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ABSTRACT

In 4D-Var data assimilation for geophysical models, the goal is to reduce the lack of

fit between model and observations (strong constraint approach assuming perfect model).

In the last two decades four dimensional variational technique has been extensively used

in the numerical weather prediction due to the fact that time distributed observations are

assimilated to obtain a better initial condition thus leading to more accurate forecasts using

the above 4D-Var approach. The use of large-scale unconstrained minimization routines

to minimize a cost functional measuring lack of fit between observations and model forecast

requires availability of the gradient of the cost functional with respect to the control variables.

Nonlinear Burgers equation model is used as numerical forecast model. First order adjoint

model can be used to find the gradient of the cost functional. The use of targeted observations

supplementing routine observations contributes to the reduction of the forecast analysis error

and can provide improved forecast of weather events of critical societal impact, for instance,

hurricanes, tornadoes, sharp fronts etc. The optimal space and time locations of the adaptive

observations can be determined by using a singular vector approach. In our work we use both

adjoint sensitivity and sensitivity to observation approaches to identify the optimal space

and time locations for targeted observations at future time aimed at providing an improved

forecast. Both approaches are compared in this work and some conclusions are outlined.
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CHAPTER 1

INTRODUCTION

The numerical modeling of geophysical flows has advanced tremendously due to the avail-

ability of supercomputing facilities and the development of network of remote or in-situ

observations. The domain of the modeling has been extended to complex flow such as

atmospheric flow and oceanic flow. Geophysical fluids, for instance, air, atmosphere, ocean,

surface or underground water are governed by the general equations of fluid dynamics.

Numerical Weather Prediction (NWP) is based on the the integration of a dynamic system

of partial differential equations modeling the behavior of the atmosphere. Therefore discrete

initial conditions describing the state of the atmosphere have to be provided prior to the

integration, since they, along with the model equations, control the evolution of the solution

trajectory in space and time. To find better initial condition we use data assimilation

techniques. Data assimilation is a methodology to estimate the state of a time-evolving

complex system like the atmosphere as accurately as possible from observational data and

known physical laws. The physical laws are primarily represented by a numerical model of

the system, which provides a short range forecast as the first guess for estimation. There

are many techniques used in data assimilation such as described in early reviews of LeDimet

and Navon 1988 [1]; Ghil et al. 1981 [2]; Ghil and Malanotte-Rizzoli 1991 [3]. Recently,

considerable attention has been focused on variational methods for four dimensional data

assimilation (LeDimet and Talagrand 1986 [4]; Derber 1987 [5]; Lewis and Derber 1985 [6];

Talagrand and Courtier 1987 [7]).

The operational implementation of NWP was started by Charney et al. 1950 [8].

The procedure for preparing initial conditions from observational data was called objective

analysis in contrast to subjective analysis, because it was conducted numerically by the aid

of a computer. The numerical schemes of the first generation of objective analysis were
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the function fitting (Panofsky 1949 [9]; Gilchrist and Cressman 1954 [10]) and the optimal

interpolation (Gandin 1963 [11]). The Optimal Interpolation (OI) is derived in terms of

probability and statistics, while variational methods are based on combining model dynamics

with data with the relative weighting defined in an ad hoc manner. As it is illustrated in a

review of analysis methods by Lorenc 1986 [12], variational and statistical analysis methods

have a common basis and can be made equivalent by proper definition of weights.

Using a Bayesian approach, Lorenc 1986 [12] derived a general objective function that

can be used as the starting point for both existing OI procedure and variational analysis

schemes. The derived objective function or cost function is a combination of deviations of the

desired analysis from a forecast and observations weighted by the inverse of the corresponding

forecast and observation-error covariance matrices. The optimal interpolation is based on

the statistical estimation theory in contrast to the other two methods and gained popularity

in the 1970s with sophistication to multivariate three dimensional interpolation.

New advances in data assimilation methods emerged in the 1980s, when considerable

attention began to be paid to the four dimensional variational data assimilation (4D-Var)

and the Kalman filter. Those assimilation methods used a flow dependent background error

covariance for estimating the atmospheric state and assimilated indirect observational data

such as satellite radiances without transforming them into analysis variables. Those two

points are major advantages over OI, in which a statistically estimated background error

covariance is used and observational data that can be assimilated are limited to observations

of analysis variables. Furthermore, 4D-Var and the Kalman filter are continuous data

assimilation methods based on the statistical estimation theory.

