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SUMMARY

Model order reduction (MOR) of the 2D Burgers equation is investigated. The mathematical formulation
of POD/DEIM reduced order model (ROM) is derived based on the Galerkin projection and discrete
empirical interpolation method (DEIM) from the existing high fidelity implicit finite difference full model.
For validation we numerically compared the POD ROM, POD/DEIM and the full model in two cases of
Re = 100 and Re = 1000, respectively. We found that the POD/DEIM ROM leads to a speed-up of CPU
time by a factor of O(10). The computational stability of POD/DEIM ROM is maintained by means of a
careful selection of POD modes and the DEIM interpolation points. The solution of POD/DEIM in the case
of Re = 1000 has an accuracy with error O(10−3) versus O(10−4) in the case of Re = 100 when compared
to the high fidelity model. For this turbulent flow, a closure model consisting of a Tikhonov regularization
is carried out in order to recover the missing information and is developed to account for the small scale
dissipation effect of the truncated POD modes. It is shown that the computational results of this calibrated
reduced order model (ROM) exhibit considerable agreement with the high-fidelity model, which implies the
efficiency of the closure model used. Copyright c© 2016 John Wiley & Sons, Ltd.
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2 Y. WANG ET. AL.

1. INTRODUCTION

The two-dimensional Burgers equation is a fundamental mathematical model from fluid mechanics
which has the same convective and diffusion terms as the Navier-Stokes equation, and is widely used
in various areas as a simple model for understanding of various physical flows and problems, such
as modeling of dynamics, the phenomena of turbulence, and flow through a shock wave traveling in
a viscous fluid and traffic flow [1,2,3]. Numerical solution of Burgers equation is a logical first step
towards developing methods for the computation of complex flows. Burgers equation is also a useful
tool for examining the robustness of numerical discretization schemes [4]. It has become customary
to test new numerical approaches in computational fluid dynamics by implementing novel numerical
approaches to the Burgers equation. So far, many numerical solution approaches to 2D Burgers
equation have been developed by scientists and engineers, such as [3,5,6]. In addition, its analytical
solution was also explored [7] using the Cole-Hopf transformation.

However, in the conventional numerical approach the computational cost of these calculations
becomes higher as the Reynolds number (Re) increases, particularly when a smooth wave becomes
a single-shock wave. Also the computational cost increases as we refine the resolution of the spatial
discretization mesh. This will become more accentuated when attempting to solve a control or
PDE optimization problem in a wide class of engineering applications by DNS (direct numerical
simulation) of the full 2D Burgers equation model due to the requirement of quick and repeated
numerical simulations [8,9,10,11], which often pose important mathematical and computational
challenges in both CPU and memory requirements.

To overcome the difficulty encountered during simulating, controlling, and optimizing such
systems, reduced order modelling offers a remedy as a powerful and feasible approach enabling
a representation of the dynamics of high-dimensional systems with a smaller number of degrees of
freedom. Developing low-dimensional models for partial differential equations (PDEs) is one of the
active research topics today [12,13].

An effective technique of low-order modelling, Proper Orthogonal Decomposition (POD) is
attractive to apply [14,15], and has become one of the most important reduced order model (ROM)
methods combined with Galerkin projection, due to its ability to rebuild numerical signals, with
a high order of precision gained with only few POD-modes. Additionally, POD is also known
under other names such as Karhunen-Loève expansions [16,17], principal component analysis [18],
empirical orthogonal functions [19], and the Hotelling transform [20]. It is one of the most prevalent
model reduction methods for nonlinear problems [12]. Data analysis using POD is conducted in
order to extract basis functions from experimental data or detailed simulations of high-dimensional
systems for subsequent use in Galerkin projections that yield low-dimensional dynamical models.
Nevertheless, beside its efficiency, the POD Galerkin approach still exhibits some disadvantages.

In both her Master and PhD thesis Chaturantabut [21,22] was the first to propose a new method for
handling the quadratic nonlinear terms -referred to as the precomputing-POD technique. It consists
of employing the simple structure of the quadratic nonlinearities to remove the dependence on the
dimension of the original discretized system by manipulating the order of computing and separating
the spatial variables from the time variable.

For particular model problems such as 1-D Burgers equation which have quadratic nonlinear
terms, she found that the precomputing technique works better than empirical interpolation method
(EIM) in terms of accuracy and complexity, as evidenced by the numerical results.

The method efficiency is restricted only to quadratic nonlinear terms. For higher order
nonlinearities POD/DEIM is the method of choice.

Stefanescu et al. (2014) [12] used a similar idea for the quadratic nonlinearity in the 2D shallow
water equations model referring to it as the tensorial POD. They have shown that precomputing
(tensorial POD) is slower in the general quadratic case than POD/DEIM. See Table I in Stefanescu
et al. (2014). There is no contradiction, since results of POD/DEIM vs. precomputed POD will
depend on numbers of spatial points n, POD modes k and DEIM points m and on the simplicity of
FEM (finite element method) discretization. Hence the interest in POD/DEIM.

We intend to consider the precomputed-POD approach in an upcoming follow-up reserch paper.

This article is protected by copyright. All rights reserved.
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2D BURGERS EQUATION WITH LARGE REYNOLDS NUMBER USING POD/DEIM AND CALIBRATION 3

For models with nonlinear terms, the nonlinear reduced terms have to be evaluated on the original
state space making the simulation of the reduced order system computationally expensive. An
interpolation technique known as discrete empirical interpolation method (DEIM) [23,24,25] avoids
this problem by using an interpolation algorithm [26,27,28]. The DEIM approach employs a small
selected set of spatial grid points to avoid evaluation of the expensive inner products at every time
step required to evaluate the nonlinear term. It focuses on approximating each nonlinear function,
so that a certain coefficient matrix can be precomputed. As a result, the complexity in evaluating the
nonlinear term is proportional only to a small number of selected spatial indices, thus achieving a
considerable reduction in computational complexity.

For turbulent flows, the POD-ROM-Galerkin yields inaccurate results. As carefully explained
in the thesis of Z. Wang. [29] for realistic turbulent flows, the high index POD modes that are not
included in the POD-ROM-Galerkin do have a significant effect on the dynamics of the POD-ROM-
Galerkin.

Several numerical stabilization strategies have been used to address this issue building on the
analogy with large eddy simulation (LES).

To improve the accuracy and stability of such POD-based reduced order models, various
calibration methods were proposed [30,31,32], such as H1 Sobolev norm [13,33,34], eddy
viscosities [35], least squares or adjoint method [31,36,37,38,39]. Calibration of ROM can enhance
its performance at low computational cost, but still remains a challenging task.

