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Abstract

A wavelet regularization approach is presented for dealing with an ill-posed problem of adjoint parameter estimation applied to

estimating in¯ow parameters from down-¯ow data in an inverse convection case applied to the two-dimensional parabolized

Navier±Stokes equations. The wavelet method provides a decomposition into two subspaces, by identifying both a well-posed as well

as an ill-posed subspace, the scale of which is determined by ®nding the minimal eigenvalues of the Hessian of a cost functional

measuring the lack of ®t between model prediction and observed parameters. The control space is transformed into a wavelet space.

The Hessian of the cost is obtained either by a discrete di�erentiation of the gradients of the cost derived from the ®rst-order adjoint or

by using the full second-order adjoint. The minimum eigenvalues of the Hessian are obtained either by employing a shifted iteration

method [X. Zou, I.M. Navon, F.X. Le Dimet., Tellus 44A (4) (1992) 273] or by using the Rayleigh quotient. The numerical results

obtained show the usefulness and applicability of this algorithm if the Hessian minimal eigenvalue is greater or equal to the square of

the data error dispersion, in which case the problem can be considered as well-posed (i.e., regularized). If the regularization fails, i.e.,

the minimal Hessian eigenvalue is less than the square of the data error dispersion of the problem, the following wavelet scale should be

neglected, followed by another algorithm iteration. The use of wavelets also allowed computational e�ciency due to reduction of the

control dimension obtained by neglecting the small-scale wavelet coe�cients. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The method of well-posed subspace determination using multi-scale (wavelet) approach was proposed
in [1] for the solution of ill-posed problems. This algorithm is signi®cantly faster than the method of
optimal decomposition of control space into ``well-posed'' and ``ill-posed'' subspaces based on the total
set of eigenvalues. Nevertheless, the approach proposed in [1] is based on the direct search of eigenvalues
and eigenvectors of an explicitly de®ned linear operator (more precisely, the product of forward and
adjoint operators A�A). As an alternative, we consider applying here an algorithm for ®nding the
minimum eigenvalue of the Hessian of the cost functional based on the second-order adjoint approach
presented in [2] to a nonlinear problem in the form of a system of coupled partial di�erential equations
(PDEs).

The present paper describes an algorithm for determining a well-posed subspace using elements of both
approaches presented in [1,2].
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Liu [11] gave a quantitative relation between the sensitivity of the mapping from the parameter space
into the observation space. In this way, the Haar basis decomposes parameters to be estimated into parts
with di�erent sensitivity order, thus providing an easy method to identify suitability of multi-resolution
methods for inverse problems.

The choice of the scale of wavelet transformation is determined by performing a subsequent search for
the minimum eigenvalues of a Hessian obtained by considering the ®rst- and second-order adjoint prob-
lems. The algorithm is based on cheap calculation of Hessian action using adjoint problems and on the
information on the data error (we assume the data error dispersion r to be known). We calculate the
minimal eigenvalue of the Hessian of the cost functional using iterations and adjoint approach. If it is
greater or equal to r2 then the problem is considered to be well-posed. If it is less than r2 then the following
operations should be performed:
· Control space is transformed into wavelet space.
· The detailed coe�cients of smallest scale are neglected (i.e. we are e�ectively decreasing the control space

dimension by a factor of 2).
· Recalculate the Hessian minimal eigenvalue. If it is greater or equal to r2 then the problem is considered

to be well-posed in this subspace and iterations are stopped. If it is less than r2 then the following scale
should be neglected and the iteration is to be repeated.

This algorithm is implemented for a parabolized Navier±Stokes equations model. This model is used
because these equations may be solved by marching along the X-coordinate, which provides for very
fast computations. Despite its simplicity, this model correctly describes realistic and practically im-
portant ¯ows with the restriction such that the ¯ow is supersonic in the X-direction and viscous effects
along this direction are negligible. The simplest example is the spreading of the propulsion jet in a
supersonic air¯ow. The sketch of the ¯ow-®eld and boundaries is presented in Fig. 1. The present state
of experimental art provides abundant data on spatial distributions of velocity components, tempera-
ture, density, and concentrations in ¯ow-®eld. These methods provide both high spatial resolution and
high accuracy. Nevertheless, the direct measurement of ¯ow parameters in regions of interest may
prove to be dif®cult, for example, due to lack of access. The measurements may be located in some
another zones. On the other hand, the estimation of total ¯ow-®eld from measurement in some section
may be of interest also. Both these problems may be reduced to the estimation of entrance boundary
parameters from measurements in a downstream ¯ow-®eld section (or set of sections). This problem
may be posed in a variational statement, where the discrepancy between measured and calculated ¯ow
parameters is minimized. These problems are ill-posed and exhibit high instability in presence of data
error [8]. The instability is much more serious for these problems due to their high nonlinearity and the
solution failure at negative density or temperature. The parabolized Navier±Stokes equations are used
herein as a realistic example of viscous ¯ow, which may be solved in a very fast and computationally
ef®cient way.

