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A b s t r a c t - - W e  consider a postprocessor that is able to analyze the flow-field generated by an 
external (unknown) code so as to determine the error of useful functionals. The residuals engendered 
by the action of a high-order finite-difference stencil on a numerically computed flow-field are used 
for adjoint based a posteriori error estimation. The method requires information on the physical 
model (PDE system), flowfield parameters and corresponding grid and may be constructed without 
availability of detailed information on the numerical method used for the flow computation. (~) 2006 
Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

The present  paper  is a imed at  the  quant i ta t ive  es t imat ion  of approx imat ion  error  in the ver- 

ification of computa t iona l  codes [1-3]. The  error in prac t ica l ly  useful functionals  due to the  
approx imat ion  error  may  be calcula ted using adjoint  equat ions and different forms of the  resid- 
ual [4-13]. For  example,  the  residual  may  be calcula ted for a differential  approx imat ion  using 

a finite-difference scheme [11-13]. However, the  differential approx imat ion  by finite-difference 

scheme may  tu rn  to be very cumbersome. Very often, we have to  deal  wi th  a commercial  code. 
In this  case, the  numerical  me thod  is provided wi thout  detai ls  and code descr ipt ions are not avail- 

able thus  excluding an explici t  formulat ion for the  differential approximat ion .  On other  hand,  the  

local approx imat ion  error  may  be es t imated  via  the  act ion of the  main  problem differential  oper- 

ator  on an in te rpola t ion  of the  numerical  solut ion [7-9]. In general,  this  provides the  oppor tun i ty  

to develop a postprocessor  able to  analyze the  flowfield calculated by some unknown numerical  

method.  Such postprocessor  is capable  to  de termine  the  a posteriori error of prac t ica l ly  useful 
functionals  (drag, lift, etc.) using informat ion on the  grid and flowfield parameters .  

Herein, we consider another  (if compared  with  [7]) way for de termining  the  local approximat ion  

error t ha t  enables us to  avoid the  in terpola t ion  stage. This  should simplify t r ea tmen t s  and avoid 

addi t ional  error of in terpolat ion.  

0898-1221/06/$ - see front matter (~) 2006 Elsevier Ltd. All rights reserved. 
doi:10.1016/j.camwa.2005.10.003 

Typeset by A~tS-TEX 



398 A.K. ALEKSEEV AND I. M. NAVON 

Let us consider a formal scheme of the algorithm. We are interested in properties of numerical 
solution of the following problem, 

N f  = w, in f~ C R n, f ( o a )  = f s ( x )  6 L2(0f~). (1) 

Here, N is a nonlinear differential operator (Hk(f2) x L2(0f~) ~ L2(12)). 
The numerical solution is provided by a finite-difference equation, 

g h h  = w, fh : g ~ l w .  (2) 

As a result, we obtain a grid function f~.  We assume the existence of a smooth enough 
function f 6 Hk+n(~) that  coincides at the nodes with the grid function. Finite differences 
in Nhfh may be expanded using Taylor series in the Lagrange form. This provides us with a 
differential approximation of finite-difference scheme [14], 

N / +  8h(f) = w. (3) 

Here, 6h(f)is the approximation error containing leading terms of Taylor expansion. Con- 
sider (1) as an exact equation and (3) as perturbed one. Exact and perturbed solutions are 
connected by the relation, 

f ( t ,  x) = ](t, x) + A f ( t ,  x). (4) 

The operator N is assumed to be Frechet differentiable, the corresponding derivative being 
denoted as Nf.  Then the expansion N ( ]  + A f )  = N ( f )  + Ns(Y)AY is valid with the tolerance 
of O(rlAfll2). The differential approximation (3) may be recast in a form, 

N i l +  N / A f  + 5h(f) = w. (5) 

By subtracting the exact equation (1) from (5), we obtain an equation for the perturbation, 

N / A f  = - - ~ h ( f ) = q ,  f ~ C R  n, Af(Of~)=O. (6) 

Consider Frechet-differentiable goal functional 6 : Hk(f~) ~ R 1. We are interested in the vari- 
ation of this functional due to the truncation error of the finite-difference scheme. Its differential 
Ac = e / ( f ) A f  = limt--,0(e(f + t A r ) -  e ( f ) ) / t  is a linear continuous functional that  may be 
formulated as a Riesz-representation using an inner product in L2(f~), 

Ag = (S I ,A f )L  2 = (g, A f ) L  2 • (7) 

It  may be recast as 

Ag= (Af.,)L2 ~- (N/lq.g)L = (q.N-'* ' f g jL =(q,  eg)L,, (8) 

where ~ ~- N'/l*g is a formal solution of adjoint problem, 

Y}k~ -~ g. (9) 

The detailed form of the adjoint problem may be obtained according to [16] from the bilin- 
ear identity (N~k~, Af)L2 = ( N I A f ,  k~)L2 via integration by parts. Thus, the variation of the 
functional caused by the approximation error may be described by 

Ae (f)  = f q~ dO, (10) 
Jn  
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where kg(f) is the solution of the adjoint problem, 

N ~ - g = O ,  i n ~ t C R  n, kg(Of~)=O.  (11) 

There are different ways for calculating the perturbation term q. For example, it may be 
explicitly calculated using finite-differences [11]. 