When the one-dimensional Burgers equation is considered, the corresponding POD/DEIM
reduced order model has been developed, and the control problem involved was also discussed.
It has been shown in [40,41,42,43] that good results are achieved. Yet to the best of our knowledge,
there are very few results reporting the POD/DEIM reduced order modeling issues for 2D Burgers
equation, particularly in the case where the Reynolds number becomes large, and it is an open
question if the use of a proper number of DEIM points is really beneficial for POD/DEIM CPU
cost. The present work can be viewed as a new step towards the goal of modeling and control of
more complicated PDE systems.

The main focus of the paper is the size of the reduced order system and the quality of
approximation compared to the full-order system, as well as computational efficiency gained by
using POD/DEIM in nonlinear model reduction applications to 2D Burgers equation. Even though
these are fundamental questions related to POD, we believe that they have not been addressed in the
literature related to 2D Burgers equation with large Reynolds number.

The main contributions of the research presented in this paper consist first in development of
the mathematical formulation of POD/DEIM ROM based on existing fully implicit finite difference
time discretization scheme. Second, derivation of a calibrated low order ODEs system from the
precomputed POD coefficients using the Tikhonov regularization method as a closure model when
dealing with large Reynolds number [44]. Due to the demanding memory requirements, we had to
restrict study of the turbulent case only to a Reynolds number equal to 1000. It is expected that
a calibrated reduced order ODEs model of the two-dimensional Burgers equation will result in a
decrease in both memory storage and CPU time requirements.

The rest of this paper is organized as follows. Section 2 provides a description of two-dimensional
Burgers equation and its discretization by fully implicit finite difference scheme. Section 3 is
devoted to the construction process of the POD/DEIM reduced order model of 2D Burgers equation,
and the discrete empirical interpolation (DEIM) approach is applied to deal with the nonlinear
terms arising from the nonlinear advection terms in the 2-D Burgers model. In section 4, the
validation of POD/DEIM ROM is carried out , and numerical experiments are performed to verify
the performance of the POD/DEIM ROM in the case of Re = 100 and Re = 1000, respectively.
Special care needs to be taken to find the reduced basis and to choose DEIM interpolation points. In
section 5, a calibrated ROM based on Tikhonov regularization method serving as a closure model
is developed for turbulent flow (Re = 1000). Concluding remarks are provided at the end of the
paper, and an Appendix providing a simple introduction to the discrete Picard condition is added for
a detailed presentation of the Tikhonov regularization closure model. In addition, both the Newton

This article is protected by copyright. All rights reserved.
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4 Y. WANG ET. AL.

iterative method necessary to integrate in time the discrete 2D Burgers equation and derivation of
the POD reduced order model (ROM) of 2D Burgers equation are also included in the Appendix.

2. FULL-ORDER MODEL OF 2D BURGERS EQUATION

Newton iteration solution method is described in section 2.1 and 2.2. We are now considering a
two-dimensional nonlinear viscous Burgers equation assuming the form (called Full Model):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re
(
∂2u

∂x2
+

∂2u

∂y2
), (2.0.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

Re
(
∂2v

∂x2
+

∂2v

∂y2
), (2.0.1b)

(x, y) ∈ Ω = (a, b)× (c, d), t ∈ (0, T )

subject to the boundary conditions

u(a, y, t) = gu1(y, t); u(b, y, t) = gu2(y, t);

u(x, c, t) = gu3(x, t); u(x, d, t) = gu4(x, t); (2.0.2a)

v(a, y, t) = gv1(y, t); v(b, y, t) = gv2(y, t);

v(x, c, t) = gv3(x, t); v(x, d, t) = gv4(x, t); (2.0.2b)

and the initial conditions

u(x, y, t)|t=0 = ϕ(x, y), (2.0.2c)

v(x, y, t)|t=0 = ψ(x, y), (x, y) ∈ Ω (2.0.2d)

where the u(x, y, t) and v(x, y, t) represent the velocity components. When 2D spatial
computational domain Ω is divided uniformly into nx − 1 and ny − 1 subintervals in x and y
direction, respectively. It is assumed that the discrete functions are defined on an nx × ny -grids
in space domain Ω = [a, b]× [c, d]. The following notation will be used: xi = i�x, yj = j�y,
uij = u(xi, yj , t), vij = v(xi, yj , t). Here �x = b−a

nx−1 ,�y = d−c
ny−1 . Then the centered-difference

scheme corresponding to the first- or second-order derivatives in space will result in the following
form of 2D Burgers equation [3]:

dui,j

dt
+

ui+1,j − ui−1,j

2�x
ui,j +

ui,j+1 − ui,j−1

2�y
vi,j =

1

Re�x2
(ui+1,j − 2ui,j + ui−1,j) +

1

Re�y2
(ui,j+1 − 2ui,j + ui,j−1) (2.0.3a)

dvi,j
dt

+
vi+1,j − vi−1,j

2�x
ui,j +

ui,j+1 − vi,j−1

2�y
vi,j =

1

Re�x2
(vi+1,j − 2vi,j + vi−1,j) +

1

Re�y2
(vi,j+1 − 2vi,j + vi,j−1) (2.0.3b)

which can be cast in matrix form as follows:

This article is protected by copyright. All rights reserved.
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dU

dt
+ f1(U, V )− 1

2�x
BulU − 1

2�y
BubV =

1

Re�x2
(D1U + b1u) +

1

Re�y2
(D2U + b2u) (2.0.4a)

dV

dt
+ f2(U, V )− 1

2�x
BvlU − 1

2�y
BvbV =

1

Re�x2
(D1V + b1v) +

1

Re�y2
(D2V + b2v) (2.0.4b)

where
U = (u1,1, u2,1, · · · , un,1, u1,2, · · · , un,2, · · · , u1,n, · · · , un,n)

T

V = (v1,1, v2,1, · · · , vn,1, v1,2, · · · , vn,2, · · · , v1,n, · · · , vn,n)T

hereafter, the superscript ‘T ’ stands for transpose. Let nxy = (nx − 2)× (ny − 2), two maps f1, f2 :
R

nxy ×R
nxy → R

nxy are then defined as follows:

f1(U, V ) =
1

2�x
MU. ∗ U +

1

2�y
NU. ∗ V, (2.0.5a)

f2(U, V ) =
1

2�x
MV. ∗ U +

1

2�y
NV. ∗ V, (2.0.5b)

and M =

⎛
⎜⎝M1

. . .
M1

⎞
⎟⎠

(ny−2)×(ny−2)

