response to gravitational and rotational accelerations (see [15–17]).

The equations are derived from depth-integrating the Navier–Stokes equations, in the case where
the horizontal length scale is much greater than the vertical length scale. Under this condition,
conservation of mass implies that the vertical velocity of the fluid is small. It can be shown from
the momentum equation that vertical pressure gradients are nearly hydrostatic, and that horizontal
pressure gradients are due to the displacement of the pressure surface, implying that the velocity
field is nearly constant throughout the depth of the fluid. Taking the vertical velocity and variations
throughout the depth of the fluid to be exactly zero in the Navier–Stokes equations, the shallow-
water equations are derived.

The shallow-water equations on an f plane can be written as (see [18]):
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(x, y)∈ [0, L]×[0, D], t � 0

(1)

where L and D are the dimensions of a rectangular domain of integration, u and v are the velocity
components in the x- and y-axis, respectively, �=gh is the geopotential height, h is the depth of
the fluid, and g is the acceleration of gravity.

The scalar function f is the Coriolis parameter. An approximation whereby the Coriolis param-
eter f is set to vary linearly in space is called a �-plane approximation with �=d f /dy defined
as the linear coefficient of variation.

f = f̂ +�

(
y− D

2

)
(2)

The Coriolis frequency f̂ is defined as

f̂ =2�sin� (3)

where � is the angular velocity of the earth’s rotation and � is the latitude.
A well-posed initial and boundary condition [19] for the shallow-water equations model above

can be imposed as

w(x, y,0)=�(x, y) (4)

where state variables are w=w(x, y, t)= (�v(x, y, t),�(x, y, t)) with periodic boundary conditions
assumed in the x-direction:

w(0, y, t)=w(L , y, t) (5)

whereas solid wall boundary conditions are used in the y-direction:

v(x,0, t)=v(x, D, t)=0 (6)

The geopotential �(x, y) will be specified later in the numerical experiments.

3. PROPER ORTHOGONAL DECOMPOSITION

The POD identifies basis functions or modes that optimally captures the average energy content
from numerical or experimental data. POD was introduced in the context of analysis of turbulent
flow by Lumley [20], Berkooz et al. [21]. Sirovich et al. [22] introduced the idea of snapshots.
See also the book of Holmes et al. [23].

Let � be a bounded domain in Rn , the L2(�) is defined as

L2(�)=
{

f (x), x ∈� :
∫

�
f 2 d�<∞

}
(7)

with inner product

〈 f,g〉=
∫

�
f g d� ∀ f,g ∈ L2(�) (8)

Given a set of sampled data

Yh ={yh,1, yh,2, . . . , yh,n} (9)

where yh,i ∈ L2(�) and V =span(Yh)⊆Rn .
Let K be the correlation matrix of the data defined by

K=Yh(Yh)T (10)

where K= (kij)n×n , ki j =〈yh,i , yh, j 〉, i, j =1, . . . ,n.
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Then from all the subspaces VM ⊂V with a fixed dimension M =dim(VM )<dim(V ),

min
VM

‖Y−�M Y‖=
n∑

i=M+1
�i (11)

where {�i }n
i=1 are the non-negative ordered eigenvalues of symmetric matrix K and Wh ={�h

i }n
i=1

are the corresponding eigenvectors.
Such that

〈�h,i ,�h, j 〉=�i j =
{

1, i = j

0, i �= j
(12)

Thus, the optimal subspace is given by

VM =span{�h
1,�h

2, . . . ,�h
M } (13)

in the sense that such type of POD bases describes more energy on average of the ensemble than
any other linear basis of the same dimension, with optimal orthogonal projection �M : V →VM ,
where �2

M =�M given by

�M =
M∑

i=1
�h

i (�h
i )T (14)

Historically, in other disciplines, the same procedure goes by the names of Karhunen–Loeve
decomposition (KLD) (see [24, 25]) or principal components analysis (PCA) and before them it was
discovered by Kosambi [26]. Historically, the method originated in the work of Pearson [27], who
invented the PCA which involves a mathematical procedure that transforms a number of possibly
correlated variables into a smaller number of uncorrelated variables called principal components.
It was also put forward in statistical framework by Hotelling [28].

4. GENERATION OF POD USING FINITE-ELEMENT FORMULATION

The POD bases are applied with the Galerkin weak-form FE method to create a reduced-order
numerical model with reduced computational cost. It is well known that under some circumstances,
Galerkin projections can produce unstable equilibrium points and limit cycles where the full system
possesses stable equilibrium points and limit cycles. If energy-based inner product is used, then
Galerkin projection preserves the stability of an equilibrium point at the origin [29, 30]. Snapshots
bases consist of the flow solution for several flow solutions corresponding to different sets of
parameter values evaluated at different time instants of the model evolution. This involves solving
the fully discretized model and saving states at various time instants in the time interval under
consideration [23].

An ensemble of nodal-value represented snapshots chosen in the analysis time interval [0,T ]
can be written as

{y1, y2, . . . , yn} (15)

where yi ∈RN , i =1, . . . ,n, n is the number of snapshots and N is the number of nodes in the
mesh.