Herein, we consider another option. Let us assume we do not know Nh exactly and are unable 
to display 5h( f )  explicitly. Let us use a known approximation of higher order Nl,h and act 
with this stencil on the solution of system (2). Taking into account corresponding differential 
approximation, the following equation may be written as 

N l , h f  = N f + N y A  f + dl,h ( f )  ---- U. 

By subtracting the unperturbed equation, we obtain 

N f A  f = n -  w -  51,h ( f )  . 

According to (6), this equation determines the perturbation q. 
If the truncation error (fl,h(f) is known, or if it is known that  this value is small compared to 

the error of the main scheme, we may estimate the value of disturbance as 

q = ~? - w - ~ l , h f  (12) 

or 
q ~ - w .  (13) 

The expression (13) serves as the basis for the postprocessor considered in present paper. 
The perturbing term may be obtained as a residual engendered by the action of a differential 

operator on a cubic spline interpolation of a finite-dimensional solution [7]. As a matter  of fact, 
the approach discussed above may be considered as the implicit action of a differential operator on 
the natural interpolation of a solution performed using a Taylor series expansion. This approach 
simplifies the algorithm and enables avoidance of additional interpolation error. 

2. T E S T  P R O B L E M  

Let us consider the approach discussed above for an example of supersonic inviscid flow. The 
following system of Euler equations and corresponding adjoint equations was used in numerical 
tests, 

0 ( p u  _ 0, (14) 
0 ) (  k 

0 (pUkU i + PS~k) = 0, (15) 
OX k 

0 (pUkho)  _ O. (16) 
OX k 

Herein, U 1 = U, U 2 = V ,  h ( p , P )  = "Te is the enthalpy, h0 = (U 2 + V2)/2 + h is the total 
enthalpy. 

The density at certain point p ( X  est, yes t )  is used as an estimated parameter. We recast it as 

the goal functional, 

pest : /ft p ( X ,  Y ) 5 ( Y  - yest )5(Z - Zest') d Z  dY,  (17) 

and consider the variation of this functional as a function of local perturbations ~ff. 
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The corresponding adjoint system assumes the form, 

Uk062o k iO~I'i 3 , - 1  062k ( U%Un) 
-~-X--g + U U -~-~-g + ho 

"~ ° x k  (18) 
Trkr 062h L, ,~o-0--~£ - 5(X - xest)6(Y - yest) = 0, 

i 062~ . i 062k 062 0 7 -- 1 062n 062h 
U "ff-X--k + U -o-XT + - O ~  + --7 OXn Uk + ho-~"~ = 0 ,  (19) 

' k 062h 7 - 1 062k 
v -g2-; + --~ o x  k -  - o, (20) 

where 62p, 621 = 62u, 622 = 62v, 62h a r e  the adjoint parameters. For a different goal functional 
the adjoint system would differ in as far as source terms are concerned. 

According to (10), the functional variation as a function of the truncation error has a form, 

5S = : :  (6pLOp + 6U62u + 5V62v 4- 5h62h) dX dY. (21) 
J , ]  

n 

According to (13), it may be estimated via 

N,Nx 
5e ~, E (62p'kn~o'kn q" 62U'knl"}U'kn q- 62V'knT]V'kn 4- 62h'knrlh'kn) hxhy. (22) 

k,n 

The parameters ~f,kn a r e  obtained by the action of a high-order finite-difference stencil on the 
computed field. 

As a heuristic example, let us consider the equation ~ + ~ = 0. Let the field be calculated 
using a first-order finite-difference approximation, 

fn+ 1 
+ = 0. (23) 

hx h u 

Os Taylor series in Lagrange form yields a differential approximation [5] ~ + ~ + 5f  4- 5s = 0, 
whose detailed form is 

O-'-x + -~y + -2 h'~O2f + h~'O2s(xn'Yk) 
°Y2 (24) 

@ 03f(x,~ + fl'dh~, yk) h2 03s(xn, Yk + a'~hy) 
+ OqX 3 + -'~ oqy3 

O, 

(the parameters a~ e (0, 1), fl~ E (0, 1), are unknown). 
Let us assume we do not know the exact form of the truncation error in (24). It may be 

determined from the numerically calculated flowfield. For this purpose, let us calculate the 
magnitude of residual rl~ obtained as a result of action of a second-order accurate stencil on the 
calculation of the first-order finite-difference calculation. 

fkn+l _ fn-i n n 
k "I- $k+l -- 8k-i 

2hx 2h~ 

The Taylor expansion of (25) yields 

fn+~_ t~-i ~+1_ ~_~ ,~_ k + 
2h~ 2h~ 

Of h~ c93f(Xn + ~/'~hx, Yk) 
= O--z + - 6  Oz 3 

(25) - -  O k ,  

Os h2 cqas(xn, Yk + x'~hg) 
+ ~ + -g  ay3 

(26) 
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The grid functions f~ and s~ are obtained by solving (23) and should satisfy (24). 
substitution of (24) to (26) the residual may be expressed as 

h 2 O3f(xn + 3"~hx, Yk) h2 O3s(x,~, Yk + x'~hy) ~,~_ ~ + _ _  
- - 6  Ox 3 6 Oy 3 