, M1 =

⎛
⎜⎝ 0 1

−1
. . . 1
−1 0

⎞
⎟⎠

(nx−2)×(nx−2)

with ‘.∗’ denoting componentwise multiplication as used in Matlab. The Bul, Bub, b1u and
b2u are related to the boundary conditions, which are denoted by

Bul = diag(kron(u(1, 2 : ny − 1), [1, 0, 0, · · · , 0]1×(nx−2))),

Bub = diag(kron([1, 0, 0, · · · , 0]1×(ny−2), u(2 : nx − 1, 1)),

b1u = (u1,2, 0, · · · , 0, u5,2, u1,3, 0, · · · , u5,4)
T ,

b2u = [u(2 : nx − 1, 1)T , 0, · · · , 0, u(2 : nx − 1, 5)T ]T ,

D1 =

⎛
⎜⎝D11

. . .
D11

⎞
⎟⎠

(ny−2)×(ny−2)

, D2 =

⎛
⎜⎝−2E(nx−2)×(nx−2) E

E
. . . E
E −2E

⎞
⎟⎠

(ny−2)×(ny−2)

D11 =

⎛
⎜⎝−2 1

1
. . . 1
1

⎞
⎟⎠

(nx−2)×(nx−2)

, N =

⎛
⎜⎝ E

−E
. . .
−E E

⎞
⎟⎠

where E is (ny − 2)-by-(ny − 2) the identity matrix, and ‘kron’ is a Matlab function which means
that K = kron(A,B) returns the Kronecker tensor product of A and B. Note that Bvl, Bvb, b1v and
b2v are not mentioned here due to their similarity to Bul, Bub, b1u and b2u. The numerical solution
procedure, can be accomplished by the Newton iteration solution method[45]. For model reduction
of dynamical systems, POD may be used on data points obtained from system trajectories obtained
via experiments, numerical simulations, or analytical derivations. For more details, please see [46].

This article is protected by copyright. All rights reserved.
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The POD method has been widely discussed in literature during the last decades, and is still a very
active field of research [12,13,14,15,23,24]. The main advantage of POD lies in the fact that it
requires only standard matrix computation. In combination with Galerkin projection, it provides a
powerful tool to obtain low-dimensional models of high-dimensional systems. It is well known that
in a finite-dimensional space or in Euclidean space, the POD model order reduction method can be
accomplished by SVD or EVD technique.

2.1. Snapshot Collection and POD Basis

As far as the calculation of the POD modes is concerned, let us first give the model variables
solution Ψ = [Ψk(x, tk)] ∈ R

nxy×nk (e.g. either one of the velocity components u, v ) to form
a set of snapshots sampled at the defined checkpoints during the numerical simulation at
equally distributed time instances tn1

, tn2
, · · · , tnk

, where nk is the number of snapshots. Due to
possible linear dependence, the snapshots themselves are not suitable for use as a basis. Singular
value decomposition (SVD) for Ψ ∈ R

nxy×nk , eigenvalue decomposition for ΨΨT ∈ R
nxy×nxy or

eigenvalue decomposition for ΨTΨ ∈ R
nk×nk are used to derive the so-called POD basis. In this

work, based on the consideration that u and v are governed by distinct physics, i.e., different
partial differentiation equations (2.0.1a,b), respectively, the corresponding POD basis vectors for
them are built from the snapshots of the solution for each variable separately. This technique
has already been used in existing literatures [47,48]. Here we present only the construction of
the POD basis corresponding to u as a similar procedure is used to determine the POD basis
for v. When taking into account that nk � nxy, we choose to construct the POD basis matrix
Φu = [Φi

u, i = 1, 2, · · · ,m1] ∈ R
nxy×m1 by solving the eigenvalue problem

ΨTΨûi = λiûi, i = 1, 2, · · · , nk (2.1.1)

and we can choose an orthogonal basis of eigenvectors{û1, û2, · · · , ûm1
} corresponding to the

m1 largest eigenvalue, then POD modes of velocity u are given by Φi
u = 1√

λi
Ψûi. Similarly, let

Φv ∈ R
nxy×m2 be the POD basis matrix of velocity component v. Although these POD modes

provide an optimal representation of the snapshot matrix, some information is inevitably lost. This
loss of information can be qualified by the following ratio,

I(m) =

∑m
i=1 λi∑nk

i=1 λi
(2.1.2)

through which one defines a relative information content to choose a low-dimensional basis of size
M̃ � nk by neglecting modes corresponding to the small eigenvalues. We can choose M̃ such
that M̃ = argmin{I(m) : I(m) ≥ γ0}, where 0 ≤ γ0 ≤ 1 is the percentage of total information
captured by the reduced space span{Φu}. The tolerance γ0 must be chosen to be near the unity in
order to capture most of the energy of the snapshot basis.

2.2. Acceleration Based on the Application of the DEIM Approach

To get a reduced order POD model, we use the POD bases obtained above to approximate U ,V as
following way:

U(tn) ≈ Φuα(tn), V (tn) ≈ Φvβ(tn), (2.2.1)

where α(tn) ∈ R
m1 , β(tn) ∈ R

m2 . Plugging the equations (2.2.1) in the equations (2.0.4) and
multiplying the equation (2.0.4a) and (2.0.4b) by ΦT

u and ΦT
v , respectively, we can obtain the POD

reduced order model (POD ROM)with a significantly smaller number of unknowns, m1 � nxy,
m2 � nxy. For additional details of POD ROM and the gradients of nonlinear functions with respect
to α, β used for the Newton iteration method, please see appendix B.

However, it is necessary to note that computing matrix-vector product to project on POD basis in
the nonlinear terms below

fPOD
1 (α, β) = ΦT

u︸︷︷︸
m1×nxy

f1(Φuα,Φvβ)︸ ︷︷ ︸
nxy×1

, (2.2.2a)

This article is protected by copyright. All rights reserved.
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fPOD
2 (α, β) = ΦT

v︸︷︷︸
m2×nxy

f2(Φuα,Φvβ)︸ ︷︷ ︸
nxy×1

, (2.2.2b)

still has a computational complexity depending on the number of unknowns of the Full Model
which may cause the POD ROM to be inefficient.

The subsequent development focuses on the application of Discrete Empirical Interpolation
Method (DEIM) to the nonlinear functions (2.2.2a,b).

