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SUMMARY

The pointwise error of a �nite-di�erence calculation of supersonic �ow is discussed. The local truncation
error is determined by a Taylor series with the remainder being in a Lagrange form. The contribution of
the local truncation error to the total pointwise approximation error is estimated via adjoint parameters. It
is demonstrated by numerical tests that the results of the numerical calculation of gasdynamics parameter
at an observation point may be re�ned and an error bound may be estimated. The results of numerical
tests for the case of parabolized Navier–Stokes are presented as an illustration of the proposed method.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

At present, the Richardson extrapolation [1–3] is the most popular method for estimation of
discretization error in CFD. Unfortunately, a correct use of Richardson extrapolation requires
a set of grids to prove monotonous convergence and to determine the real order of the conver-
gence for the considered solution. This may turn out to be very expensive from the viewpoint
of computer resources. The reason for this situation is the existence of many e�ects that may
change the nominal order of the grid convergence. The simplest example is the convergence
order reduction in presence of shocks. For schemes of third and fourth accuracy order, reduc-
tion of the convergence rate was demonstrated in Reference [4] for the compression wave.
The works of Efraimsson and Kreiss [5], Engquist and Sjogreen [6] and Roy et al. [7] con�rm
this e�ect. Spatial non-uniformity of the grid may also reduce the convergence rate [8].
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An alternative approach for a posteriori error estimation has intensively been developed
for the last decade (References [9–35]). It is used for the estimation of error of some quanti-
ties of interest (goal functionals, point-wise parameters, etc.) using residual (truncation error)
and adjoint (dual) equations. In Reference [28] this approach is used for wave equations, in
Reference [31] it is used for transport equation. In References [13–15] a posteriori error esti-
mation is obtained for Navier–Stokes and Euler equations. In these works the Galerkin method
is used for the local error estimation while the adjoint equations are used for calculating their
weights in the target functional error. A similar approach was used in References [16–27]
for the re�nement of practically useful functionals both by �nite-element and �nite-di�erence
methods. The local truncation error (residual) was estimated through the action of di�erential
operator on interpolated solution, while its contribution to the functional was calculated using
an adjoint problem. The error is demonstrated to be composed of two components, the �rst
being computable using adjoint parameters and residual while the second being incomputable
(depending on errors of solution of both primal and adjoint problems). In References [16–18]
the information on the spatial distribution of the residuals was used for mesh re�ning (for
diminishing the incomputable error) above the estimation of the computable error. A survey
of a posteriori error estimation using the adjoint equations may be found in Reference [24].
In the present work we consider another approach for the estimation of the computable

error if compared with References [16–27]. It is based on a di�erential approximation (DA)
[36] instead of on residual estimation and is more natural for �nite-di�erences. This provides
certain peculiarities both in applicability domain and the features of the methods. We use a
local truncation error determined by a Taylor series with the remainder in Lagrange form and
adjoint equations in a continuous form. This enables us to correct the error and to obtain an
asymptotic error bound for re�ned solution. The re�nement and the error bound are obtained
on the same grid as that employed for the primal problem solution and require identical
computer time. This approach was used for heat transfer equation in References [37, 38].
Herein, we consider an application of the approach to a �nite-di�erence approximation of the
parabolized Navier–Stokes (PNS) and Euler equations.
For illustrating the main idea we use the equation (@�̃=@t) + (@�̃=@x)=0 and its �nite-

di�erence approximation

�n+1
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k

�
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k

hk
=0

let the solution be smooth enough to possess all necessary derivatives to be bounded. Let us
use the Taylor series with the remainder in Lagrange form (parameters �n

k ∈ (0; 1); �n
k ∈ (0; 1);

are unknown).
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+ hk
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khk)
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)
=0 (1)

Thus, a �nite-di�erence equation is equivalent to an approximated equation with an addi-
tional perturbation term. Mathematical details of this equivalence may be found in References
[1, 36].
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Let us �nd the error of the functional �=
∫
� �(t; x)�(x − xest)�(t − test) dt dx as a function

of truncation error. For this purpose let us introduce the Lagrangian

L= �+
∫
�

(
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+
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)
 dt dx