Define the weighted ensemble average of the FE represented data as

ȳ =
i=n∑
i=1

wi yi (16)

where the snapshots weights wi are such that 0<wi<1 and
∑n

i=1 wi =1, and they are used to assign
a degree of importance to each member of the ensemble. Time weighting is usually considered,
and in the standard approach wi =1/n.
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Hence, the FE represented POD solution can be expressed as

yPOD = ȳ+
i=M∑
i=1

	i (t)�i (17)

where

�={�1,�2, . . . ,�M } (18)

The nodal-value represented POD bases vectors W and number of POD basis M are judiciously
chosen to capture the dynamics of the flow as follows in the procedure described below:

1. The first step in creating a POD basis is to obtain a set of possible solution fields over the
domain of the given problem. These fields will be generated through FE analysis as described
above, and are referred to as snapshots. The snapshot selection is crucial to the generalization
capabilities of the POD basis, and a strategy to create the set of snapshots is vital.

2. Compute mean value of snapshots

ȳ =
i=n∑
i=1

wi yi (19)

3. Subtract the mean from each snapshot and we obtain

Y={y1 − ȳ, y2 − ȳ, . . . , yn − ȳ} (20)

4. Denote the FE basis [31] by

[V]= [V1, . . . ,Vn] (21)

Compute the symmetric positive definite matrix

A=VTV (22)

and introduce a general form of inner product

〈x,y〉A =xTAy (23)

The POD basis of order M�n provides an optimal representation of the ensemble data in
M-dimensional state subspace by minimizing the averaged projection error

min
{�1,�2,. . .,�M }

n∑
i=1

wi‖(yi − ȳ)−��,M (yi − ȳ)‖2
A

s.t. 〈�i ,� j 〉A =�ij

(24)

where ��,M is the projection operator onto the M-dimensional space Span {�1,�2, . . . ,�M }

��,M =
M∑

i=1
〈y,�i 〉A�i

5. Build the weighted spatial correlation matrix

C=YWYT (25)

The POD modes �i ∈RN are eigenvectors to the N -dimensional eigenvalue problem

CA�i =�i�i

As in practice the number of snapshots is much less than the the state dimension, n � N , an
efficient way to compute the reduced basis is to introduce a n-dimensional matrix as follows

Kn×n =W1/2KW1/2 =W1/2YTAYW1/2 (26)
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and compute the eigenvalues �1��2� · · ·��n�0 of Kn×n with its corresponding eigenvectors

1, . . . ,
n

6. The nodal-value represented POD basis vectors are obtained by defining

�i =
1√
�i

YW1/2
i , i =1, . . . , M (27)

and corresponding FE represented continuous POD basis can be expressed as

{�h,1,�h,2, . . . ,�h,M }={V�1,V�2, . . . ,V�M } (28)

where

〈�h,i ,�h, j 〉=〈�i ,� j 〉A =�i j =
{

1, i = j

0, i �= j
(29)

One can define a relative information content to choose a low-dimensional basis of size M �n by
neglecting modes corresponding to the small eigenvalues. We define

I (m)=
∑i=m

i=1 �i∑i=n
i=1 �i

(30)

and choose M such that

M =argmin{I (m) : I (m)>�} (31)

where 0���1 is the percentage of total information by the reduced space and the tolerance � must
be chosen to be close to the value one in order to capture most of the energy of the snapshots basis.

For an atmospheric or oceanic flow defined in time interval [0,T ]

dy

dt
= F(y, t)

y(x,0) = y0(x)
(32)

To obtain a reduced model, we can first solve the PDE to obtain an ensemble of snapshots,
then use a Galerkin projection scheme of the model equations onto the space spanned by the POD
basis elements. We obtain the system of ODE as follows:

d�i

dt
=

〈
F

(
ȳh +

i=M∑
i=1

	i�
h
i , t

)
,�h

i

〉
(33)

along with the initial conditions:

	i (0)=〈yh(x,0)− ȳh,�h
i 〉=〈y0 − ȳ,�i 〉A, i =1, . . . , M (34)

5. POD FRAMEWORK TO REDUCED-ORDER 4-D VAR DATA ASSIMILATION

5.1. The dual-weighted POD basis

The aim of 4-D VAR data assimilation is that of fusing observational data and model predictions to
obtain an optimal representation of the state of the atmosphere. In the full nonlinear 4-D VAR [32],
this process is implemented by minimizing the cost functional in the following:

J (y0)= 1

2
(y0 − yb)TB−1(y0 − yb)+ 1

2

k=n∑
k=0

(Hk yk − yo
k )TR−1

k (Hk yk − yo
k ) (35)

where yb is the background prior state estimation and B is the background error covariance matrix,
R is the observational error covariance matrix, H is the observation operator, y0 is a vector
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containing control variables such as initial conditions, yk is a vector containing the solution of
variables from the model at the time level k, yo

k is the observation at time level k, and n is the
number of time levels.

The snapshots are essentially a set of instantaneous flow solutions, obtained from experimental
data or from a CFD simulation. They are then used to compute the POD basis vectors to yield an
optimal representation of the data so that for any given basis vector size, the L2 norm of the error
between the original and reconstructed snapshot is minimized.

The construction of POD basis vectors depends not only on the features of model dynamics
itself, but it also requires to properly account for the features from the 4-D VAR data assimilation.
Furthermore, these two features may be quite different from each other. A recent method to avoid
this problem is referred to as optimality system POD [33]. By implementing a dual-weighted
proper orthogonal decomposition (DWPOD) method [7], we can incorporate the information from
the 4-D VAR into the POD reduced-order modeling.

The specification of dual weights wk associated with the snapshots may have a significant impact
on which modes are selected as dominant and thus included into the POD basis. The dual-weighted
approach makes use of the time-varying sensitivities of the 4-D VAR cost functional with respect
to perturbations in the state at each time level where the snapshots are taken.