DEIM is a discrete variation of the Empirical Interpolation method (EIM) proposed by Barrault
et al. (2004) [26] , the effect of which is to decrease the computational cost and cause the nonlinear
terms to be independent of the high fidelity model dimension.

Let us now describe the process of application of DEIM. Similar to the building of POD
basis Φu and Φv, the snapshots of f1(U, V ) and f2(U, V ) are first collected at time instances
tk ∈ {t1, · · · , tl} ⊂ [0, T ], then the DEIM approximates the projected functions (2.2.2a,b)such that

fPOD
1 � f̂DEIM

1 = ΦT
uΞf1(P

T
1 Ξf1)

−1︸ ︷︷ ︸
Ξf1∈Rm1×τ1

PT
1 f1(Φuα,Φvβ)︸ ︷︷ ︸
f̃1(α,β)∈Rτ1×1

, (2.2.3a)

fPOD
2 � f̂DEIM

2 = ΦT
v Ξf2(P

T
2 Ξf2)

−1︸ ︷︷ ︸
Ξf2∈Rm2×τ2

PT
2 f2(Φuα,Φvβ)︸ ︷︷ ︸
f̃2(α,β)∈Rτ2×1

, (2.2.3b)

where Ξfi ∈ R
nxy×τi , i = 1, 2 contains the first τi POD basis of the space spanned by the

snapshots {fi(U(tk), V (tk)), i = 1, 2; k = 1, 2, · · · , nk} associated with the largest eigenvalues (or
singular values). And the selection matrix Pi = [eρ1

, · · · , eρτi
] ∈ R

nxy×τi , i = 1, 2, selects the rows
of fi corresponding to the DEIM indices ρ1, · · · , ρτi which are obtained by the greedy algorithm,
see [25,26] for details. By using the fact that f̃1, f̃1 are componentwise, we can calculate them as

f̃1(α, β) :=
1

2�x
PT
1 MΦu︸ ︷︷ ︸

Ξ̂1

α. ∗ (PT
1 Φu︸ ︷︷ ︸
Ξ̂2

α) +
1

2�y
PT
1 NΦu︸ ︷︷ ︸
Ξ̂3

α. ∗ (PT
1 Φv︸ ︷︷ ︸
Ξ̂4

β), (2.2.4a)

f̃2(α, β) :=
1

2�x
PT
2 MΦv︸ ︷︷ ︸

Ξ̂5

β. ∗ (PT
2 Φu︸ ︷︷ ︸
Ξ̂6

α) +
1

2�y
PT
2 NΦv︸ ︷︷ ︸
Ξ̂7

β. ∗ (PT
2 Φv︸ ︷︷ ︸
Ξ̂8

β), (2.2.4b)

Finally, the POD/DEIM ROM is of the form:

dα

dt
+ f̂DEIM

1 − 1

2�x
BPOD

ul α− 1

2�y
BPOD

ub β =

1

Re�x2
(DPOD

11 α+ bPOD
1u ) +

1

Re�y2
(DPOD

12 α+ bPOD
2u ) (2.2.5a)

dβ

dt
+ f̂DEIM

2 − 1

2�x
BPOD

vl α− 1

2�y
BPOD

vb β =

1

Re�x2
(DPOD

21 β + bPOD
1v ) +

1

Re�y2
(DPOD

22 β + bPOD
2v ) (2.2.5b)

For details of the relevant coefficient matrix, please refer to appendix C. It is observed from the
relations (2.2.3a,b) and (2.2.4a,b) that the coefficient matrix Ξf1 , Ξf2 , Ξ̂i, i = 1, 2, · · · , 8, does not
depend on time and can thus be precomputed, saved and reused in all time steps. As for the resulting
approximation of f̂DEIM

1 (α, β) and f̂DEIM
2 (α, β), no dependence on the dimension nxy of the full

order system exists anymore. Thus, a substantial reduction in computational cost can be expected
due to their dependence only on dimensions mi of POD and τi of DEIM, i = 1, 2. This efficiency
will reflect the speed-up of simulation time.

This article is protected by copyright. All rights reserved.
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3. THE VALIDATION OF POD/DEIM ROM

In this section we will provide numerical experiments aiming at illustrating the accuracy and
efficiency of the POD/DEIM. For the Full Model, POD ROM and POD/DEIM ROM, as ODEs,
the implicit Euler scheme was used. The resulting nonlinear algebraic system of equations is solved
by Newton-iteration method. The computational domain is taken as Ω = [0, 1]× [0, 1], T is set as
T = 1. The number of the spatial grid points is taken to be nx × ny = 60× 60, with nt = 250
in the case of Reynolds number = 100, and nx × ny = 200× 200, with nt = 1000 in the case of
Reynolds number = 1000. The initial conditions (ICs) and boundary conditions (BCs) related to
u(x, y, t) and v(x, y, t) are derived directly from the exact traveling wave solution of 2D Burgers
equation [7].

u(x, y, t) =
3

4
− 1

4[1 + exp((−4x+ 4y − t)Re/32)]
(3.1a)

v(x, y, t) =
3

4
+

1

4[1 + exp((−4x+ 4y − t)Re/32)]
(3.1b)

To assess how well our reduced order model (ROM)approximates the full model, we use the root
mean square error (RMSE) and the correlation coefficients Corr to measure the difference between
POD or POD/DEIM ROM velocity solution and the Full Model solutions at the time level n

RMSEn =

√∑N
i=1(U

n
i − Un

0,i)
2

N
(3.2)

Corr(U,U0)
n =

E(Un − μU )(U
n
0 − μUn

0
)

σUnσUn
0

(3.3)

where μU , and μU0
are the given expected value and the standard deviations σU , and σU0

. In addition,
the average relative error (E)[12] are also provided in the analysis. Its computational formula is
defined as

Eu =
1

nt

nt∑
i=1

‖UFull(:, i)− UPOD/DEIM (:, i)‖2
‖UFull(:, i)‖2

(3.4)

3.1. Case of Re = 100

The POD basis are constructed using 125 snapshots obtained from the numerical solution of the
full-order fully implicit finite difference scheme of 2D Burgers equation at equally spaced time
steps for time interval [0, T ].

Figure 1 shows the decay around the eigenvalues of the snapshot solutions for u,v and nonlinear
snapshots of f1, f2. The dimension of the POD basis for u,v was taken to be 5, respectively,
capturing more than 99.8% (Iu(m) = Iv(m) � 0.998) of the system energy. The DEIM approach
is used to improve the efficiency of the POD ROM, and achieves a complexity reduction of the
nonlinear terms due to the first 50 spacial interpolation points selected from the DEIM approach
using the POD bases of f1 and f2 as inputs. For the distribution, see Figure 2. The selection of the
50 DEIM interpolation points, is only based on results shown in Table 1.