The present paper is organized as follows. In Section 2, we present the multi-scale regularization ap-
proach for the ill-posed problem of adjoint parameter estimation, based on the work of Liu et al. [1] along
with use of the Fisher informational matrix for estimating the degree of the problem ill-posedness, based on
the work of Alifanov et al. [4].

Section 3 consists of brief conclusions and a succinct presentation of the multi-scale regularization al-
gorithm employed.

Fig. 1. Flow sketch. A ± entrance boundary, C ± section of measurements (out¯ow boundary).
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Section 4 consists of a short presentation of ®rst- and second-order adjoint methods for inverse-con-
vection problems, followed in Section 5 by the presentation of the ®rst- and second-order adjoint of the
parabolized Navier±Stokes equations as well as the explicit formulation of the cost functional to be min-
imized for optimal parameter estimation.

Section 6 provides a brief presentation of the Lagrangian as a ®rst step in the derivation of full ex-
pressions for the ®rst- and second-order adjoint model.

Section 7 describes in detail the tangent linear and Lagrangian variation as a function of the control
parameters for the parabolized Navier±Stokes equations. The technical details related to the adjoint
problem statement are presented in Appendix A.

Section 8 presents the ®rst-order adjoint model equations followed in Section 9 by the derivation of the
second-order adjoint. Having in place the forward, tangent linear, ®rst- and second-order adjoint models
we proceed to calculate the spectrum bounds of the Hessian of the cost functional with respect to the
control variables. This is done in Section 10 using a Rayleigh quotient and a calculation of the minimal
eigenvalues by a shifted iteration method. Results of the optimal parameter estimation using the wavelet
regularization procedure with di�erent scales of wavelet transformation are presented for increasing
Reynolds numbers and using di�erent scales of regularization related to the wavelet transformation.

The parameters were initially perturbed with a random value in order to simulate the data error. Nu-
merical tests show that the new algorithm performs successfully both in estimating and regularizing in¯ow
parameters related to the inverse-convection problem described by the parabolized Navier±Stokes equa-
tions and that the Hessian minimal eigenvalue increases with increasing Reynolds numbers as well as with
the increase in the wavelet scale.

Section 11 provides a comparison of the new method with the zeroth- and second-order Tikhonov
regularization. The details of the ®rst-order adjoint calculation are presented in Appendix A.

2. Multi-scale regularization

Algorithms for ill-posed problems may be often reduced to the solution of an ill-conditioned system of
linear equations. The ill-conditioned operator may be represented in diagonal form using singular value
decomposition. Some eigenvalues of this operator may be zero or very close to zero. The solution may then
be searched in the subspace of those eigenvectors whose eigenvalues are greater than some value [3]. This
method may be viewed as a variant of Occam's regularization where the ``simplest'' solution is de®ned as
one composed of a minimum number of eigenvectors with large eigenvalues.

Let A be an operator (matrix) and e be certain small value (to be considered below as the data mismatch
e�v� � kAvÿ bk2

H ).
We de®ne boundary functions for subspace U � V (V -being the control functions' space):

Binf�U� � inf
kAXk
kXk ; Bsup�U� � sup

kAXk
kXk :

Using singular value decomposition, we can de®ne the control functions' space V as a sum V � V �e � V ÿe of
two subspaces, such that Binf�V �e � > e, Bsup�V ÿe � < e. V �e , is spanned by eigenvectors fv1; v2; . . . ; vLg while
V ÿe by fvL�1; vL�2; . . . ; vNg. Herein, the eigenvectors are ordered according to the eigenvalues of magnitudes
kL > e > kL�1. We may neglect V ÿe and search the solution only in V �e [1,3] for numerical stability. This
approach implies the calculation of all eigenvalues and eigenvectors, which is a computationally intensive
task.