It may be shown from this Lagrangian variation that for solutions of

direct
@�
@t
+

@�
@x
=0 and adjoint

@ 
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+

@ 
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− �(x − xest)�(t − test)= 0 problems (2)

the variation of the functional caused by the truncation error component (from x derivative)
equals

��(��x)=
∫
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(
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)
 dx dt (3)

Its discrete form may be recast to assume the form
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Using a Taylor expansion, expression (4) may be written as
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The �rst part of sum (5) may be used for re�ning the functional; the error is caused by
the second part due to unknown parameters �n

k . These parameters belong to the unit interval
�n
k ∈ (0; 1), so we may obtain a bound of this expression
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Using such estimates for both co-ordinates we can determine a bound of the functional
error after re�nement

|� −��corrt −��corrx − �exact|¡��supx +��supt (7)

This approach also provides an estimate of higher-order terms in (4). For example, an
estimate of the second order over �n

khk has the form
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For a second-order estimate we obtain

|� −��corr − �exact|¡��sup1 + ��sup2 (9)

For an in�nitely smooth solution we may write

|� −��corrt −��corrx − �exact|¡
∞∑
s=1
��supt; s +

∞∑
s=1
��supx; s
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If all derivatives are bounded, these series converge due to
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Nevertheless, this does not guarantee the estimation to be small enough to be of a practical
signi�cance.
We should use numerical expressions for high-order derivatives in the above formulations.

If the numerical solution has oscillations, these estimates may be too large and be of no
practical use. So, the considered approach may be used only for �nite di�erence schemes
which are monotonous enough.
Expression (7) is correct for exact values of adjoint parameter. In reality, the adjoint

problem is solved by some �nite-di�erence method, so it contains some approximation error
 (t; x)=  exact(t; x)+� (t; x). Hence, the estimation of the functional variation has a compo-
nent determined by the adjoint problem error.

��=
∫∫

�
��� (t; x) dt dx (10)

This term corresponds to the remaining error according to Reference [19] and is associated
to the errors of approximation of both adjoint and primal equations. Works [16–18] concern
a construction of a mesh for the minimization of this term. As an alternative, we may use
the second-order adjoint equations [38–40] for calculating this term. If the primal and adjoint
problems are solved by methods of order O(hp) and O(ha), this term is of O(hp+a) order. For
schemes of high enough order (p¿2 or a¿2) this term is asymptotically small if compared
with error bounds determined by (6).

2. THE ESTIMATE OF APPROXIMATION ERROR FOR FINITE-DIFFERENCE
CALCULATION OF A FLOW PARAMETER

Consider the discussed method of approximation error for estimating two-dimensional super-
sonic viscous �ow, Figure 1.
The non-divergent form of PNS is used. The �ow is calculated by march along the X -axis.
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P=�RT; e=CvT =
RT
� − 1 ; (X; Y )∈�=(0¡X¡Xmax; 0¡Y¡Ymax)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:45–74



A POSTERIORI POINTWISE ERROR ESTIMATION USING ADJOINT PARAMETERS 49
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Figure 1. Flow sketch. A—entrance boundary, B, D—lateral boundaries,
*—location of estimated parameter.

On in�ow boundary (A (X =0), Figure 1) we have e(0; Y )= e∞(Y ); �(0; Y )=�∞(Y ));
U (0; Y )=U∞(Y ); V (0; Y )=V∞(Y ); On lateral boundaries B, D (Y =0, Y =Ymax) the con-
ditions @f=@Y =0 (fi=(�;U; V; e)) are imposed.
The density at some point is considered as an estimated parameter. Let us write the estimated

value �(X est ; Y est) in the form of a functional.

�est = �=
∫
�
�(X; Y )�(Y − Y est)�(X − X est) dX dY (15)

We need to calculate the gradient of target functional with respect to local disturbances
(truncation error) �fi. It is known that the most e�cient way for the gradient calculation is
based on using the adjoint equations [41]. These equations may be obtained in a standard
way by unifying in a single Lagrangian the estimated functional and the weak formulation of
the �ow dynamics problem. Herein, we present the result. Additional details may be found
in References [42, 43].