Assuming the cost functional J (y(t)) is defined explicitly in terms of each state y(t) at time
step t . For any fixed time step �<t , the model can be written as

∀�<t, y(t)= M�→t (y(�))= M�,t (y(�)) (36)

such that implicitly, the cost functional J can be viewed as a function of the previous state y(�),
to first-order approximation, the impact of small errors/perturbations �yi in the state error at a
snapshot time ti�t on J may be estimated using the tangent linear model M(ti , t) and its adjoint
model MT(t, ti ):

�J ≈ 〈∇ Jy(t)(y(t)),�y(t)〉=〈∇ Jy(t)(y(t))M(ti , t)�y(ti )〉
= 〈MT(t, ti )∇ Jy(t)(y(t)),�y(ti )〉=〈y∗

ti ,�y(ti )〉 (37)

where y∗
ti =MT(t, ti )∇ Jy(t)(y(t)) are the adjoint variables at time step ti .

In particular, the model can be written as

∀k, yk = Mk−1→k(yk−1)= Mk(yk−1) (38)

where Mk−1→k is defined as the model forecast operator from time k−1 to k.
In order to derive the algorithm for the computation of dual weighs by using the adjoint

model, we explicitly choose �= ti =k−1 and t =k, to the first-order approximation, the impact of
perturbations �yk−1 in state vectors on cost functional Jk may be estimated using tangent linear
model Mk and its adjoint model MT

k :

�Jk ≈〈∇ Jk,�yk〉=〈∇ Jk,Mk�yk−1〉=〈MT
k ∇ Jk,�yk−1〉=〈y∗

k−1,�yk−1〉 (39)

where y∗
k−1 =MT

k ∇ Jk are the adjoint variables at time step tk−1.
Hence, it follows (see Equation (23)) that

|�Jk | ≈ 〈y∗
k−1,�yk−1〉=|〈(A)−1 y∗

k−1,�yk−1〉A|
� ‖(A)−1 y∗

k−1‖A‖�yk−1‖A (40)

Hence, the dual weights wk associated with the snapshots selection are thus defined as normalized
values in the following:

ck = ‖(A)−1 y∗
k ‖A

wk = ck /
j=n∑
j=1

c j , k =1, . . . ,n
(41)
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and provide a measure of the relative impact of the perturbations of state variables on the cost
functional. A large value of weight wk indicates that state errors at time step tk play an important
role in the optimization. In other words, the dual weights are chosen in order that information from
DAS is incorporated directly into the optimality criteria that determines the POD basis functions.
Hence, the dual-weighted POD incorporates not only information from the dynamical system, but
also information from the DAS. The traditional POD basis aims at capturing the most energetic
modes of the dynamical system, whereas the dual-weighted approach may also capture lower
energy modes that can be significant for the successful implementation of 4-D VAR.

From an implementation point of view, the evaluation of all dual weights requires only one
adjoint model integration.

1. Initialize the adjoint variables y∗ at final time to zero: y∗
n =0

2. For each step k−1 the adjoint variables y∗
k−1 are obtained by y∗

k−1 =MT
k y∗

k +HT
k R−1

k
(Hk yk−yo

k )
3. We obtain y∗

0 = y∗
0 +B−1(y0 − yb) where yb is the background prior state estimation.

4. Compute ck =‖(A)−1 y∗
k ‖A and wk =ck/

∑ j=n
j=1 c j ,k =1, . . . ,n

where Mk is the tangent linear model and Hk is the linearized observation operator at time step k.
Hence, the evaluation of the dual weights requires only the integration of the adjoint model

backward in time. As the adjoint model is available during the implementation of 4-D VAR data
assimilation, no additional cost is required for the development of DWPOD 4-D VAR over the
classic POD 4-D VAR.

In the numerical experiments section, we will consider a total energy norm defined as

‖y‖2
AFEM = 1

2
(‖u‖2

L2(�) +‖v‖2
L2(�) +

g

h
‖u‖2

L2(�))

= 1

2

(
uTAu+vTAv+ g

h
hTAh

)
=yTAFEMy (42)

where A=VTV is a symmetric positive-definite matrix and [V]= [V1, . . . ,VN ] is the FE basis,
h is the mean height of the reference data at the initial time. Hence AFEM can be viewed as a
symmetric positive-definite block-wise diagonal matrix:

AFEM =diag

(
1

2
A

1

2
A

g

2h
A

)
(43)

5.2. Reduced-order POD 4-D VAR

In order to reduce the computational cost of 4-D VAR data assimilation we consider minimization of
the cost functional in a space whose dimension is much smaller than that of the original one. A way
to drastically decrease the dimension of the control space without significantly compromising the
quality of the final solution but sizably decreasing the cost in memory and CPU time of 4-D VAR
motivates us to choose to project the control variable on a basis of characteristic vectors capturing
most of the energy and the main directions of variability of the model, i.e. SVD. One would then
attempt to control the vector of initial conditions in the reduced space model.