Singular value decomposition may be replaced by a multi-scale (wavelet) decomposition [1]. We may
construct a sequence of subspaces with decreasing Binf . This allows us to ®nd two (suboptimal) subspaces
Uÿe ;U

�
e : Binf�U�e � > e:

Multi-scale resolution is based on the sequence of subspaces: (Vj is a subspace spanned over the wavelet
mother function of scale j)

V0 � V1 � V2 � � � � Vj � V :
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The subspace of scale j may be de®ned also using Wj, which is a subspace spanned over the wavelet of
scale j:

Vj � V0 � W0 � W1 � � � � � Wjÿ1:

The control functions' space may be written in the form

V � V0 � W0 � W1 � � � � � Wj � � � �

The space V may be decomposed into two subspaces for every scale j:

V � Vj � V ?j ;

where V ?j � Wj � Wj�1 � � � � is the subspace of wavelets of high scale (details).
Work by Liu et al. [1] demonstrates (for Haar basis) that Bsup�V ?j �6C � 2ÿj=2, and for every e we can ®nd

a j such that Bsup�V ?j �6 e. Thus, wavelet transformation provides an ordering of subspaces V ?j according to
the scale j and the minimal eigenvalues. There is no similar proof for Binf�Vj� (although such ordering seems
to be quite natural). So, our numerical tests are performed for estimating kmin for the sequence Vj depending
on the scale j. According to Liu et al. [1], the discrete wavelet transformation is used for the approximation
of the control functions

f �y� � a0u0�y� �
XJ

j�0

X2jÿ1

k�0

aj
kW �2jy ÿ k�;

which may be written in ®nite-dimensional form as

fi � W � aj
k �i � 1; . . . ;N�;

where j is the scale, k translation, and N is the number of controls. The Daubechies-20 [5] transform
(implemented via the pyramidal algorithm) was used, as it is more suitable for smooth functions in com-
parison with the Haar transformation. Numerical tests con®rmed a decrease of kmin�Vj� depending on the
scale j.

The work in [1] concerns only linear problems. The minimization of e�v� � kAvÿ bk2
H may be reduced to

the solution of Euler equations A�Ax � A�b and the subspaces of A�A are studied. For nonlinear problems,
the Hessian is used instead of the A�A operator. An approach using the Fisher information matrix (ap-
proximating the Hessian in vicinity of the solution) is described in [4] for the estimation of problem ill-
posedness.

Given the discrepancy (cost functional) e�u� �Pi�f obs
i ÿ fi�u��2, where u is the vector of control pa-

rameters, the Hessian of the cost functional with respect to control parameters assumes the form

Hjk � o2e
ou2

jk

�
X

i

ofi

ouj

ofi

ouk
ÿ 2

X
i

f obs
i

ÿ ÿ fi

� o2fi

ouj ouk
:

Let Sij � ofi=ouj denote the sensitivity matrix (rectangular) and Mij � �ofk=oui��ofk=ouj� the informational
matrix (square). When divided by data error dispersion, the Fisher matrix is de®ned by

Mij �
X

k

1

r2
k

ofk

oui

ofk

ouj
:

The inverse matrix D � Mÿ1 is a dispersion matrix of the control parameters' error uj. The magnitude of
the Fisher informational matrix minimal eigenvalue compared with the data error kmin � r2 may be used
for estimating the problem ill-posedness [4]. The calculation of the informational matrix is based on the
system of sensitivity equations, which is more time and memory consuming compared with the adjoint
approach.
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3. The sequent multi-scale regularization algorithm

The use of adjoint methods provides a cheap way for the calculation of the Hessian action and, con-
sequently, the bounds of its spectrum. Thus, we may not search for total spectrum of Hessian as it is done in
[1]. We may consequently check subspaces from the viewpoint of minimum eigenvalue of the Hessian and
the a priori known data error.

The schematic algorithm consists of the following stages:
1. We calculate the minimal eigenvalue of the Hessian of the cost functional. If it is greater or equal to r2

(r-data error dispersion) then the problem is considered to be well-posed. If it is less than r2 the follow-
ing operations should be performed:

2. Control space is transformed into wavelet space.
3. The detailed coe�cients of the smallest scale are neglected (i.e., we are e�ectively decreasing the control

space dimension by a factor of 2).
4. Recalculate the Hessian minimal eigenvalue. If it is greater or equal to r2 then the problem is considered

to be well-posed in this subspace. If it is less than r2 then the following scale should be neglected and the
iteration is to be repeated.

This algorithm is based on fast calculation of Hessian action that is connected with following adjoint
problems.