From Table 2, it is observed that the POD ROM fails to decrease computational complexity since
the nonlinear terms depend on the size nxy of the original high fidelity model. While the POD/DEIM
50-ROM is shown to be very effective in overcoming the deficiencies of POD, being faster than the
POD ROM and high fidelity model by a factor of 10 due to the DEIM computation of nonlinear
functions f1, f2 using the selected 50 DEIM interpolation points ( see figure 2).

We see from figure 3 that the solutions u of POD/DEIM50 ROM at time steps nt = 10, 100, 200
are very close to those of Full Model. And a small RMSE at different times is also observed in Figure
4. In addition, the correlation of u between POD/DEIM50 ROM and the Full Model as displayed in
Figure 5, is very close to 1.

Next we carry out a second experiment to test the performance of POD/DEIM ROM in the case
of Re = 1000,(turbulent flow).

This article is protected by copyright. All rights reserved.
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3.2. Case of Re = 1000 (turbulent case)

To further demonstrate the capability of the POD/DEIM, the Reynolds number is then increased to
Re = 1000, which leads to appearance of a shock wave, and a sharp front can be observed in Figure
7. This is of interest, as it frequently occurs in practical engineering applications. In this case, the
addition of extra spatial grid points and a shrinking of the time step size is required to maintain
stability of the computation. In the current case, let the spatial grid points mesh be 200× 200, and the
time step size be chosen as 0.001. Though I = 99.8%, we find that additional number of POD bases
are chosen, and the number of DEIM interpolation points needs also to be increased according to the
requirement of our computation. Considering a compromise between accuracy and computational
time in Tables 3,4, we take the number of POD modes and DEIM points as 15 and 250, respectively.
From Table 3 , we see that the POD ROM hardly reduces the computational time (CPU time) in
comparison with the Full Model whose CPU time is 814.6910, whereas the POD15/DEIM250 still
maintains its advantage with the computational time reduced by a factor of O(10), see Table 4.
This implies that the POD scheme is not able to reduce the computational complexity for nonlinear
systems but on the contrary, it increases sometimes the computational cost. In addition, we also
provide a comparison of u(x, y, t) between the full model and POD15/DEIM250 at different model
times nt = 100, 600, 1000, respectively, which illustrate that the POD/DEIM is applicable to the
case of large Reynolds number, see Figure 7.

Through the comparison between the cases of Re = 100 and Re = 1000, we find:
(1). the POD/DEIM ROM can retain the same reduction of computational time by a factor of

O(10). The computational stability of POD/DEIM ROM is kept by means of the careful selection
of the finite POD modes and DEIM interpolation points. The solution of POD/DEIM in the case
of Re = 1000 has accuracy with error O(10−3) versus O(10−4) in the case of Re = 100 due to
the additional energy contained the neglected POD state modes and POD nonlinear modes used for
DEIM;

(2). the numerical experiment suggests that additional points are beneficial when determining the
DEIM interpolation points. As for the optimal selection of POD modes, it is not sufficient to rely
only on equation (2.1.2) since a slower decay of the eigenvalue spectrum can be observed for large
Reynolds number by comparing Figure 1 with Figure 6. This suggests that a modest number of POD
modes is required for attaining a high accuracy computational result. Certainly, this will inevitably
increase the computational burden. Providing an optimal truncation of POD modes remains an open
problem [29].

(3). When the number of POD modes is increased up to 15, some spurious oscillation can still
be found near the steepened front, see Figure 7, due to the truncation of POD modes and DEIM
interpolation of nonlinear term.

This leads us to consider recovery of the lost information by calibrating the evolutionary
coefficients which amounts to a turbulence closure.

4. CALIBRATION USING TIKHONOV REGULARIZATION

From above, we see that low-order modeling indeed provides a way to simplify the 2D Burgers
equation into a minimal set of ordinary differential equations (ODEs). However, as pointed out in
[31,38], there still exists a major barrier for POD Galerkin approach at high Reynolds numbers due
to lack of a turbulence closure. As carefully explained in [29], for realistic turbulent flows, the high
index POD modes that are not included in the POD-ROM Galerkin do have a significant effect on
the dynamics of the POD-ROM. We will deal with this issue by using a closure model consisting
of Tikhonov regularization to account for the small scale dissipation effect of the truncated POD
modes. (As recently used in [38]). So it is first assumed that the calibrated ROM can be expressed
as follows:

ȧ(t) = f(y, a(t)) (4.1)

where y represents polynomial coefficients, Ny is denoted as the number of components of
y that is equal to [N0(constant terms)+N1 (linear terms)+N2 (quadratic terms)], while a(t) =
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(a1(t), a2(t), · · · , am(t)), f(y, a(t)) = C + La(t) +Ha(t). ∗ (Qa(t))) where C,L,H , and Q are
the relevant coefficient matrices to be determined. f is a polynomial of degree 2 in a(t), which can
be written componentwise as follows:

f (k)(y, a(t)) = ck +

m∑
i=1

likai +

m∑
i=1

m∑
j=1

aiDijaj (4.2)

In our present case, m = 15 is set as the number of POD modes for the case of POD15/DEIM250.
The calibration process consists in correcting whole or part of polynomial coefficients originating
from POD Galerkin by using the exact temporal coefficients known in advance. For that purpose,
we introduce an error function,

e(y, t) = ȧ(t)− f(y, a(t)) (4.3)

the calibration of the coefficients can be then done by minimizing the function with Tikhonov
regularization term in space RNy

J(y) =
〈
‖e(y, t)‖22

〉
T0

+ γ2‖Ly‖22

=
1

N

N∑
k=1

m∑
i=1

(ȧi(tk)− f (i)(y, a(tk)))
2
+ γ2‖Ly‖22, (4.4)

where the γ is regularization parameter, L = I and ‖·‖2 stands for 2-norm (or Euclidean length).
The minimization of the function (4.4) amounts to solving the linear system

(ATA+ γ2I)y = AT b (4.5)

where I is the identity matrix of order Ny, for details of A and b, please refer to [38]. Details of the
Tikhonov regularization procedure are based on the following considerations:

(1). the minimization problem (4.4) is not well conditioned if γ = 0. That is clearly seen when
the solution to the linear system (4.5) is written in the following form using the singular value
decomposition (SVD)of A:

y = Σm
i=1

σ2
i

σ2
i + γ2

uT
i b

σi
vi (4.6)

here u and v are left (right) singular vectors, σ is the singular value, and uT
i b is called the Fourier

expansion coefficient. We can find from Figure 10 that some small Fourier coefficients do not

decrease sufficiently fast compared with the small singular value, while the quotient |u
T
i b|
σi

increases
to a higher level after a certain index i. This implies that the Picard criterion [49,50,51] is only
partially satisfied, which will lead to an amplification of noise included in b. The quality of the

solution is thus greatly affected. However, if let γ = 0, we see that σ2
i

σ2
i+γ2 will act as a filter function

and a suitable γ is necessary.
(2). The key to the success of Tikhonov regularization technique is related to the accurate

determination of the regularization parameter γ. To do so, the L-curve method implemented in
the package REGULARIZATION TOOLS [52] is used throughout the paper. The L-curve method
is based on the analysis of the curve representing the semi-norm of the regularized solution ‖Ly‖2
versus the corresponding residual norm ‖Ay − b‖2. In most of the cases, this curve exhibits a typical
L shape (see Figure 10). The corner of the L-curve represents a fair compromise between the
minimization of the norm of the residual (horizontal branch) and the semi-norm of the solution
(vertical part). In present case of Re = 1000, γ is set as 0.0053172. This means that the contribution
of Fourier coefficient corresponding to the small singular value is dampened, a stable solution y is
therefore derived.

Substitution of solution result of equation (4.5) into the equation (4.1) yields a determined
calibrated model (called calibrated ROM). Subject to the initial condition

aα|t=0 = ΦT
uU

∣∣
t=0

, aβ |t=0 = ΦT
v V

∣∣
t=0

(4.7)
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the computational results are obtained using classical fourth order Runge-Kutta algorithm. The
partial evolutionary results of the calibrated coefficient are shown in Figure 11. We see that the
calibrated temporal POD coefficients and the original ones are in good agreement over the entire
time interval [0, T ]. In addition, the calibration of the coefficients leads to improvement of the
solution u(x, y, t), which can be observed from Figures 8,9, respectively.

It is worth noting that the flow calibration with Tikhonov regularization is essentially a least-
squares estimation (data fitting), which is different from other well-known closure modeling
approaches based on physical insight stemming from the turbulent simulation [29]. The calibration
of evolutionary coefficient in the present study is accomplished through the correction of the
polynomial coefficient of the constructed dynamical system. Apart from providing good retrieval
results for the coefficients of high index POD modes, another advantage of the current method is that
the calibration process is automatically performed i.e. the interest of the Tikhonov regularization is
that the value of the parameter of regularization is determined automatically, via the L-curve method.

5. CONCLUSIONS

The model order reduction with POD/DEIM approach is applied to the two dimensional Burgers
equation in the case of Re = 100 and Re = 1000 (representing the turbulent case), respectively.
The main goal was to assess the effect of large Reynolds number when using a combination of
POD/DEIM and a Tikhonov regularization as a closure model. This combination appears to be
novel in as far as we can assess. For the sake of simplicity, the computational results shown in
the present study are for u only, and the ones for v are not provided here. Five POD modes in
the case of Re = 100 are used to derive the POD ROM which captures more than 99.8% of the
system energy, and fifty DEIM interpolation points are selected for the interpolation of nonlinear
functions, which leads to a large improvement in the computational speed. In the case of Re = 1000
(turbulent case), several facts can be observed. First, a smooth wave becomes a shock wave, and
some spurious oscillation can be found near the steepened front due to the truncted modes which
play an important role in dissipating energy. Second, the eigenvalue spectrum has a slower decay
than that in the case of Re = 100. This means that main energy concentrates on more POD modes.
Additional POD modes are required to maintain sufficient computational accuracy. However, this
in turn will require additional computational cost. Thirdly, how to provide an optimal truncation
of POD modes remains an open problem. It is not sufficient to rely only on the criterion (2.1.2).
As for the DEIM, additional interpolation points prove to be beneficial in terms of CPU speed-up.
Fourth, larger Reynolds number incurs a larger error due to the truncation of POD modes and DEIM
interpolation of nonlinear term as well as numerical computation, which cannot be neglected for a
longer time integration interval. For this purpose we apply calibration with Tikhonov regularization
serving as the closure model. A noticeable improvement is obtained resulting in large computational
gain (CPU time 1.7597 using four-order Runge-Kutta method). Our present high fidelity model is
discretized using a second-order central finite difference discretization in space and a first order
backward Euler scheme in time, which allow us to perform the simulation only up to Re = 1000.
For a larger Reynolds number, it is possible to construct a POD/DEIM ROM combined with a
higher-order numerical scheme so as to maintain the numerical stability. This will be investigated
in future research work.
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APPENDIX

A. A simple introduction to the discrete Picard condition
It is well known that the Picard theorem states in a continuous setting that in order for the equation

Kx = y (A.1.1)

to have a solution x† ∈ X , it is necessary and sufficient that y ∈ R(K) and that

Σ∞
i=1

< ui, y >2

σi
2

< ∞ (A.1.2)

where K is a compact operator between the real Hilbert spaces X and Y , and (σi, ui, vi) is a singular
system of K. The infinite sum in (A.1.2) must converge, which means that the terms in the sum must
decay to zero, or equivalently, that the generalized Fourier coefficients | < ui, y > | must decay
faster to zero than the singular values σi for i = 1, 2, · · · [49].

For the discrete ill-posed problems there is, strictly speaking, no Picard condition because the
solution always exists and can never become unbounded. Nevertheless it makes sense to introduce
the discrete Picard condition. Suppose that the operator equation in question has been reduced by
discretization to a set of linear equations

Kx = y (A.1.3)

Here let K be a n× p matrix of rank p, (n ≥ p), and K = UΣV T = Σp
i=1σiuivi, then the least

squares solution of the linear equation (A.1.3)[49] is given by

xols = K†y = V Σ†UT y = Σp
i=1

uT
i y

σi
vi (A.1.4)

From the relation (A.1.4), we observe that due to the presence of a very small σp in the denominator,
the solution will be very sensitive to the errors (the inaccurate measurements, discrete error as well
as finite precision numerical computation) included in y. To be more concrete, we choose a large
singular-value index i∗ and consider a perturbation of the exact vector y in the direction of the
singular vector u∗

i , i.e.
yδ = y + βu∗

i (A.1.5)

with β = ‖yδ − y‖2 being the noise level. The least squares solution is then provided by

xδ
ols = x+

β

σ∗
i

v∗i (A.1.6)

so the following relation results in [49,50]

‖xδ
ols − x‖2

‖yδ − y‖2
=

1

σ∗
i

(A.1.7)

if σ∗
i is very small, the computed solution by (A.1.4) can be completely dominated by the SVD

coefficients corresponding to the smallest singular values. In other words, the xols will be very far
from the exact solution, and instability of solution will occur.