The reduced-order cost functional can be expressed as

J POD(yPOD
0 ) = 1

2
(yPOD

0 − yb)TB−1(yPOD
0 − yb)

+1

2

k=n∑
k=0

(Hk yPOD
k − yo

k )TR−1
k (Hk yPOD

k − yo
k ) (44)

where B is the background error covariance matrix, Rk is the observation error covariance matrix
at time level k, Hk is the observation operator at time level k. yb is the background prior state
estimation. yPOD

0 is a vector containing the control variables (here, initial conditions) represented
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by the POD basis. yPOD
k is a vector containing the solution of variables obtained from the reduced-

order model at the time level k.
In a POD reduced-order model, the initial value yPOD

0 and the reduced-order model solution yPOD
k

can be expressed as

yPOD
0 = ȳ+

i=M∑
i=1

	i (0)�i = ȳ+�	0

yPOD
k = ȳ+

i=M∑
i=1

	i (t
k)�i = ȳ+�	k

(45)

where an ensemble of POD basis is

�={�1,�2, . . . ,�M } (46)

Hence, we can rewrite the reduced-order cost functional J POD(yPOD
0 ) dependent on yPOD

0 as
an explicit cost functional J POD

	 (	0) dependent on 	0 that is the coefficient in the POD basis
vectors �. Once we find the minimizer of 	min

0 =min	0 J POD
	 (	0), we can express the retrieved

initial condition yPOD
0 = ȳ+�	0 in the POD reduced-order model cost functional

J POD
	 (	0) = 1

2
(ȳ+�	0 − yb)TB−1(ȳ+�	0 − yb)

+1

2

k=n∑
k=0

(Hk(ȳ+�	k)− yo
k )TR−1

k (Hk(ȳ+�	k)− yo
k ) (47)

The reduced model can be written as:

∀k, 	k = MPOD
0→k(	0) (48)

By denoting

∀k, 	k = MPOD
k−1→k(	k−1)= MPOD

k (	k−1) (49)

and by recurrence we obtain that

	k = MPOD
k · · · MPOD

1 	0 (50)

The reduced-order cost functional J POD
	 (	0) that is dependent on 	0 can be divided into two

components

J POD
	 = J POD,b

	 + J POD,o
	 (51)

where background cost functional that is dependent on 	0 is written as

J POD,b
	 = 1

2 (ȳ+�	0 − yb)TB−1(ȳ+�	0 − yb) (52)

and the observational cost functional that is dependent on 	0 is written as

J POD,o
	 = 1

2

k=n∑
k=0

(Hk(ȳ+�	k)− yo
k )TR−1

k (Hk(ȳ+�	k)− yo
k ) (53)

Denoting ‘normalized departures’

dk =R−1
k (Hk(ȳ+�	k)− yo

k ) (54)

and the contributions to the observational cost functional that is dependent on 	0 can be written as

J POD,o
	,k = (Hk(ȳ+�	k)− yo

k )Tdk (55)
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Hence the reduced-order cost functional that is dependent on 	0 can be rewritten as

J POD
	 = J POD,b

	 +
n∑

k=0
J POD,o
	,k (56)

Therefore, the gradient of the reduced-order cost functional with respect to the 	0 can
be derived as

∇	0 J POD
	 =∇	0 J POD,b

	 +
n∑

k=0
∇	0 J POD,o

	,k (57)

∇	0 J POD
	 =WTB−1(ȳ+�	0 − yb)+

n∑
k=0

(MPOD
1 )T · · · (MPOD

k )T�THT
kdk (58)

where (MPOD
k )T is the POD reduced-order adjoint model at time step k.

From an implementation point of view, we can compute the gradient ∇	0 J POD
	 in the following

steps(see [34–36])

1. Initialize the reduced-order adjoint variables 	∗ at final time to zero: 	∗
n =0

2. For each step k−1 the adjoint variables 	∗
k−1 is obtained by adding the reduced-order

adjoint forcing term WTHT
kdk to 	∗

k and by performing the reduced-order adjoint integration
of reduced-order model by multiplying the result by (MPOD

k )T, i.e. 	∗
k−1 = (MPOD

k )T(	∗
k +

WTHT
kdk)

3. At the end of recurrence, the value of the adjoint variable 	∗
0 = J o

	0
yields the gradient of the

observational cost functional
4. Compute ∇	0 J POD,b

	 =WTB−1(ȳ+�	0−yb) and we obtain ∇	0 J POD
	 =∇	0J POD,b

	 +∇	0J POD,o
	

5.3. Trust-region POD optimal control approach

Classical trust-region method. Historically the trust-region method goes back to [37–39]. See also
the work [40] followed by an important work [41, 42]. Finally, the terminology of trust region and
Cauchy point was put forward by Dennis [43] and systematized by More and Sorensen [44].

The classical trust-region method [45] aims to define a region around the current iterate within
which it trusts the model to be an adequate representation of the objective function f , and then
choose the step to be the approximate minimizer of the model in the trust region, i.e. choosing
direction and length of the step simultaneously. The algorithm approximates only a certain region
(the so-called trust region) of the objective function with a model function (often a quadratic). It is
assumed that the first two terms of the quadratic model function mk at each iterate xk are identical
with the first two terms of the Taylor-series expansion of f around xk in the following:

mk(p)= fk +∇ f T
k + 1

2
pTBk p (59)

where fk = f (xk) and ∇ fk =∇ f (xk) and Bk is an approximation to the Hessian and more generally
Bk is some symmetric matrix.

To obtain each step, we seek a solution of the following sub-problem for which we need only
an approximate solution to obtain convergence and good practical behavior [5]

min mk(p)= fk +∇ f T
k + 1

2
pTBk p (60)

s. t. ‖p‖��k (61)

where �k>0 is the trust-region radius.
In the strategy for choosing the trust-region radius �k at each iteration, we define the ratio

k = f (xk)− f (xk + pk)

mk(0)−mk(pk)
(62)
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where the numerator is called the actual reduction, and the denominator is called the predicted
reduction. We measure agreement between the model function mk and the objective function f (xk)
as a criterion for choosing trust-region radius �k>0. If the ratio k is negative, the new objective
value is greater than the current value so that the step must be rejected. On the other hand, if
k is close to 1, there is a good agreement between the approximate model mk and the object
function fk over this step, so it is safe to expand the trust-region radius for the next iteration. If
k is positive but not close to 1, we do not alter the trust-region radius, but if it is close to zero
or negative, we shrink the trust-region radius.