4. Adjoint problems of the ®rst- and second-order

The solution of the adjoint problem used for gradient calculation is the standard approach used for the
inverse-convection problems [2,6]. The action of Hessian may be calculated by using the second-order
adjoint approach [2]. In accordance with [2], we consider here the general scheme for second-order adjoint
problem. Herein X denotes the marching coordinate (the time analogue), f is a vector of variables (¯ow
parameters), C is a matrix of observation, e is the discrepancy between model calculation and the obser-
vations, and U is a vector of the control variables (parameters on the in¯ow boundary).

Forward problem:

df
dX
� F f� �; f �0� � U ; e�U� � 1

2

Z Y

0

kCf ÿ fobsk2
dY : �1�

First-order adjoint problem:

dW
dX
� oF

of

T

W � CT�Cf ÿ fobs�; W�1� � 0; re�U� � ÿW�0�: �2�

Tangent problem:

df̂
dX
� oF

of
f̂ ; f̂ �0� � u: �3�

Second-order adjoint problem (tangent to ®rst-order adjoint):

dŴ
dX
� o2F

of 2
f̂

� �
W� oF

of

T� �
Ŵ � CTCf̂ ; Ŵ�1� � 0; rê�U� � H�U�u � ÿŴ�0�: �4�

Thus, the Hessian action on vector U may be obtained by sequentially solving Eqs. (1)±(4) (all about the
forward problem from computer resources viewpoint). We consequently solve the following four initial-
boundary problems:
1. Forward problem, Eq. (1) (X is increasing).
2. First-order adjoint problem, Eq. (2) (X is decreasing, i.e., backward in time).
3. Tangent problem, Eq. (3) (X is increasing).
4. Second-order adjoint problem, Eq. (4) (X is decreasing).
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In order to ®nd the Hessian, the calculations for N operations should be performed, so the Hessian's
computational cost equals 4N .

Numerical di�erentiation using the Hessian-free ®nite di�erence expression (see Wang et al. [9])

H du � �grad�u� a du� ÿ grad�u��=a

requires also four solutions of this type of problem but is somewhat less accurate.
In the following, we consider the scheme (1)±(4) for the two-dimensional parabolized Navier±Stokes

equations.

5. First- and second-order adjoint problems for parabolized Navier±Stokes equations

We consider here the problem estimation of the in¯ow parameters u � f1�Y � ��q�Y �;U�Y �; V �Y �; T �Y ��
from out¯ow measurements (Fig. 1). The ¯ow is two-dimensional supersonic laminar one governed by the
parabolized Navier±Stokes equations (viscosity is neglected in the X -direction, which rapidly decreases the
computational time, but at a sacri®ce of the applicability range).

o�qU�
oX

� o�qV �
oY

� 0; �5�

U
oU
oX
� V

oU
oY
� 1

q
oP
oX
� 1

Re q
o2U
oY 2

; �6�

U
oV
oX
� V

oV
oY
� 1

q
oP
oY
� 4

3qRe
o2V
oY 2

; �7�

U
oe
oX
� V

oe
oY
� �jÿ 1�e oU

oX

�
� oV

oY

�
� 1

q
j

Re Pr
o2e
oY 2

 
� 4

3Re
oU
oY

� �2
!
; �8�

e � CvT � R=�jÿ 1�T ; P � �jÿ 1�qe; �X ; Y � 2 Q � �0 < X < 1; 0 < Y < 1�:

The boundary conditions of the undisturbed external ¯ow (9) are used on the boundaries Y � 0; Y � 1:

e�f1�Y �� �
Z Z

Y
fobs�X ; Y �� ÿ f �X ; Y ��2d�X ÿ Xm�d�Y ÿ Ym� dX dY : �9�

We search for f1�Y � � �q�Y �;U�Y �; V �Y �; e�Y �� using out¯ow data (Fig. 1) by minimizing discrepancy
cost functional

e�f1�Y �� �
Z Z

Y
fobs�X ; Y �� ÿ f �X ; Y ��2d�X ÿ Xm�d�Y ÿ Ym� dX dY : �10�

6. Lagrangian

According to [2,4,6], we de®ne the Lagrangian using the weak form of Eqs. (5)±(8) and the discrepancy
(10).
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e0�f1�Y �� � e�f1�Y �� �
Z

X

Z
Y

o�qU�
oX

�
� o�qV �

oY

�
Wq�X ; Y � dX dY

�
Z

X

Z
Y

U
oU
oX

�
� V

oU
oY
� 1

q
oP
oX
ÿ 1

Re q
o2U
oY 2

�
WU �X ; Y � dX dY

�
Z

X

Z
Y

U
oV
oX

�
� V

oV
oY
� 1

q
oP
oY
ÿ 4

3Re q
o2V
oY 2

�
WV �X ; Y � dX dY

�
Z

X

Z
Y

U
oe
oX

 
� V

oe
oY
� �jÿ 1�e oU

oX

�
� oV

oY

�
ÿ j

qRe Pr
o2e
oY 2
ÿ 4

3Re q
oU
oY

� �2
!