The application of calculus of variations to meteorological analysis was first studied by

Sasaki 1958 [13] and it was extended to include the temporal dimension by Sasaki 1969

[14], 1970 [15]. This extension may be regarded as a prototype of 4D-Var. The objective

of variational data assimilation is to determine the optimal solution of an NWP model

by fitting the model dynamics to data over an interval of time, where the optimality is

measured by a cost function that expresses the degree of discrepancy between the model

and observational data. A direct approach for finding the optimal solution, suggested by

Hoffman 1986 [16] was found to be impractical for operational NWP models implemented on

present day computers. The expense of the variational assimilation can be reduced by using

the adjoint of the numerical model to calculate all of the components of the gradient of the
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cost function with respect to the initial conditions by one integration. The adjoint model

arises from the theory of optimization and optimal control of partial differential equations

(Lions 1971 [17]; Glowinski 1984 [18]). Its theoretical aspects were presented by LeDimet

and Talagrand 1986 [4]; Talagrand and Courtier 1987 [7] and LeDimet 1997 [19].

The first operational implementation of variational methods to NWP was realized in

June 1991, when the National Meteorological Center (NMC) of the United States adopted

three dimensional variational assimilation (3D-Var) for global analysis (Parrish and Derber

1992 [20]). Although 3D-Var does not include the temporal dimension, it has an advantage

over OI. Results from 4D-Var experiments with large scale numerical model were published

in the early 1990s (Thepaut et al. 1991 [21]; Navon et al. 1992 [22]; M. Zupanski 1993 [23]).

Thepaut et al. 1993 [24] demonstrated the ability of 4D-Var to generate flow dependent and

baroclinic structure functions in Meteorological Analysis.

The forecast impact of targeting is determined by the distribution and types of routine

and targeted observations, the quality of the background or first guess, and the ability of the

data assimilation procedure to combine information from the background and observations.

To deploy targeted observations we need to define a target area. Typically, an objective

procedure (often based on adjoint or ensemble techniques) is used a day or more in advance

to identify a target region for the spatial observations. It can also be determined on the

basis of high probability for a large or a fast growing initial condition error.

Several techniques have been put forward to identify optimal sites for additional ob-

servations. Adjoint based techniques such as sensitivity to initial conditions and singular

vectors (SV) have been tested for such tasks by many groups of researchers. Daescu and

Navon 2004 [25] proposed a new adjoint sensitivity approach where they considered the

interaction between adaptive observations and routine observations. The SV approach

provides a possibility of searching for directions in phase space where the errors in the initial

condition will amplify rapidly. The specification of the initial and final norms plays a crucial

role. In the European Center for Medium-Range Weather Forecasts (ECMWF) operational

EPS, SVs are computed with the so called total energy norm at initial and final time. It can

be shown that among simple norms, the total energy norm provides SVs which agree best

with analysis error statistics (Palmer et al. 1998 [26]). Berkmeijer et al. 1998 [27], 1999 [28]

have shown that the Hessian of the cost function in a variational data assimilation scheme

can be used to compute SVs that incorporate an estimate of the full analysis error covariance
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at initial time and total energy norm at final time. This type of singular vector is called

Hessian singular vector. Ehrendorfer and Tribbia 1997 [29] state that such an approach

to determine SVs provides an efficient way to describe the forecast error covariance matrix

when only a limited number of linear integrations are possible. Though finding the Hessian

matrix explicitly involves a computationally intensive effort, we can calculate Hessian vector

product by using second order adjoint (see LeDimet et al. [30]). This also requires an

efficient generalized eigenvalue problem solver to compute SVs.

Baker and Daley 2000 [31] have shown that the adjoint of a data assimilation system

provides an efficient way to estimate the sensitivities of an analysis of forecast measure with

respect to observations. The sensitivities may be computed with respect to any or all of

the observations simultaneously based on a single execution of the adjoint system see Zou

et al 1993 [32]; Cacuci 1981 [33] etc. By using sensitivity value one can identify location of

the adaptive observations which will have an impact on forecast measure at a given future

forecast model time. Sensitivity to observations techniques have also been used to diagnose

the effectiveness of specific targeted observations (Doerenbecher and Bergot 2001 [34]) and

assess the impact of satellite data (Fourrié et al. 2002 [35]). This technique of sensitivity

to observations was first presented by LeDimet et al. 1997 [19] and then discussed for 3D-

Var method by Baker and Daley 2000 [31]; Zhu et al 2008 [36]; Trémolet 2008 [37] and

comprehensively extended to the 4D-Var method by Daescu 2008 [38].