3. ADJOINT PROBLEM
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The source in (16) corresponds to the location of the estimated parameter.
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Parameters (��;�U ;�V ;�e) are the adjoint analogs of density, velocity components, and
energy.

Initial conditions C (X =Xmax): ��;U;V; e|X = Xmax = 0 (20)

Expression for �� corresponds to the location of an estimated parameter on the boundary
Xmax.

Boundary conditions on B;D (Y =0; Y =Ymax):
@�f

@Y
=0 (21)

Adjoint problem is calculated in the reverse direction along X. For point-wise error esti-
mation the equations have singular sources (Dirac’s delta functions, Equation (16)). Unfor-
tunately, the regularity both of parabolized Navier–Stokes and corresponding adjoint system
are unknown. Both these systems of equations are of mixed hyperbolic–parabolic nature.
According to Reference [44] the heat transfer (parabolic) problem with similar source is
well-posed for �(t; x)∈H−�(�), �=n¿ 1

2 , �∈Rn. From this analogy, the considered problem
may be well-posed in H−1(�) a fact that engenders corresponding computational di�culties.
However, if we smooth the source term according to References [45, 46], we may obtain a
solution �s(t; x)∈H�(�), �¿1 (although containing an error proportional to smoothing pa-
rameter s; s¿0, which may be as small as necessary). Methods of �nite di�erence solution
for such equations are also presented in References [45, 46].
The target functional variation as a function of the truncation error has the following form:

��=
∫∫

�
(���� + �U�U + �V�V + �e�e) dX dY (22)
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In tests presented below we compare the results of �nite-di�erence calculations with the
analytical solutions corresponding to inviscid gas �ows. In this context, the in�uence of viscous
terms in Equations (11)–(14) on an estimated parameter is of interest. We consider the solution
of equations without viscosity as a non-perturbed one. Let the viscous terms disturb this
solution. For example, for the longitudinal velocity undisturbed values are governed by the
equation

U
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+ V
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=0

while the disturbed ones are governed by
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− 1
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= 0

Then the variation of the target functional due to viscous terms assumes the form
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�U + · · ·
)
d� (23)

In contrast to (16)–(19), the corresponding adjoint equations have no viscous terms.
Certainly, this approach is valid only when in�uence of viscous terms is small enough, i.e.

when they do not cause a radical change of �ow structure.
Another reason for the development of this technique arises for discontinuities that are

typical of supersonic �ows described by Euler equations, for example. The approach based
on di�erential approximation is not applicable for supersonic Euler equations due to unbound
derivatives. Nevertheless, we may use parabolized Navier–Stokes for basic �ow calculation,
consider viscous terms as a perturbation, and calculate the e�ect of this perturbation on the
solution. This may enable us to expand the applicability of the di�erential approximation
approach to discontinuous �ows described by Euler equations.

4. FINITE DIFFERENCE SCHEME

To study the approximation error herein we need a �nite di�erence scheme having largest
truncation error. As a consequence, we use a �rst-order scheme, the convective terms being
obtained by upwind di�erences [47]. Nevertheless, several terms are approximated by sym-
metrical di�erences with the result that they have second order. A �nite-di�erence scheme (for
Vn
k ¿0 option) is presented below. It contains two steps, predictor and corrector. Both steps
are calculated implicitly, using the three point Thomas algorithm. The tilde marks parameters
computed at the �rst step.
Predictor:
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The �nite di�erence scheme has a similar form for the adjoint system. The main feature is the
presence of the source term �(X −X est)�(Y −Y est) in (16), which is related to the location of
estimated point. For �ne enough grids a molli�cation (smooth approximation of �-function)
may be necessary for approximation of this source term [10]. The methods of �nite di�erence
solution of equations with such sources are presented in References [45, 46].
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5. ESTIMATION OF THE TRUNCATION ERROR