� We�X ; Y � dX dY : �11�

We consider (Wq�X ; Y �;WU �X ; Y �;WV �X ; Y �;We�X ; Y �� 2 H 1;2�Q�, where H 1;2�Q� is a Hilbert space of ®rst-
and second-order distributions.

7. Tangent linear problem and Lagrangian variation

The tangent linear problem should be stated for determination of the Lagrangian's (11) variation as a
function of the control parameters' variation. We disturb the boundary condition (9)

Df �0; Y � � Df1�Y � �12�

and obtain corresponding variations of Dq;DU ;DV ;De in (5)±(8) by subtracting the undisturbed variables.

U
o�Dq�
oX

� q
o�DU�

oX
� q

o�DV �
oY

� V
o�Dq�
oY

� Dq
oU
oX
� DU

oq
oX
� Dq

oV
oY
� DV

oq
oY
� 0; �13�

U
oDU
oX
� DU

oU
oX
� DV

oU
oY
� V

oDU
oY
ÿ 1

qRe
o2DU
oY 2

� Dq
q2Re

o2U
oY 2
ÿ Dq

q2

oP
oX

� �jÿ 1�
q

Dq
oe
oX

�
� e

oDq
oX
� q

oDe
oX
� De

oq
oX

�
� 0; �14�

U
oDV
oX
� DU

oV
oX
� DV

oV
oY
� V

oDV
oY
ÿ 4

3q Re
o2DV
oY 2

� 4Dq
3q2 Re

o2V
oY 2
ÿ Dq

q2

oP
oY

� �jÿ 1�
q

Dq
oe
oY

�
� e

oDq
oY
� q

oDe
oY
� De

oq
oY

�
� 0; �15�

U
oDe
oX
� DU

oe
oX
� DV

oe
oY
� V

oDe
oY
� �jÿ 1�De

oU
oX

�
� oV

oY

�
� �jÿ 1�e oDU

oX

�
� oDV

oY

�
ÿ 1

q
j

Re Pr
o2De
oY 2

 
ÿ j

Re Pr
Dq
q

o2e
oY 2
� 8

3Re
oDU
oY

� �
oU
oY

� �
ÿ Dq

q
4

3Re
oU
oY

� �2
!
� 0; �16�

Df �0; Y � � Df1�Y �; Df �X ; 1� � Df1�1�; Df �X ; 0� � Df1�0�: �17�

The tangent linear problem is used not only for deriving the ®rst-order adjoint problem but also serves as a
component for solution of the second-order adjoint problem (Hessian action calculation).
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8. First-order adjoint equations

We look for (Wq;WU ;WV ;We) such that De0 �
R

Y grad�e�Df1�Y � dY while all other ®rst-order terms
vanish. Details of ®rst-order adjoint (FOA) derivation are presented in Appendix A.

U
oWq

oX
� V

oWq

oY
� �jÿ 1� o�WV e=q�

oY
� �jÿ 1� o�WU e=q�

oX
ÿ jÿ 1

q
oe
oY

WV

�
� oe

oX
WU

�
� 1

q2

oP
oX

�
ÿ 1

q2Re
o2U
oY 2

�
WU � 1

q2

oP
oY

�
ÿ 4

3Re
o2V
oY 2

�
WV ÿ 1

q2

c
Re Pr

o2e
oY 2

 
� 4

3Re
oU
oY

� �2
!