1 (hO2f(x ~,)/ox 2 02s(x,~,Yk)) 
- -~  ~, + h~ ay2 

h 2 03f (zn  +/3~h~, Yk) h~ 03s(xn, Yk + a'~hy) 
6 OX 3 6 Oy 3 

After 

(27) 

Correspondingly, the minimum-order term of the truncation error (24) assumes the form, 

( 0 2 f ( x n ' Y k )  _~2 ,yk) )  1_ hx + hy 02 s 
2 Ox 2 

n n h = _ ~  + h2__~ 03f(xn -t- 7khx, yk) h2~ 03f(xn +ilk x,Yk) 
6 c3x 3 6 c3x 3 

a3 (z , yk + yk + 
6 Oy 3 6 Oy 3 

(28) 

Thus, the residual may be used for estimation of the main term of the differential approxima- 
tion, 

) ~ "~ - 2  h~o2f  + hkO2s(x'~'Yk)'~ (29) Yk) 
ay 2 ) • 

Using a higher-(fourth)-order stencil, we may estimate all truncation errors with an asymptot- 
ically small tolerance, 

h2 03s(xn, Yk + a'~hy) +o(h4)+o(hD. 
6 Oy 3 

(30) 

So both the least-order term of differential approximation (24) and the total approximation 
may be estimated by a residual obtained from the action of high-order stencil on the numerical 
solution. These residuals may be considered as the field of truncation error perturbing an exact 
solution. Their influence on a goal functional may be accounted for by using adjoint parameters. 

In comparison with the method of [11], the present approach does not require knowledge of the 
exact form of the differential approximation of the main numerical scheme. This may turn to be 
useful if the differential approximation is very complicated (such as Godunov type schemes) oi 
unknown (commercial code). Above all, this approach does not require calculation of high-order 
derivatives of the differential approximation. 

3. N U M E R I C A L  T E S T S  

Several variants of first:order finite-difference schemes were employed including donor cells [17] 
and the Roe scheme [18]. 

A symmetric second-order stencil was used for residual calculation, 

fkn+l _ fn -1  n n k Sk+l -- 8k-1 + = ~ .  (31) 
2hx 2h~ 

The adjoint problem was solved by first-order filaite-difference scheme (donor cells [17]). 



402 A. K. ALEKSEEV AND I. M. NAVON 

1.0E-03 

9.0E-04 

8.0E-04 A 
7.0~04 

6.0E-04 

S.OE-04 

4.0E-04 

3.0E-04 ~ , ~  

2.0E-04 

1.0E-04 - 

O.OE+O0 
0 100 200 300 400 500 600 

Figure  1. 1: Deviat ion of numerical  solution from analytical  value. 2: Es t imat ion  of 
error using postprocessor.  
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Figure 3. Adjoint  densi ty  isolines. 

For comparison a fourth-order approximation was used for estimation of residual 

-f~'+~ + sY~L1 - sY~-i + .f~-2 (32) 
12hx 

This stencil provided results very close to those of (31). 
The error of the target functional obtained from (22) is close to the deviation of the numerical 

result from the analytical value. 

3.1. Prandtl-Mayer Flow 

The comparison of deviation of the numerical solution from analytical one (p - Pexact) /P and 
error estimation (22) is performed for a rarefaction fan (freestream Mach number M = 4, deflec- 
tion angle a = 10 °. Figure 1 provides the results of error estimation as a function of the inverse 
spatial step (number of nodes). 

3.2. Shocked  Flow 

The error in the density past two crossing shocks (a = ±22.23 °, M = 4) is calculated as an 
additional test. Figures 2 and 3 display the isolines of density in flowfield and adjoint density 
(their concentration marks the location of estimated point). 
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Figure 4. The pointwise density error as a function of reciprocal spatial step. 1: De- 
viation of numerical solution from analytical value, 2: Error estimation by (22). 
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Figure 4 presents results for a flowfield calculated using Roe scheme as a function of the spatial 
step. 

Similar tests were performed for a flowfield calculated using the second-order Godunov me- 

thod [19], Figure 5. On smooth parts of the solution, the second-order stencil is not able to 
determine an approximation error. Only the first-order components  engendered by shocks I15] 

may be detected. However, these components dominate solution of this problem since the results 
of second and fourth orders are rather close. 

4 .  C O N C L U S I O N  

The variation of the goal functional caused by the approximation error may be calculated via 

residuals obtained by the action of high-order stencils on the numerical flowfield and adjoint 
parameters. This enables the development of a postprocessor using only the computed flowfield 
(and grid) information and connected with the analyzed code at the level of the respective PDE. 

Numerical tests confirm validity of this methodology for the pointwise density estimation for 
a supersonic flow. 
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