The key to sensitivity to observation techniques is to compute the transpose of the gain

matrix that determines the weights given to the observation-minus-background residuals

either explicitly or through a sequence of available operators. Daescu 2008 [38] shows that

even without knowing the full gain matrix it is possible to compute observation sensitivity

vector. This requires the availability of the Hessian of the cost function. There are two

approaches to calculate Hessian matrix. If the size of the model is small (for example, 102

or less) then the above-mentioned Hessian matrix can be calculated explicitly by using the

second order adjoint. If the size is larger then the information regarding Hessian matrix can

be obtained from the first order adjoint by using an approximate finite difference method (

See Wang et al 1995 [39]).
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1.1 Thesis Structure

This thesis is organized as follows: Chapter 2 provides a brief introduction to various

variational data assimilation methods and their mathematical formulation. Chapter 3

provides the derivation of tangent linear and adjoint models and a brief description of two

targeting methods:– adjoint sensitivity and observation sensitivity methods. The methods

to find the optimal location of adaptive observations based on targeting methods are also

discussed in this chapter. Chapter 4 details the model used in our experiment and provides

details of the algorithm used for calculating observation sensitivity vector. Numerical tests

are then carried out and their results are assessed and discussed. Finally conclusions and

future work are presented in chapter 5.
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CHAPTER 2

DISCUSSION OF VARIATIONAL METHOD

In the original variational method proposed by Sasaki 1958 [13], the equations governing

the flow are considered as constraints. The optimal estimate of the analysis variables was

obtained by minimizing the cost function defined as a weighted sum of squared differences

between analysis variables and observational data while the model acts as a strong constraint.

A major advantage of the variational data assimilation methods is that it is easy to take

into account dynamical balanced and smoothness by adding appropriate constraint terms.

Lorenc 1986 [12] and others noted that the variational data assimilation method is based on

the Bayesian probability theory. The use of a quadratic cost function is justified when the

probability density function (PDFs) of background and observational errors are Gaussian.

2.1 Description of the various terms of variational
method

2.1.1 State vector

The independent variables that are needed to represent the atmospheric state of the model

are collectively called the state vector, denoted by x. The state vector depends on time and

the model solution. If we use the nonlinear Burgers equation model, the state vector would

consist of only the model solution at each time step. If model is discretized with n grid points

along the x-direction, the size of state vector will be n× 1 at each time step. If we use the

shallow water model, the state vector would consist of three vector variables: the components

of wind along the longitude and latitudes direction u and v respectively, geopotential height

φ. Usually atmospheric studies are conducted using a discrete representation of the spherical

earth. If the model is discretized with nx grid points along the longitude , ny along the

latitude, then the number of the variables will be equal to n = 3× nx × ny. Therefore, the
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size of the state vector x will be n× 1 which is a column vector.

2.1.2 Model

A model describes the evolution of a system represented by a set of nonlinear partial

differential equation. For a very succinct presentation of the model, let us consider the

following form

∂x

∂t
= F (x, α)

x(t0) = β
(2.1)

where x is the state vector and α and β are the parameters.

A discretized representation of the above model used for evolving the state of geophysical

system from time tk to time tk+1 can be represented in the form

xk+1 = Mxk + ηk (2.2)

The variable xk is the state vector, the variable ηk is the model error at time tk. Due to

our inability to solve the nonlinear PDEs evolved in physical system analytically, NWP

models are usually obtained after discretization using numerical methods such as finite

difference, finite volume, finite element or spectral methods of the full PDEs. They are

assumed to govern the flow of the atmosphere. Thus these nonlinear models provide only an

approximation of the true evolution of the atmosphere, since the true evolution of the system

may differ from (2.2) by unknown random and systematic errors. The mean of the model

error is denoted by E{ηk} where E{.} denotes the mathematical expectation operator and

the covariance of the model error at tk is denoted by Qk = E{ηkη
T
k }. If the numerical grid

comprises of N grid points then the state vector x and model error vector η have dimension

N and the model error covariance is an N ×N matrix. The diagonal of the matrix contains

variances for each variable of the model and off-diagonal terms are covariances between each

pair of variables of the model. The error covariance matrix is given below

Q =


E{η1η1} E{η1η2} . . . . . . . . . E{η1ηN}
E{η2η1} E{η2η2} . . . . . . . . . E{η2ηN}

...
...

...
...

...
...

E{ηNη1} E{ηNη2} . . . . . . . . . E{ηNηN}


It is evident from (2.1) and (2.2) that NWP models solve an initial value problem, where

given an estimate of the present state of the atmosphere, say x(t0), the model can be used
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to forecast the state x(ti) for a future time ti. The quality of the forecast depends on the

model predictability.

2.1.3 Observations

Observations provide an important source of information of the system for the data

assimilation. They are denoted by the vector y. There are many ways to collect the

observational data of the atmospheric state. Weather stations use different types of devices,

for instance, balloons, buoys, ships, air-crafts, radiosondes, rawinsondes etc to provide direct

observations. They also use various satellites to obtain indirect observation which measure

radiances, various types of imagery (visible, infrared and water vapor images) which do not

explicitly enter into the state vector representation but are functionals of the state vector.