Trust-region POD method. In this work, the POD reduced-order model is based on the solution
of the original model for specified control variables (e.g. initial and boundary conditions). It
is therefore necessary to reconstruct the POD reduced-order model when the resulting control
variables from the latest optimization iteration are significantly different from the ones on which
the POD model is based. Hence, it is natural to improve the POD reduced-order control model
successively by updating the snapshots which are used to generate the POD basis in the process
of reduced-order 4-D VAR.

For the reduced-order cost functional [46, 47]

J POD(yPOD
0 ) = 1

2
(yPOD

0 − yb)TB−1(yPOD
0 − yb)

+1

2

k=n∑
k=0

(Hk yPOD
k − yo

k )TR−1
k (Hk yPOD

k − yo
k ) (63)

or its explicit version

J POD
	 (	0) = 1

2
(ȳ+�	0 − yb)TB−1(ȳ+�	0 − yb)

+1

2

k=n∑
k=0

(Hk(ȳ+�	k)− yo
k )TR−1

k (Hk(ȳ+�	k)− yo
k ) (64)

defined above, we first start with a random perturbation of given initial condition y(0)
0 and compute

the snapshots that correspond to the flow behavior forced by y(0)
0 . We then use these snapshots to

compute the first POD basis W(0) and build up the corresponding POD-based control model forced
by applying inner projection 	(0)

0 =〈y(0)
0 − ȳ,W(0)〉. We now implement the inner minimization

iteration based on W(0) to obtain the new control variable 	(1)
0 in the reduced-order space. When

we carry out an outer iteration, we obtain y(1)
0 = ȳ+W(0)	(1)

0 . If we use y(1)
0 for the computation

of new snapshots and a new POD basis W(1), we can improve the initial condition of the PDE
and thus improve the POD-based model. However, the outer projection computing new snapshots
and corresponding new POD basis is computationally expensive and should only occur at rare
instances controlled by appropriate criteria. One criterion for adaptivity consists of an ad hoc
rule that an outer projection should occur whenever the value of the objective function cannot be
decreased beyond a prescribed tolerance between two consecutive inner minimization iterations.
Also, this criterion will abort the outer iteration cycle when the value of the objective function
is less than a given tolerance. The trust-region POD approach for adaptivity is both efficient
and mathematically correct, being based on the trust-region globalization properties derived from
optimization theory [4].

Therefore, to find a new step sk , we minimize with respect to s

min mk(	(k)
0 +s) := J POD

	 (	(k)
0 +s) (65)

s. t. ‖s‖��k (66)
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Based on trust-region strategy from optimization [2, 47] , we can decide to increase or decrease
the trust-region radius by comparing the actual(for the full-order model)

J (ȳ+W(k−1)	(k)
0 )− J (ȳ+W(k−1)(	(k)

0 +sk)) (67)

with the predicted decrease (for the reduced-order model)

mk(	(k)
0 )−mk(	(k)

0 +sk) (68)

Outline of trust-region POD algorithm: Let 0<�1<�2<1 , 0<�1<�2<1��3 and y(0)
0 , �0 be

given, set k =0

1. Compute snapshot set YSNAP
k based on initial condition y(k)

0
2. Compute the POD basisW(k) and build up the corresponding POD-based control model based

on the initial condition 	(0)
0 =〈y(0)

0 − ȳ,W(0)〉
3. Compute the minimizer sk of

min mk(	(k)
0 +s)

s. t. ‖s‖��k

4. Compute the new J (ȳ+W(k−1)(	(k)
0 +sk)) of the full model and

k = J (ȳ+W(k−1)	(k)
0 )− J (ȳ+W(k−1)(	(k)

0 +sk))

mk(	(k)
0 )−mk(	(k)

0 +sk)
(69)

5. Update the trust-region radius:

• If k��2: implement outer projection y(k+1)
0 = ȳ+W(k−1)(	(k)

0 +sk) and increase trust-
region radius �k+1 =�3�k and GOTO 1

• If �1<k<�2: implement outer iteration y(k+1)
0 = ȳ+W(k−1)(	(k)

0 +sk) and decrease trust-
region radius �k+1 =�2�k and GOTO 1

• If k��1: set y(k+1)
0 = y(k)

0 and decrease trust-region radius �k+1 =�1�k and GOTO 3

In the trust-region POD optimal control algorithm above, the gradient of mk(	(k)
0 +s) with respect

to s plays an important role in the constrained minimization sub-problem

min mk(	(k)
0 +s)

s. t. ‖s‖��k

On the one hand, if �k is large enough and the norm constraint is not active, then sk is just
in the vicinity of the unconstrained minimum. On the other hand, if �k is small, then the higher
order terms in s play a less important role than the linear term, i.e. for some constant �k it holds
sk ≈−�k∇ J POD

	 (	(k)
0 ). As �k is increasing we obtain a continuous change from the direction of

steepest descent to the direction of the minimum of J POD
	 (	(k)

0 ). Therefore good gradient information
is required, which can be obtained by performing the reduced-order adjoint backward in time
integration (Figure 1).