The total approximation error depends on a local truncation error. In order to determine it,
we expand �nite di�erences in Taylor series with Lagrange remainder. For illustration let us
present this estimation for one of �nite-di�erence terms in (29).
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The corresponding component of target functional variation ��est assumes the form
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The �rst part of this sum may be used for re�ning of the functional
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Non-eliminated error is engendered by the second part of (34). It has an upper bound
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Total re�nement of the functional determined by all �rst-order terms of �nite-di�erence
scheme (28)–(31) is as follows:
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Total expression for error bound caused by the �rst-order terms of (28)–(31) has the form
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Similar expressions are obtained for the convective terms of second-order accuracy and
for the viscous terms. A bound of the re�ned functional error may be determined by these
expressions as

|� −��corr − �exact|¡��sup (39)

This bound does not account for the incomputable error (expressions similar to (10)),
or errors caused by boundary condition approximation, etc. It also uses derivatives0 whose
boundedness cannot be proven at present. So, it requires a con�rmation via numerical tests.
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6. NUMERICAL TESTS

6.1. Continuous �ow �eld

A comparison between computations by �nite-di�erences and analytic expressions, and an
analysis of error estimates is performed for Prandtl–Mayer �ow. The error of �ow density
past the expansion fan was addressed (freestream Mach number M =4, angle of �ow rotation
�=10◦).
Let us determine the approximation error using adjoint approach and compare it with the

deviation of the �nite-di�erence solution from analytic one. Figure 2 illustrates the density
isolines in �ow�eld, Figure 3 illustrates the adjoint density isolines (a concentration of isolines
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Figure 2. Isolines of density (Prandtl–Mayer �ow).
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Figure 3. Isolines of adjoint density (concentration correlates with estimated point).
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Figure 4. Isolines of density of error bound (38).
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Figure 5. Isolines of error density caused by viscosity (23).

corresponds to a point of estimation). Figure 4 presents the spatial distribution of density of
error bound (38), and Figure 5 depicts isolines of density of error caused by the viscous terms
(23). Figures 4 and 5 determine those spatial regions that generate the main part of error for
parameter at the estimated point. Results presented in Figures 2–5 correspond to calculations
taking into account the viscosity (PNS, Re=1000).
Figure 6 presents the relative error of �ow density calculation for Re=1000 as a function

of the reciprocal of spatial step in Y direction (number of nodes). The part of error caused by
viscous terms (21), relative deviation (�−��corr −��visc − �exact)=� of re�ned solution from
the analytical one, and bound of re�ned solution error (36) are presented. It can be seen that
the main part of error is determined by viscosity and it may be computed and eliminated.
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Figure 6. The error of calculation as a function of the reciprocal of mesh step (viscous
�ow, Re=1000). 1—error due to viscous terms, 2—deviation of re�ned solution from

analytical one, 3 and 4—bounds of error.
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Figure 7. The error of calculation as a function of the reciprocal of mesh
step (inviscid �ow). 1—deviation of �nite-di�erence solution from analytical

one, 2—error correction according (37).

The re�ned result is close to analytical one and is located within the interval of error bound.
Nevertheless, there is no convergence of error bound as expected from expression (36). Let
us consider the related results for inviscid �ow. Figure 7 presents the deviation of the �nite-
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Figure 8. The error of calculation as a function of the reciprocal of mesh step (inviscid �ow).
1—deviation of re�ned solution from analytical one, 2, 3—error bounds (38).

di�erence solution from the analytic one and correction of error in accordance with (35). The
re�nement of the solution using adjoint parameters according (35) enables the elimination of
major part of the discretization error. The �rst order of computable error (35) may be detected
if Figure 7 is analysed. Calculations demonstrated a good coincidence of the re�ned solution
with analytical one and reliability of the error bound estimate (Figure 8). Nevertheless, the
expectable second order of accuracy (36) does not manifest itself. When mesh is �ne enough
the error bound practically does not depend on the step size. This is caused by the growth of
third derivatives of �ow parameters as step size decreases. It may be due to the formation of
weak discontinuities in the �ow�eld.
A comparison of Figures 6 and 8 demonstrates that the impact of viscosity e�ect using