We

� 2 qobs�X ; Y �� ÿ q�X ; Y ��d�X ÿ Xm�d�Y ÿ Ym� � 0; �18�

U
oWU

oX
� o�WU V �

oY
� q

oWq

oX
ÿ oV

oX
WV

�
� oe

oX
We

�
� o

oX
P
q

We

� �
� o2

oY 2

1

qRe
WU

� �
ÿ o

oY
8

3Re
oU
oY

We

� �
� 2 Uobs�X ; Y �� ÿ U�X ; Y ��d�X ÿ Xm�d�Y ÿ Ym� � 0; �19�

o�UWV �
oX

� V
oWV

oY
ÿ oU

oY
WU

�
� oe

oY
We

�
� q

oWq

oY
� o

oY
P
q

We

� �
� 4

3Re
o2

oY 2

WV

q

� �
� 2 Vobs�X ; Y �� ÿ V �X ; Y ��d�X ÿ Xm�d�Y ÿ Ym� � 0; �20�

o�UWe�
oX

� o�V We�
oY

ÿ jÿ 1

q
oq
oY

WV

�
� oq

oX
WU

�
ÿ �jÿ 1� oU

oX

�
� oV

oY

�
We � �jÿ 1� oWV

oY

� �jÿ 1� oWU

oX
� j

Re Pr
o2

oY 2

We

q

� �
� 2 eobs�X ; Y �� ÿ e�X ; Y ��d�X ÿ Xm�d�Y ÿ Ym� � 0: �21�

Initial �X � 1� and boundary �Y � 0; Y � 1� conditions yield:

�UWq �WU e=q���x�1 � 0; Wq

��Y�1 � 0; Wq

��
Y�0
� 0;

�UWU �Wqq�We�jÿ 1�e���x�1 � 0; WU jY�1 � 0; WU jY�0 � 0;

UWe � �jÿ 1�WU� �jX�1 � 0; WejY�1 � 0; WejY�0 � 0;

�WV �jx�1 � 0; WV jY�1 � 0; WV jY�0 � 0:

�22�

If Eqs. (18)±(22) are satis®ed then

De0�f1�Y �� �
Z

Y
WeU�� � �jÿ 1�WU �De1�Y ��jX�0 dY �

Z
Y

WqU
ÿÿ � �jÿ 1�WU e=q

�
Dq1�Y �

�jX�0 dY

�
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Y
WU U
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�
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Z

Y
WV UDV1�Y �� �jX�0 dY :

�23�

This expression provides the fast calculation of the discrepancy gradient using both ¯ow and adjoint ®eld
parameters. It also serves as the basis for calculating the second-order information (action of Hessian).
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9. Second-order adjoint problem

According to Eq. (4), we can pose the second-order adjoint problem for Qq;QU ;QV ;Qe:
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Initial data D�X � 1�
Qx�1 � 0:
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Boundary conditions at B;C �Y � 0; Y � 1� : oQ=oY � 0:

Hessian action on Df1 : H�f1�Df1 � ÿQ�0�: �28�
This expression provides a fast and precise calculation of Hessian action on a vector, which is the basis

for the considered algorithm.

10. Hessian spectrum bounds calculation

For obtaining the Hessian action calculation we should solve the forward, tangent linear, ®rst-order
adjoint, and second-order adjoint problems. This is a very di�cult task to accomplish from the code de-
bugging viewpoint, and the full correctness of the second-order adjoint problem was not fully veri®ed so
far. Instead, the Hessian action was calculated by using the Hessian-free di�erentiation gradients [10]
obtained from the ®rst-order adjoint problem in the form:

H du � �grad�u� a du� ÿ grad�u��=a:

The codes for the forward (5)±(8) and ®rst-order adjoint (21)±(24) problems were fully veri®ed for
correctness.

The ¯ow-®eld was computed by marching along X from X � 0 to X � 1. The adjoint problem was
solved by marching along the X -coordinate in the backward direction (from X � 1 to X � 0). The ®nite
difference algorithm was used for the solution of both the forward and adjoint problems. The algorithm is
second order accurate in Y-direction and of ®rst-order accuracy in the X-direction. The forward and adjoint
problems were solved using the same grid.

We used the limited memory Quasi-Newton LBFGS method of large-scale optimization [7] to perform
the minimization.

The iterations Xm�1 � HXm; k � max�Xm�1�=max�Xm� are used for the maximum eigenvalue calculation.
The minimum eigenvalue is calculated by a method of shifted iteration [2] �M � E ÿ H�, where M is the
eigenvalues' majorant and E is the unit matrix.

The minimum eigenvalue is calculated also by using the Rayleigh quotient algorithm:

R�X � � HX ;X� �
X ;X� � ; min�R�X �� � kmin; grad�R�X �� � C�HX ÿ R�X �X �:

Iterations were performed using the steepest descent method:

X k�1 � X x ÿ a�HX ÿ R�X �X �:
When minimal eigenvalues are relatively large (to 10ÿ3), both algorithms present similar results

�Re � 107; kmin � 3:1±3:7� 10ÿ2�. For smaller eigenvalues the Rayleigh quotient turned out to be more
accurate.