Based on the analysis of the SVD coefficients, together with an understanding of their relation
to the SVE (singular vector expansion) coefficients in (A.1.4), the discrete version of the Picard
condition is therefore introduced. This was pointed out by Per Christian Hansen in [51]. Let τ
denote the level at which the computed singular values σi level off due to rounding errors, The
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discrete Picard condition is satisfied if, for all singular values larger than τ , the corresponding
Fourier coefficients | uT

i y |, on average, decay faster than the σi. The discrete Picard condition will
play an important role in dealing with the discrete ill-posed problems to ensure solution stability.

The quantities of importance are the ratios of Fourier coefficients and the singular values rather
than their individual values. When the Picard condition is satisfied, the ratios will decrease, and if
the ratios begin to drop and then grow again , then the Picard condition is not satisfied, as in the case
shown in this paper, illustrated by figure 10. The violation of the Picard condition may serve as an
explanation of the instability of the linear inverse problem under consideration.

The insight we gain from a study of the quantities associated with the SVE provides a hint on
how to deal with noisy problems that violate the Picard condition, that is, we need regularization
methods that can result in less sensitive approximations to the exact solution. We aim to filter out the
unwanted part of (A.1.4). In view of the similarity of two representative methods: Truncated SVD
(TSVD) and Tikhonov regularization[51], we only focus on the Tikhonov regularization method.
The Tikhonov solution xλ

ols is defined as the solution to the problem

min{‖Kx− y‖22 + λ2‖x‖22} (A.1.8)

The first term measures the goodness-of-fit, and the second term measures the regularity of the
solution. The regularization parameter λ controls the weighting between the two terms. If we can
control the norm of x, then we can suppress (most of) the large noise components, which can be
seen clearly from the solution of (A.1.8)

xλ
ols = Σp

i=1f
λ
i

uT
i y

σi
vi (A.1.9)

Comparing equations (A.1.4) and (A.1.9), we see that the filter factors are introduced here for
i = 1, 2, · · · , p, which satisfy

fλ
i =

σ2
i

σ2
i + λ2

=

{
1 σi � λ
σ2
i

λ2 σi � λ
(A.1.10)

We stress here that the selection of the parameter λ is crucial for the regularization process. The
method to determine it in the current paper is based on the L-curve method. For additional details,
please see [49,50,51].

B. Newton method of Full-order Model
Equations (2.0.4a,b) are just a semi-discretized system (ODEs) of equations (2.0.1a,b). The

numerical solution of the system can be carried out by using one of the known procedures for
the temporal discretization of the approximate solutions of ordinary differential equations such
as Runge-Kutta method. However, when backward Euler scheme in time is performed, there is
another way to obtain the solution, namely the Newton iterative method is employed [45]. This
method converges fast with each subsequent convergence error proportional to the square of its
predecessor provided we start from a good initial guess for the Newton iteration. In a time-stepping
context, a good guess is always available, namely taking the value obtained at the end of the
previous time step. The time interval [0, T ] is discretized into nt =

T
�t equal segments, where �t

denotes the time step size. According to the expression of model (2.0.4a,b), we introduce two maps
F1, F2 : Rnxy ×R

nxy → R
nxy to define the relation as follows for the purpose of carrying out the

Newton iteration for Un+1 = U(tn), V
n+1 = V (tn) :

F1(U
n+1, V n+1) = 0 (A.2.1a)

F2(U
n+1, V n+1) = 0 (A.2.1b)

where tn = n�t, and the F1 and F2 are represented by

F1(U
n+1, V n+1) = Un+1 − Un +�tf1(U

n+1, V n+1)− �t

2�x
BulU

n+1−

�t

2�y
BubV

n+1 − �t

Re�x2
(D1U

n+1 + b1u)−
�t

Re�y2
(D2U

n+1 + b2u); (A.2.2a)
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F2(U
n+1, V n+1) = V n+1 − V n +�tf2(U

n+1, V n+1)− �t

2�x
BvlU

n+1−

�t

2�y
BvbV

n+1 − �t

Re�x2
(D1V

n+1 + b1v)−
�t

Re�y2
(D2V

n+1 + b2v) (A.2.2b)

Thus a linear system of algebraic equations can be derived due to the Taylor series expansion at
the k iteration,

Jk

(
δUn+1

k

δV n+1
k

)
= −

(
F1

F2

)k

(A.2.3)

The coefficient matrix is the Jacobian, which is expressed as

J =

(
F1u F1v

F2u F2v

)
(A.2.4)

where

F1u =
∂F1

∂Un+1
= E +�t(

∂f1
∂Un+1

− 1

2�x
Bul )−

�t

Re�x2
D1 −

�t

Re�y2
D2; (A.2.5)

F1v =
∂F1

∂V n+1
= �t(

∂f1
∂V n+1

− 1

2�y
Bub); (A.2.6)

F2u =
∂F2

∂Un+1
= �t(

∂f2
∂Un+1

− 1

2�x
Bvb); (A.2.7)

F2v =
∂F1

∂V n+1
= E +�t(

∂f2
∂V n+1

− 1

2�y
Bvb)−

�t

Re�x2
D1 −

�t

Re�y2
D2; (A.2.8)

while ∂f1
∂Un+1 , ∂f1

∂V n+1 , ∂f2
∂Un+1 and ∂f2

∂V n+1 are such that

∂f1
∂Un+1

=
1

2�x
(diag(MUn+1) + diag(Un+1)M) +

1

2�y
diag(V n+1)N ; (A.2.9)

∂f1
∂V n+1

=
1

2�y
diag(NUn+1); (A.2.10)

∂f2
∂Un+1

=
1

2�x
diag(MV n+1); (A.2.11)

∂f2
∂V n+1

=
1

2�x
diag(Un+1)M +

1

2�y
(diag(NV n+1) + diag(V n+1)N). (A.2.12)

By solving equations (A.2.3), the (Un+1
k , V n+1

k )T can be updated like this(
Un+1
k+1

V n+1
k+1

)
=

(
Un+1
k

V n+1
k

)
+

(
δUn+1

k

δV n+1
k

)
(A.2.13)

Check if the conditions given by equation (A.2.14) are satisfied, in which case stop the iteration
and adopt as solution the last iterate. Otherwise continue the iterative process.∥∥∥∥

(
δUn+1

k

δV n+1
k

)∥∥∥∥ < tol, or
∥∥F (Un+1

k+1 )
∥∥ < tol, (A.2.14)

The tol can be used as a stopping criterion. In the present work, we let tol = 10−6 serve as stopping
criterion. And the solutions Un and V n of model (2.2.1a,b) are denoted as Ufull and Vfull,
respectively.