adjoint equations enables us to obtain result close to inviscid computation as far as accuracy
is concerned. Thus, there exist feasibility for calculation of inviscid �ow (Euler equations)
and a posteriori error estimation on the basis of PNS. This extends the applicability of the
considered method which is not directly applicable to the supersonic Euler equations due to
the existence of discontinuous solutions.
Figure 9 presents the dependence of error of re�ned solution in the comparison with the

initial error of solution (caused both by viscous terms and by approximation error) as a
function of Re number. As the viscosity decreases, a certain increase of error bound estimate
is visible due to growth of third derivatives of gasdynamical parameters. For small enough
Re numbers the error of �nite-di�erence calculation breaks the error bound that is caused
by the signi�cant distortion of �ow pattern (compare Figure 2 (Re=1000) and Figure 10
(Re=10)).
In general, for a smooth �ow the errors both for inviscid �ow and for viscous �ow (re�ned

via adjoint parameters) are close.
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Figure 9. The error of calculation as a function of Reynolds number. 1—devia-
tion of �nite-di�erence solution from analytical one, 2—error due to viscous terms,
3—deviation of re�ned solution from analytical one, 4, 5—error bounds (38).
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Figure 10. Isolines of density for small Re (Re=10).

6.2. Discontinuous �ow �eld

As another test, the error of the density past crossing shocks (�= ±22:23◦, M =4, Re=1000)
is calculated. Figure 11 presents the density isolines within �ow�eld, Figure 12 illustrates
isolines of the adjoint density, Figure 13 shows the density of error bound according (38),
and Figure 14 presents isolines of the error caused by viscous terms.
This test is more complicated due to unbounded derivatives of gasdynamics parameters for

inviscid �ow. The presence of viscosity enables us to calculate �ows with shocks, while at
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Figure 11. Isolines of density (crossing shocks).
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Figure 12. Isolines of adjoint density (concentration correlates with estimated point).

the same time it introduces an error proportional to 1=Re. When viscosity decreases this error
diminishes too, unfortunately the error related to unbounded derivatives increases simultane-
ously.
Figure 15 presents results for Re=1000 as a function of the spatial step size. The viscous

component of error is small enough, the deviation of the �nite-di�erence solution from ana-
lytical one is small also and weakly depends on the step size, and this e�ect may be attributed
to uncontrolled errors (the non-divergence of the scheme, possible).
Figure 16 presents results for inviscid �ow as a function of the spatial step size. Both error

and error bound have an order of convergence over grid size of O(1).
Figure 17 shows the dependence of error on Reynolds number. As the viscosity decreases

the error and error bound increase and approach the asymptote at the inviscid limit.
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Figure 13. Isolines of error bound density (38).
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Figure 14. Isolines of error density caused by viscosity (23).

A natural way to eliminate errors connected with a non-divergent scheme is the choice
of divergent one. The following systems of divergent Euler equations (two-dimensional) and
related adjoint equations were used in numerical tests.
Divergent Euler equations:

@(�Uk)
@X k =0 (40)

@(�UkU i + P�ik)
@X k =0 (41)

@(�Ukh0)
@X k =0 (42)

Here U 1 =U;U 2 =V , h(�; P)= �e is the enthalpy, h0 = (U 2+V 2)=2+h is the total enthalpy.
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Figure 15. The error of calculation as a function of the reciprocal of mesh step
(viscous �ow). 1—deviation of re�ned solution from analytical one, 2—error density

caused by viscosity (23), 3, 4—error bounds (38).
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Figure 16. The error of calculation in dependence on the reciprocal of mesh step (inviscid �ow).
1—deviation of re�ned solution from analytical one, 2—error bounds (38).

Adjoint equations:

Uk @��

@X k +UkU i @�i

@X k +
� − 1
�

@�k

@X k (h0 − UnUn=2) +Ukh0
@�h

@X k =0 (43)
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Figure 17. The error of calculation as a function of Reynolds number. 1—deviation of �nite-di�erence
solution from analytical one, 2—error caused by viscosity (23). 3—error bound (38).
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@X nUk + h0
@�h
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�

@�k

@X k =0 (45)