We now consider the minimum eigenvalue from the viewpoint of ill-posed problems description. Nu-
merical results (when Mach number equals 4, while the Reynolds numbers vary in the range 102±107)
demonstrated that the kmin is increasing as the Reynolds number increases. This is connected with the
changes in dissipative loss of information. (Herein, large Reynolds numbers (107) are formal coe�cients at
viscous terms). Nevertheless, the qualitative variation of the eigenvalues is correlated with the physics of the
process.

The quality of the solution is also correlated to kmin, (Fig. 2). The low Reynolds numbers (high viscosity)
correlate with small eigenvalues in Table 1 and poor quality of corresponding curves in Fig. 2.

Calculations were performed for estimating the variation of the kmin eigenvalue with the change of scale j.
The discrete wavelet transformation was used for control functions approximation.

The Daubechies-20 transformation [5] was used. The magnitude of kmin �Re � 1000� for di�erent scales
is presented in Table 2.

The value of kmin increases as the scale increases in accordance with results of [5]. If we chose scales j such
that kmin � r2 (where r is data error dispersion) then we obtain a well-posed subspace of control functions.
The subspaces of smaller scales do not contain useful information and can cause the instability.
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Fig. 3 presents results of all parameters �e; q;U ; V � (J � 6;N � 256 parameters) estimation
�Re � 10 000� using di�erent scales of wavelet transformation. Fig. 4 presents same results for e (temper-
ature) only. The instability was developing from data error r � 0:01. The use of 128 parameters �J � 5� (we
neglected the detailed information of ®nest scale) cured the instability. The following subspaces presented
similar results. The corresponding minimum eigenvalues are presented in Table 3. The success obtained is
due to the smoothness of the searched control functions. If discontinuities are present, then large wavelet
coef®cients are present at every scale and the regularization negatively affects the approximation in a more
signi®cant way.

The wavelet transformation provides the parameters regularization using some physical properties of the
control functions (their smallest scale, for example). It requires only about ln�N� calculation of eigenvalues
instead of N when the entire Hessian spectrum is used.

Fig. 2. The quality of the solution �T �y�� for di�erent Re �Re � 102; 103; 104; 107 �107 coincides with exact)) numbers. It is correlated to

kmin.

Table 1

Re 100 1000 104 107

kmin 8:6� 10ÿ6 5:5� 10ÿ5 6:4� 10ÿ3 3:4� 10ÿ2

Table 2

J 6 5 4 3

kmin 9� 10ÿ5 1:5� 10ÿ4 8:4� 10ÿ4 9:9� 10ÿ3
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Fig. 3. Results of all parameters �e;q;U ; V � estimation using di�erent scales of wavelet transformation �Re � 10 000�: (1) exact in¯ow

data �J � 6�; (2) data error s � 0:01 �J � 6�; (3) ®rst-scale regularization �J � 5�; (4) second-scale regularization �J � 4�.

Fig. 4. Results of temperature estimation using di�erent scales of wavelet transformation �Re � 10 000�: (1) exact in¯ow data �J � 6�;
(2) data error r � 0:01 �J � 6�; (3) ®rst-scale regularization �J � 5�; (4) second-scale regularization �J � 4�.
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11. Comparison with Tikhonov regularization

In order to provide a comparison for the wavelet regularization, we consider the Tikhonov [9] regu-
larization.

The standard Tikhonov regularization [4] of zero-order for the problem under consideration transforms
the discrepancy (10) to

e�f1�Y �� �
Z

Y
f exp�Y �� ÿ f �Xmax; Y ��2 dY � a

Z
f1�Y �� �2 dY ;

where a is the regularization parameter. This variant of regularization provides unacceptable results (too
smooth) for the in¯ow parameters. The addition of a second order regularization term a�fi�1 ÿ 2fi � fiÿ1�2
to the residual e�f � provides a much better quality (see Fig. 5). The result is similar in quality to the result
obtained using the wavelet transformation (Fig. 3). Herein, we calculated the discrepancy for di�erent a's
and analyzed the variation of the discrepancy e as a function of a and data error according to the dis-
crepancy principle [4]. This search for the magnitude of a suitable regularization parameter a is not so
transparent and does not provide an automatic procedure as the comparison of eigenvalue and data error
used in wavelet regularization.