C. POD Reduced order model of 2D Burgers equation
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Through applying the Galerkin projection method to the eqs.(2.0.4a,b), the U ,V therein can be
replaced with Φuα(tn) and Φvβ(tn), respectively. And then multiplying the equations (2.0.4a) and
(2.0.4b) by ΦT

u and ΦT
v , we obtain the POD reduced order model (POD ROM)

dα

dt
+ fPOD

1 (α, β)− 1

2�x
BPOD

ul α− 1

2�y
BPOD

ub β =

1

Re�x2
(DPOD

11 α+ bPOD
1u ) +

1

Re�y2
(DPOD

12 α+ bPOD
2u ) (A.3.1a)

dβ

dt
+ fPOD

2 (α, β)− 1

2�x
BPOD

vl α− 1

2�y
BPOD

vb β =

1

Re�x2
(DPOD

21 β + bPOD
1v ) +

1

Re�y2
(DPOD

22 β + bPOD
2v ) (A.3.1b)

where
α(tn) ∈ R

m1 , β(tn) ∈ R
m2

fPOD
1 (α, β) = ΦT

u f1(Φuα,Φvβ), (A.3.2a)

fPOD
2 (α, β) = ΦT

v f2(Φuα,Φvβ), (A.3.2b)

DPOD
11 = ΦT

uD1Φu, D
POD
12 = ΦT

uD2Φu, D
POD
21 = ΦT

v D1Φv, D
POD
22 = ΦT

v D2Φv,

BPOD
ul = ΦT

uBulΦu, B
POD
ub = ΦT

uBubΦv, b
POD
1u = ΦT

u b1u, b
POD
2u = ΦT

u b2u,

BPOD
vl = ΦT

v BvlΦu, B
POD
vb = ΦT

v BubΦv, b
POD
1v = ΦT

v b1v, b
POD
2v = ΦT

v b2v,

It can be seen that the equations (A.3.1a,b) have the same form as the equations (2.0.4a,b). For
comparison purpose, the Newton iterative method is still adopted. But the gradients of nonlinear
functions with respect to α, β will assume following form:

∂fPOD
1

∂α
= ΦT

u

1

2�x
[diag(Φuα)MΦu+

diag(MΦuα)Φu] + ΦT
u

1

2�y
diag(Φvβ)NΦu, (A.3.3)

∂fPOD
1

∂β
= ΦT

u

1

2�y
diag(NΦuα)Φv, (A.3.4)

∂fPOD
2

∂β
= ΦT

v

1

2�x
diag(Φuα)MΦv+

ΦT
v

1

2�y
[diag(NΦvβ)Φv + diag(Φvβ)NΦv], (A.3.5)

∂fPOD
2

∂α
= ΦT

v

1

2�x
diag(MΦvβ)Φu. (A.3.6)
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Figure 1. Eigenvalues of solution snapshots and nonlinear function snapshots(Re = 100)
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Figure 2. First 50 DEIM interpolation points for nonlinear function f1 (Re = 100)
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Figure 3. Comparison of u between Full Model and POD5/DEIM50 ROM at nt=10,100 and 200 in the case
of Re = 100.
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Figure 4. RMSE of u between Full Model and POD15/DEIM250 ROM at each time nt, (Re = 100)
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Figure 5. Correlation of u between Full Model and POD15/DEIM250 ROM at each time nt, (Re = 100)
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Figure 6. Eigenvalues of solution snapshots and nonlinear function snapshots (Re = 1000)
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Figure 7. Comparison of u between Full Model and POD15/DEIM250 ROM at nt=100,600 and 1000 in the
case of Re = 1000.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le
2D BURGERS EQUATION WITH LARGE REYNOLDS NUMBER USING POD/DEIM AND CALIBRATION25

Figure 8. RMSE of u between Full Model and POD15/DEIM250 ROM as well as the Calibrated ROM with
Regularization at each time instant nt, (Re = 1000)
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Figure 9. Correlation of u between Full Model and POD15/DEIM250 ROM as well as the Calibrated ROM
with Regularization at each time instant nt, (Re = 1000)
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Figure 10. Check of the Picard condition and L-curve
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Figure 11. Comparison of the temporal coefficients before and after calibration.
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Table 1. Comparisons of the CPU time and the average relative errors of
POD5/DEIM ROM at different number of DEIM interpolation points for a
60× 60 spatial mesh discretization.

DEIM points 10 30 50 60 70 80
Cpu time 1.4088 1.4518 1.4812 1.5355 1.5850 1.6057

Eu(×10−5) 1.6141 1.5883 1.6219 1.6214 1.6279 1.6472
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Table 2. Comparisons of the CPU time between the Full-Model, the POD-
ROM and the POD5/DEIM 50-ROM for a 250 time step integration window
(with time step size 0.004) in spatial domain Ω = [0, 1]× [0, 1].

Meshgrids Full-Model POD-ROM POD/DEIM50-ROM

30× 30 3.3465 2.3481 1.0890

60× 60 12.5944 6.7459 1.4812

90× 90 32.5888 13.3619 2.2287

120× 120 58.0337 31.6470 3.4297

150× 150 96.9749 66.0908 6.9015

200× 200 172.7232 149.9842 12.0493
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Table 3. The CPU time and the average relative errors of POD ROM at different
modes for a 200× 200 spatial mesh discretization (Re = 1000).

POD MODEs 10 11 12 13 14 15
Cpu time 570.4287 630.7205 694.3305 767.7129 852.4420 927.2546

Eu(×10−4) 28.000 21.000 15.000 11.000 8.2051 6.0803

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le
32 Y. WANG ET. AL.

Table 4. The CPU time and the average relative errors of POD15/DEIM ROM
at different number of DEIM interpolation points for a 200× 200 spatial mesh
discretization (Re = 1000).

DEIM points 200 230 250
Cpu time 75.5601 73.8339 73.5964

Eu(×10−4) 10.000 7.2978 8.4108
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