Several variants of �rst-order �nite-di�erence schemes (two dimensional) were used, in-
cluding ‘donor cells’ [47] and a scheme of Courant–Isaacson–Rees [48]. As expected, the
deviation of �nite-di�erence solution from analytic one for divergent scheme is signi�cantly
smaller compared with non-divergent one. Unfortunately, error estimates use derivatives that
are unbounded in divergent case also (excluding one-dimensional �ow). The results of test
computations are analogous to results obtained using the non-divergent scheme. We may com-
pare the grid convergence for non-divergent scheme (Figure 16) with results for divergent
one (Figure 18, inviscid �ow).
If we introduce viscosity, we can obtain convergent estimates of error for divergent scheme

too (Figure 19).
The above tests are oriented towards comparison with analytical solutions that belong to

inviscid �ows. This creates some speci�cs. For example, the previous test �ow�eld is com-
posed of regions of constant gasdynamical parameters separated by shocks. So, it is not the
best problem from error estimates viewpoint using derivatives of gasdynamical parameters.
Thus, it is expedient to consider a test problem more typical of viscous gas �ows. Let us
consider a viscous (Re=1000) supersonic weakly underexpanded (pj=p∞=2) jet in super-
sonic �ow. Figure 20 presents isolines of the density in �ow�eld, Figure 21 presents isolines
of the adjoint density, and Figure 22 presents the spatial density of error bound estimate
(38). Unfortunately, corresponding analytical solutions for this problem are unknown. Hence,
the solution on the �nest mesh was regarded as an ‘exact’ one. Figure 23 presents the error
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Figure 18. The error of calculation as a function of the reciprocal of mesh step (inviscid
�ow, divergent scheme). 1—deviation of �nite-di�erence solution from analytical one,

2—correction (37), 3—bound of error.
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Figure 19. The error of calculation as a function of the reciprocal of mesh step (viscous �ow,
divergent scheme). 1—deviation of re�ned solution from analytical one, 2, 3–error bounds (38).

bound and the deviation of the solution from ‘exact’ one in dependence on the grid step.
The convergence order for error bound is close to one (slightly below and decreases as the
mesh is re�ned). This result may be an indirect evidence of presence of discontinuities in
derivatives of gasdynamical parameters.
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Figure 20. Isolines of density.
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Figure 21. Isolines of adjoint density.

7. THE EVALUATION OF COMPUTABLE ERROR USING RESIDUAL

The residual based approach closely related to [19] is used herein for an estimation of com-
putable error without explicit use of di�erential approximation. The main di�erence between
this approach and that of [19] is in the residual calculation. We do not use an interpolation
of �ow parameters from grid points to total domain. Instead, we use a higher-order scheme
on the same numerical solution. Let us consider this approach at a heuristic level. Assume
we have a �ow�eld computed via certain �nite-di�erence method. We try to estimate the
error of this calculation. Let us use the equation (@�̃=@t)+(@�̃=@x)=0 as an example. Let the
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Figure 22. The density of error bound (38).
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Figure 23. The error of calculation as a function of the reciprocal of mesh step. 1—deviation
of re�ned solution from ‘exact’ one, 2—bound of error.

�ow�eld be calculated via �rst-order �nite-di�erence approximation

�n+1
k − �n

k

�
+

�n
k+1 − �n

k

hk
=0 (46)

The di�erential approximation of (44) may be written as (@�=@t) + (@�=@x) + ��=0. Let
us write it in more detail using a Taylor series with the remainder in a Lagrange form,
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(parameters �n
k ∈ (0; 1); �n

k ∈ (0; 1) are unknown).
@�
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+
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+
1
2

(
�
@2�(tn; xk)
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@2�(tn; xk)
@x2

)
+

�2

6
@3�(tn + �n

k�; xk)
@t3

+
h2k
6

@3�(tn; xk + �n
khk)

@x3
= 0 (47)

Let us replace (46) by the stencil of next (second) order of accuracy and calculate residual 	n
k ,

arising from applying the high-order scheme to the �ow�eld calculated using the low-order
scheme.