Following the trust-region philosophy, it is not necessary to determine the exact step solution of
the constrained problem above. It is sufficient to compute a trial step sk that achieves only a certain
amount of decrease for the full model. We can use a backtracking approach to find the sufficient
decrease. For recent work on stable Galerkin reduced-order models, see Barone et al. [29].

5.4. Dual-weighted TR-POD approach

A new methodology combining the dual-weighted snapshots and trust-region POD adaptivity is put
forward, allowing us to enhance the benefits already provided by using DWPOD. The combined
algorithm proceeds as follows illustrated in the algorithm flowchart (see Figure 2).
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Initial conditions

Snapshots from full FEM SWE

POD reduced-order FEM SWE

POD reduced-order adjoint and gradient

Sub-optimal initial conditions

Optimal initial conditions

Full adjoint to generate dual weights

Outer iteration cycle POD iteration

Figure 1. Flowchart of the methodology using adaptive POD reduced-order model for
dual-weighted snapshots of the full model.

Initial conditions

Dual weighted snapshots

POD reduced-order modelling

YES

Trust region POD 4-D VAR

Trust region ratio η1

Full adjoint to generate dual weights

Cost functional  tolerance

DW TRPOD 4-D VAR  is completed

NO

≤

≤

Figure 2. Flowchart of the methodology combining dual-weighed snapshots and TR-POD adaptivity.

6. NUMERICAL EXPERIMENTS

6.1. Description of problem

The model test problem used here adopts the following initial conditions (Figure 3) from the initial
height field condition No.1 of Grammeltvedt [48]:

h(x, y)= H0 + H1 tanh

(
9(D/2− y)

2D

)
+ H2

(
1/cosh2

(
9(D/2− y)

D

))
sin

(
2�x

L

)
(70)

where this initial condition has energy in wave number one in the x-direction.

Copyright � 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 65:520–541
DOI: 10.1002/fld



DUAL-WEIGHTED TRUST-REGION ADAPTIVE POD 4D-VAR 533

18000 18000 18000

18500 18500

18500

19000 19000

19000

19500 19500

19500
20000

20000

20000
20500

20500

2050021000
21000

21000

21500

21500 21500

22000 22000 22000

Contour of geopotential from 22000 to 18000 by 500

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

Wind field calculated from the geopotential
field by geostrophic approximation

(a) (b)

Figure 3. Grammeltvedt I initial condition: (a) geopotential field and (b) wind
field by geostrophic approximation.

The initial velocity fields were derived from the initial height field using the geostrophic rela-
tionship:

u =−
(

g

f

)
�h

�y
v=

(
g

f

)
�h

�x
(71)

The dimensional constants used here are:

L = 4400km, D =6000km, f̄ =10−4 s−1, �=1.5×10−11 s−1 m−1,

g = 10ms−1, H0 =2000m, H1 =220m, H2 =133m.
(72)

and the space increments used here are

�x =�y =200km, �t =1800s (73)

We employed linear piecewise polynomials on triangular elements in the formulation of Galerkin
FE shallow-water equations model [49], in which the global matrix was stored into a compact
matrix (see [50]). A time-extrapolated Crank–Nicholson time differencing scheme was applied for
integrating in time the system of ordinary differential equations resulting from the application of

the Galerkin FE method and the Courant–Friedrichs–Levy (CFL) criterion was
√

gH0( �t
�x )<

√
2

2
(see [51, 52]), based on which the shallow-water equations system was then coupled at every time
step so that the equations are quasi-linearized (see [53]).

In order to implement boundary conditions in the Galerkin FE model, we have adopted the
approach suggested by Payne and Irons [54] and mentioned by Huebner et al. [55]. This approach
consists in modifying the diagonal terms of the global matrix associated with the nodal variables
by multiplying them by a large number, say 1016, while the corresponding term in the right-hand
vector is replaced by the specified boundary nodal variable multiplied by the same large factor
times the corresponding diagonal term. This procedure is repeated until all prescribed boundary
nodal variables have been treated (see [51]).

6.2. Discussion of numerical results obtained by trust-region POD 4-D VAR combined with
dual-weighted snapshots selection

In the numerical experiment, we applied a 1% uniform random perturbations on the initial condi-
tions in order to provide twin-experiment ‘observations’. We also computed the errors between the
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retrieved initial conditions related to 5% uniform random perturbations of the true initial conditions
as the initial guess of the reduced-order 4-D VAR (Figure 6). The data assimilation was carried
on a 48-h window using the �t =1800s in time and a mesh of 30×24 grid points in space, thus
we generated 96 snapshots by integrating the full finite-element shallow-water equations model
forward in time, from which we choose 10 POD bases for each of the (u(x, y),v(x, y),�(x, y)) to
capture over 99.9% of the energy. The dimension of control variables vector for the reduced-order
4-D VAR thus is 10×3=30 (Figure 4).

In the process of POD 4-D VAR, the resulting control variables from the latest optimization
iteration are projected to the full model to generate new POD bases. The new POD bases then
replace the previous ones resulting in a new POD reduced-order model. We found that both the
root mean square error (RMSE) and the correlation error metrics between the full model solutions
and the reduced-order solutions were improved after each outer projection was carried out.