Table 3

J 6 5 4 3

kmin 2:8� 10ÿ4 1:9� 10ÿ3 1:08� 10ÿ2 5:5� 10ÿ2

Fig. 5. The in¯ow parameter estimation from noisy �r � 0:01� out¯ow parameters f exp�Y � using second-order Tikhonov regular-

ization (transversal velocity): (1) exact; (2) without regularization; (3) ®rst-scale regularization �J � 5�; (4) second-order Tikhonov

regularization �a � 0:005�.
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12. Conclusion

Numerical tests demonstrated a monotonous decreasing of the Hessian minimal eigenvalues as the scale
of wavelet transformation decreases.

The new proposed algorithm is o�ered for control functions' space decomposition into ``well-posed'' and
``ill-posed'' subspaces for regularization of ill-posed problems.

This algorithm is based on multi-scale resolution (wavelet analysis) and Hessian minimal eigenvalue
calculation using the solution of the second-order adjoint problem.

Numerical tests conducted with the two-dimensional parabolized Navier±Stokes equations demon-
strated the applicability of this algorithm to the solution of the inverse-convection problem for optimally
estimating in¯ow parameters from down-¯ow data.

This new approach can be readily extended to other problems where ill-posedness is present when
adjoint parameter estimation is being carried out.

A comparison with the standard Tikhonov regularization of zeroth-order reveals that it yields unac-
ceptable results for the in¯ow parameters, while a second-order Tikhonov regularization performs rea-
sonably well, providing results comparable in quality to those obtained using the wavelet analysis.
However, the choice of the regularization parameter for the Tikhonov second-order regularization is not
transparent, i.e., one proceeds by trial and error ± whereas the procedure in the newly proposed algorithm is
automatic and e�cient.

Appendix A. First-order adjoint problem

We now form the Lagrangian variation (11) with respect to Dq;DU ;DV ;De. By subtracting the undis-
turbed solution and retaining only ®rst order terms we get
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After rearranging the terms with Dq;DU ;DV ;De we obtain
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We integrate this equation by parts and taking into account boundary conditions for Dq;DU ;DV ;De,
respectively, we get

De0�f1�Y �� �
Terms with Dq:Z

Y
WqUDq dY

����X�1

X�0

ÿ
Z

Y

Z
X

o�UWq�
oX

Dq dX dY �
Z

X
WqV Dq dX

����Y�1

Y�0

ÿ
Z

Y

Z
X

o�V Wq�
oY

Dq dX dY

�
Z

Y

Z
X

oU
oX

�
� oV

oY

�
WqDq dX dY � �jÿ 1�

Z
X

WV eqÿ1Dq dX

����Y�1

Y�0

ÿ �jÿ 1�
Z

Y

Z
X

o�WV e=q�
oY

Dq dX dY � �jÿ 1�
Z

Y
WU e=qDq dY

����X�1

X�0

ÿ �jÿ 1�
Z

Y

Z
X

o�WU e=q�
oX

Dq dX dY �
Z

Y

Z
X

jÿ 1

q
oe
oY

WV

�
� oe

oX
WU

�
Dq dX dY

�
Z

Y

Z
X

1

q2

��
ÿ oP

oX
� 1

Re
o2U
oY 2

�
WU �

�
ÿ oP

oY
� 4

3Re
o2V
oY 2

�
WV

� j
Re Pr

o2e
oY 2

 
� 4

3Re
oU
oY

� �2
!

We

!
Dq dX dY

ÿ
Z

X

Z
Y

2 qobs�X ; Y �� ÿ q�X ; Y ��Dq�X ; Y �d�X ÿ Xm�d�Y ÿ Ym� dX dY�

A.K. Alekseev, I. Michael Navon / Comput. Methods Appl. Mech. Engrg. 190 (2001) 1937±1953 1951



terms with DU :
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2 eobs�X ; Y �� ÿ e�X ; Y ��De�X ; Y �d�X ÿ Xm�d�Y ÿ Ym� dX dY ÿ
Z

X

j
qRe Pr

oDe
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We dX

����Y�1
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qRe Pr
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� �
De dY

����Y�1
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ÿ
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Z
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j
qRe Pr
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� �
De dX dY : �A:3�

We look for �Wq;WU ;WV ;We� such that De0 �
R

Y grad�e�Df1�Y � dY while all other ®rst-order terms vanish.
The corresponding conditions form the adjoint problem.
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