�n+1
k − �n−1

k

2�
+

�n
k+1 − �n

k−1
2hk

= 	n
k (48)

Expression (48) may be expanded in the Taylor series as

	n
k =

�n+1
k − �n−1

k

2�
+

�n
k+1 − �n
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2hk

=
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6
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n
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@x3
(49)

The function �n
k is obtained from solution of (46) and so complies with condition (47). Let

us substitute (47) in (49), then the residual assumes the form

	n
k =

�2

6
@3�(tn + �nk�; xk)

@t3
+

h2k
6

@3�(tn; xk + 
n
khk)
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6
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@t3
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6

@3�(tn; xk + �n
khk)

@x3
(50)

Correspondingly, the lower-order term of truncation error (47) has a form

1
2

(
�
@2�(tn; xk)

@t2
+ hk

@2�(tn; xk)
@x2

)
= −	n

k +
�2

6
@3�(tn + �nk�; xk)

@t3
− �2

6
@3�(tn + �n

k�; xk)
@t3

+
h2k
6

@3�(tn; xk + 
n
khk)

@x3

−h2k
6

@3�(tn; xk + �n
khk)

@x3
≈ 	n

k (51)

Thus, the lower term of di�erential approximation (47) may be estimated via a residual
obtained from using high-order stencil on the solution calculated using main �nite-di�erence
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Figure 24. The comparison of di�erent error evaluation as a function of the
reciprocal of mesh step. 1—DA based error, 2—residual based error (52),

3—di�erence of the analytical and numerical values.

scheme. As a result we obtain the �eld of residuals that locally disturb the exact solution.
According to (3) the variation of estimated value has a form ��(��)=

∫
� �� dt dx. Taking

into account (51) we obtain

��(��)=
∫
�
�� dt dx ≈ −

∫
�
	 dt dx (52)

In contrast to (3), expression (52) may be easily calculated without knowledge of dif-
ferential approximation. On other hand, the di�erential approximation approach provides a
more accurate account of higher terms and estimation of re�ned solution bounds. Let us com-
pare these approaches using �rst-order upwind scheme and divergent form of Euler equations
(38)–(43). For estimation of residual we use second-order approximation (48).
The deviation of calculation from analytical, the error estimation using DA based (35)

and residual based methods are presented in Figure 24 for Prandtl–Mayer �ow. The close
correlation of estimates (35) and (52) for continuous �ow is visible. If we recast Figure 24
on a logarithm scale, all these functions may be described by a �rst-order curve O(h).
In contrast to (3) expression (52) may be extended to discontinuous �ows if divergent

�nite di�erence schemes are used.
For discontinuous �ow both derivatives in (48) are unbound, nevertheless these singularities

are mutually compensated due to conservation law and the residual 	n
k is bounded. This residual
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Figure 25. The errors as functions of the reciprocal of mesh step. 1—di�erence of the analytical
and numerical values, 2—DA based error, 3—residual based error (52).

may be calculated using only a bounded combination of derivatives of �ow parameters and
applied for error estimation. A corresponding example is presented in Figure 25 for crossing
shocks. It presents the error estimation using a residual based method (52), DA based (35)
one, and the deviation of the calculation from the analytical value. Figure 25 demonstrates
the residual approach (52) to provide a much more accurate estimation of error if compared
with the di�erential approximation (35), which explicitly diverges. Unfortunately, the residual
based approach does not provide an error bound.

8. DISCUSSION

The di�culties connected with using adjoint approach are of the same nature as those arising
while using Richardson extrapolation. They are caused by the presence of discontinuities that
determine the order of accuracy observable in numerical tests. Let us consider this problem
at an heuristic level. For this purpose let us write (5) in more detail. Let m be the number
of bounded derivatives (derivatives of the order m and higher may have a �nite number of
jump discontinuities), p is the order of the approximated derivative, j is the formal order of
accuracy of a �nite-di�erence scheme. Let us approximate derivatives by the �nite di�erences
D�(t; x)=Dx. The limit

lim
h→0

∑
�

(
hjD

p+j�(t; x)
Dxp+j

)
h��
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corresponds to the �rst term (5). Consider its asymptotic form. The derivative of order m+1
has an asymptotic (�(m)+ − �(m)− )=h ∼ �=h for the jump discontinuity, while the derivative of
order m+ 2 has the asymptotic (�=h − 0=h)=h ∼ �=h2, correspondingly the derivative of the
order p+ j has the asymptotic �=hp+j−m. Thus

lim
h→0

(
h jD

p+j�(t; x)
Dxp+j

)
∼ lim

h→0

(
h j �

hp+j−m

)