The Polak Ribiere nonlinear conjugate gradient (CG) technique [56] was employed for high-
fidelity full model 4-D VAR and all variants of ad-hoc POD 4-D VAR, whereas the steepest-descent
strategy was employed for the trust-region POD 4-D VAR within the trust-region radius and
provides a sufficient reduction in the high-fidelity model quantified in terms of the Cauchy point [5].
In the ad hoc POD 4-D VAR, the POD bases are re-calculated when the value of the cost function
cannot be decreased by more than 10−1 for ad hoc POD 4-D VAR and 10−2 for ad hoc DWPOD
4-D VAR between the consecutive minimization iterations. In the trust-region 4-D VAR, the POD
bases are re-calculated when the ratio k is larger than the trust-region parameter �1 in the process
of updating the trust-region radius.

The unweighted ad hoc POD 4-D VAR as a reduced-order approach required a smaller compu-
tation cost but could not achieve the same cost functional reduction as the high-fidelity model 4-D
VAR. The dual-weighted ad hoc POD 4-D VAR achieves a better reduction in the cost functional.
However, neither of the above mentioned methods can attain the minimum of the high-fidelity
4-D VAR model cost functional. Furthermore, the unweighted snapshots trust-region POD 4-D
VAR yields an additional cost functional reduction compared with the ad hoc approach, albeit at a
higher computational cost. Finally, the dual-weighted trust-region POD 4-D VAR achieves almost
exactly the same cost functional reduction as the full high-fidelity 4-D VAR model, resulting in
an additional decrease of four orders of magnitude compared with the minimization of the cost
functional obtained by applying the unweighted ad hoc POD 4-D VAR (see Table I), showing

0 10 20 30 40 50 60 70 80

0

iterations

lo
g(

co
st

/c
os

t 0)

Figure 4. Comparison of the performance of minimization of cost functional in terms of number of
iterations for ad hoc POD 4-D VAR, ad-hoc dual-weighed POD 4-D VAR, trust-region POD 4-D VAR,

trust-region dual weighed POD 4-D VAR, and full model 4-D VAR.
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that the combination of the dual-weighted approach and trust-region method to model reduction
is significantly beneficial in the achievement of a local minimum of optimization almost identical
to one obtained by the high-fidelity full 4-D VAR.

In Figure 4, it is noticed that the dual-weighed 4-D VAR absorbs the information from the
full 4-D VAR model and mimics the behavior of the full model 4-D VAR thus being able to
achieve better reduction in the cost functional. It is also noticed that in the dual-weighted approach,
the reduced basis is adjusted to according to the norm of the full adjoint variable. The dual
weights are decreasing in time for the snapshots without sharp transients (Figure 5) due to the
fact that observations are available in each time step in our experiments. Furthermore, the dual
weights on the snapshot data are distinct from one outer projection to the next. The importance of
snapshots for longer windows of assimilation may assume a preponderant importance after each
outer iteration. However, it should be emphasized that the benefit obtained for POD 4-D VAR
using the dual-weighted procedure diminishes as the dimension of the reduced space increases.

Once the retrieved initial condition is obtained by implementing the dual-weighted trust-region
4-D VAR, we can compare the results from the POD reduced model with those from the full model.
To quantify the performance of the dual-weighted trust-region 4-D VAR, we use two metrics,
namely the RMSE and correlation of the difference between the POD reduced-order simulation
and high-fidelity model.

In particular, the RMSE (Figure 10) between variants of the POD reduced-model solution and
the true one at the time level i is used to estimate the error of the POD model.

RMSEi =
√∑ j=N

j=1 (Ui, j −U POD
i, j )2

n
, i =1, . . . ,n (74)

Table I. Comparison of iterations, outer projections, error and CPU time for ad hoc POD 4-D VAR,
ad hoc dual-weighed POD 4-D VAR, trust-region POD 4-D VAR, trust-region dual-weighed POD 4-D

VAR and the full model 4-D VAR.

POD 4-D VAR AD-POD DW-AD-POD TR-POD DW-TR-POD Full

Iterations 22 42 46 57 80
Outer projections 2 6 10 12 NA
Error 10−1 10−2 10−5 10−8 10−10

CPU time (s) 15.2 38.7 121.2 142.8 222.6
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Figure 5. The dual weights of the snapshots data determined by the full adjoint
variable for the trust-region POD 4-D VAR.
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Figure 6. Errors between the retrieved initial geopotential and the true initial geopotential applying dual-
weighted trust-region POD 4-D VAR to the 5% uniform random perturbations of the true initial conditions
taken as the initial guess. (a) Shows the contour of 5% perturbation of true initial geopotential; (b) shows
the contour of difference between 5% perturbation of true initial geopotential; (c) shows the contour of
retrieved initial geopotential after 2 days with dt=1800s; (d) shows the contour of difference between

retrieved initial geopotential and true initial geopotential.

where Ui, j and U POD
i, j are the state variables obtained by the full model and ones obtained by

optimal POD reduced-order model of time level i at node j , respectively, and N is the total number
of nodes over the domain. U and U POD are used to either denote the geopotential or the velocity
of the full model and the POD reduced-order model, respectively.

In Figure 11, the correlation r defined below is used as an additional metric to evaluate quality
of the inversion simulation

ri =
covi

12

�i
1�

i
2

(75)

where

�i
1 =

j=N∑
j=1

(Ui, j −U j )
2, �2 =

j=N∑
j=1

(U POD
i, j −U POD

j )
2, i =1, . . . ,n (76)

cov12 =
j=N∑
j=1

(Ui, j −U j )(U
POD
i, j −U POD

j ), i =1, . . . ,n (77)

where U j and U POD
j are the means over the simulation period [0,T ] obtained by the full model

and ones obtained by optimal POD reduced-order model at node j , respectively.
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Figure 7. Errors scaled by 100 between the retrieved initial velocity field and the true initial velocity
field applying dual-weighted trust-region POD 4-D VAR to the 5% uniform random perturbations of
the true initial conditions taken as the initial guess. (a) Shows the contour of difference between true
initial u-velocity and perturbed initial u-velocity; (b) shows the contour of difference between true
initial v-velocity and perturbed initial v-velocity; (c) shows the contour of difference between retrieved
initial u-velocity and true initial u-velocity; (d) shows the contour of difference between retrieved initial

v-velocity and true initial v-velocity.
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Figure 8. Comparison of the RMSE between the full model and the ROM before and after the data
assimilation applying dual-weighted trust-region POD 4-D VAR to the 5% uniform random perturbations

of the true initial conditions taken as the initial guess: (a) geopotential and (b) wind field.

Copyright � 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 65:520–541
DOI: 10.1002/fld



538 X. CHEN, I. M. NAVON AND F. FANG

0 20 40 60 80 100
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

time steps

C
or

re
la

tio
n

0 20 40 60 80 100
0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

time steps

C
or

re
la

tio
n

CORRELATION of velocity before the DWTRPOD
CORRELATION of velocity after the DWTRPOD

CORRELATION of geopotential before the DWTRPOD
CORRELATION of geopotential after the DWTRPOD

(a) (b)

Figure 9. Comparison of the correlation between the full model and the ROM before and after the data
assimilation applying dual-weighted trust-region POD 4-D VAR to the 5% uniform random perturbations

of the true initial conditions serving as initial guess: (a) geopotential and (b) wind field.

0 10 20 30 40 50 60 70 80 90 100

time steps

lo
g 

(R
M

S
E

)

0 10 20 30 40 50 60 70 80 90 100

time steps

lo
g 

(R
M

S
E

)

(a) (b)

Figure 10. Comparison of the RMSE of between ad hoc POD 4-D VAR, ad-hoc dual weighed POD 4-D
VAR, trust-region POD 4-D VAR, trust-region dual-weighed POD 4-D VAR, and the full model 4-D VAR:

(a) geopotential and (b) wind field.
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Figure 11. Comparison of correlation between ad-hoc POD 4-D VAR, ad hoc dual weighed POD 4-D
VAR, trust-region POD 4-D VAR, trust-region dual-weighed POD 4-D VAR and the full model 4-D VAR:

(a) geopotential and (b) wind field.
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Even though it turned out to be advantageous to combine the dual-weighed approach with
the trust-region POD 4-D VAR, it should be emphasized that this advantage diminishes when
we increase the number of POD bases for each component of the (u(x, y),v(x, y),�(x, y)) from
10 to 20 by applying both metrics mentioned above. However, increasing the dimension of the
POD reduced-order space from 30 to 60 can increase the computational cost of POD reduced-
order 4-D VAR. This agrees with results obtained in [7] for practical applications, the dual-
weighted procedure may be of particular benefit for use only with small dimensional bases in
the context of adaptive order reduction as the minimization approaches the optimal solution.
For other beneficial effects of POD 4-D VAR related to its use in the framework of second
order adjoint of a global shallow-water equations model, see Daescu and Navon (2007) [57]
(Figures 6–11).

7. CONCLUSION

In this paper, we solved an inverse problem for the POD reduced-order shallow-water equations
model using a FE formulation, controlling its initial conditions in presence of observations being
assimilated in a time window. In this POD 4-D VAR, we developed the full adjoint of the FE
shallow-water equations model and the reduced-order adjoint for POD reduced-order model. We
integrated the full adjoint model backward in time to compute the time-varying sensitivities of the
full 4-D VAR cost functional with respect to time-varying model states, from which we derived the
dual weights of the ensemble of snapshots. Also, we integrated the reduced-order adjoint model
backward in time to compute gradient of reduced-order cost functional.

In the numerical experiments, we compared several variants of POD 4-D VAR, namely
unweighted ad hoc POD 4-D VAR, dual-weighed ad hoc POD 4-D VAR, unweighted trust-region
POD 4-D VAR, and dual-weighed trust-region POD 4-D VAR, respectively. We found that the
ad-hoc POD 4-D VAR version yielded the least reduction in the cost functional compared with
the trust-region 4-D VAR . We assume that this result may be attributed to lack of feedbacks
from the high-fidelity model . On the other hand, the trust-region POD 4-D VAR version yielded
a sizably better reduction of the cost functional, due to inherent properties of TR-POD allowing
local minimizer of the full problem to be attained by minimizing the TR-POD sub-problem. Thus,
trust-region 4-D VAR resulted in global convergence to the high-fidelity local minimum starting
from any initial iterates.

The dual-weighted POD selection of snapshots allows propagation of information from the DAS
onto the reduced order model, possibly capturing lower energy modes that may play significant
role in successful implementation of 4-D VAR data assimilation. Combining the dual-weighted
approach with the trust-region POD approach to model reduction results in a significant enhanced
benefit achieving a local minimum of reduced cost function optimization almost identical to the
one obtained by the high-fidelity full 4-D VAR model. Hence we achieve a double benefit while
running a reduced-order inversion at an acceptable computational cost, at least for the shallow-water
equations model in a two-dimensional spatial domain.

In future research work we will consider a combination of the balanced truncation technique
with the dual-weighted trust-region POD-reduced 4-D VAR (see work of Rowley [30, 58]) For
novel original approaches to reduced-order Galerkin for fluid flows. (see work of Noack et al.
[59, 60] and work of Tadmor et al. [61]).
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