There is a limited number of nodes that participate in the summation in the vicinity of
discontinuity, so the multiplier h (appearing during summation) should be taken into account,
yielding

k =Nx;n= nr+ns∑
k = 1;n= nr−ns

(
hjD

p+j�(t; x)
Dxp+j

)
h�� ∼ hm−p+1

Thus, the terms of jth formal order of accuracy contain a component of jth order (appearing
due to integration over the smooth part of the solution) and a component having the order
i=m − p + 1 (engendered by the jump discontinuity of the mth order derivative). So, the
order of convergence depends on the solution and may asymptotically tend to a minimal order
i=m−p+1 as the grid size decreases. In Reference [38] the in�uence of discontinuities on
the error is considered for example that of the spatial derivative of temperature.
The calculation of approximation errors by considered method requires the existence of

bounded derivatives of relatively high order. They do not exist always, so, for supersonic Euler
equations, these estimates may be calculated only for smooth solutions. If discontinuities are
expected for the studied �ow, the use of viscosity enables us to conduct these estimates. The
viscosity engenders its own component of error, which may also be eliminated using adjoint
equations. This approach permits to obtain error estimates for inviscid supersonic �ows using
this method.
Naturally, we can estimate not only the error of density written as a functional (15), but

the error of other functionals. The di�erences are only in the form of the source terms in
adjoint equations (16)–(19).
For justi�cation of error estimates we should verify that the unaccounted error component

induced by approximation error of adjoint equations is small enough. For calculation of this
component we can solve second-order adjoint equations [39]. Such a suitable example is
presented in Reference [38] for heat conduction equation.
For error estimates we use numerical results that may be signi�cantly less smooth then

the computed physical �eld. Thus, for certain �nite-di�erence schemes (non-monotonic) the
error bounds may be too large. The applicability of method considered above is restricted to
numerical schemes which do not exhibit non-physical oscillations.

9. CONCLUSION

The computable pointwise error of viscous �ow parameter caused by a �nite-di�erence ap-
proximation may be evaluated using di�erential approximation terms and adjoint equations.
The asymptotic bound of re�ned solution error may be determined simultaneously.
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Numerical tests carried out demonstrated the e�ciency of this method for parabolized
Navier–Stokes. The in�uence of viscous terms may be calculated similarly and that provides
also for feasibility of estimating errors of the Euler equations.
The computer time required for point-wise re�ning of a single parameter at a single point

and error bound calculation is equal to the time required for �ow�eld calculation on the same
grid.

NOMENCLATURE

Cv speci�c volume heat capacity
e speci�c energy, CvT
f �ow parameters (�;U; V; e)
h enthalpy
h0 total enthalpy
hx, hy spatial steps along X and Y
M Mach number
Nt number of time steps
Nx number of spatial nodes along X
N number of spatial nodes along Y
L Lagrangian
P pressure
P Prandtl number (Pr=�Cv=�)
R gas constant
Re Reynolds number (Re=�∞U∞Ymax=�∞)
T temperature
U velocity component along X
V velocity component along Y
X; Y co-ordinates

Greek letters

�; �; � coe�cients in Taylor–Lagrange series
� Dirac’s delta function
��corrx correctable error, connected with the expansion along X
��corr correctable error
��supx component of bound of inherent error,

connected with the expansion in co-ordinate X
��sup component of bound of inherent error
� speci�c heat ratio
� functional
� viscosity
� thermal conductivity
� density
� temporal step
��;�U ;�V ;�e adjoint variables
� domain of calculation
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Subscripts

∞ entrance boundary parameters
an analytical solution
corr corrected error
est estimated point
exact exact solution
k number of spatial mesh node along Y
n number of step along X
sup bound of inherent error
x component of truncation error connected with Taylor expansion in co-ordinate X
t component of truncation error connected with Taylor expansion in time
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