In practice, the observations are inhomogeneous and non-uniformly distributed (in both

space and time). So to compare observations with the state vector it is important to use a

function from model state space to observation space called an Observation operator, denoted

by H. In the case of direct observations, H is a linear mapping of observations collected at

various irregularly spaced locations to a regularly spaced numerical model grid. For indirect

observations, H is a complex operator, and usually leads to an inverse problem.

A primary source of error associated with the observations is instrumental error. Another

source of error is through the numerical operations involved in the observation operator. The

observations y at time tk are defined as

y(tk) = Hk[x
t(tk)] + εo(tk) (2.3)

where xt is the true state of the atmosphere and εo represents errors in the observations.

The observations are assumed to be uncorrelated with the model errors, i.e,

E{ηkε
T
ok} = E{εT

okηk} = 0

and the observational error covariance is denoted is Rk = E{εokε
T
ok}.

There are two types of observational data used in data assimilation. One is routine

observations, a set of time distributed observations, provided by the conventional observing

network in the analysis time interval [t0, tN ]. Besides the routine observations, a number

of nk additional observational resources may be deployed at target instant τk, t0 < τk <

tN , k = 1, 2, .., I. They are known as targeted observations or adaptive observations.

8



2.1.4 Background vector

Besides the observations, it is necessary to have a complete first guess estimate of the state

of the atmosphere at all the grid points in order to generate the initial conditions for the

forecasts. The first guess is known as background field, denoted by xb. In true sense, it

should be the best estimate of the state of the atmosphere prior to the use of the observations.

Usually a short range forecast( typically 6 hours) is used to generate xb. The errors in the

background field εb are calculated by εb = xb−xt and the background error covariance matrix

, denoted by B is given as B = E{εbε
T
b }. The background error covariance representation is

crucial for a good forecast mainly in data sparse regions.

2.2 Brief description of variational data assimilation
method

One of the first significant data assimilation (DA) algorithms that was based on the empirical

approach is called the Successive Corrections Method (SCM), introduced by Bergthorsson

and Döös 1955 [40] and Cressman 1959 [41]. SCM, an iterative procedure, estimates the

value of a variable on a regular grid using the background value of the field as the initial

value at the zeroth iteration. Nudging is another empirical method used for DA of small

scale observations, and is not generally used for large scale assimilation. It is based on a

simple idea of nudging, or dynamically relaxing the solution of the numerical model towards

the observations (interpolated to the model grid) by adding a suitable forcing term to the

governing differential equation. Both SCM and nudging methods use the availability of

observations, background field and numerical model to estimate the state of the atmosphere.

Though they use all the available information, they do not provide a guarantee of obtaining

an optimal estimation. Furthermore, they do not take into account the errors associated with

these fields (such as the observation, background and model error covariances). Optimal

interpolation was one of the first operationally implemented methods which was formulated

for optimally estimating the state of the atmosphere.

9



2.2.1 Optimal interpolation

For finding the optimum analysis of a field of model variables xa, given a background field

xb available at grid points and observations y, the following equations need to be used.

xa = xb + W (y −H[xb]) (2.4)

where W is the weighting matrix and H is the observational operator used to interpolate

the background field on the model grid to the observation locations. We seek W such that

the estimate x∗a, among all possible xa is optimal according to some criteria. An obvious

optimality criteria is that x∗a should minimize the estimation error with respect to the true

state of the atmosphere.

Let us define the errors and their corresponding covariance matrices for the analysis,

background and observations respectively.

εa = xa − xt ; Pa = A = E{εaε
T
a }

εb = xb − xt ; Pb = B = E{εbε
T
b }

εo = y −H[xt] ; Po = R = E{εoε
T
o }

(2.5)

The minimization of the analysis error covariance matrix Pa provides us the optimal x∗a. By

subtracting xt from both sides of (2.4) we have

xa − xt = xb − xt + W (y −H[xt + xb − xt])

⇒ εa = εb + W (y −H[xt + εb])

⇒ εa = εb + W (y −H[xt]−H[εb])

⇒ εa = εb + W (εo −H[εb]) (2.6)

where H = ∂H
∂x

is a linear operator.

Therefore the analysis error covariance matrix Pa can be derived by using (2.6)

Pa = E{εaε
T
a }

= E{[εb + W (εo −H[εb])][εb + W (εo −H[εb])]
T}

= E{εbε
T
b + εb(εo −H[εb])

T W T

+ W (εo −H[εb])ε
T
b + W (εo −H[εb])(εo −H[εb])

T W T}

= B−WHB−BHT W T + WRW T + WHBHT W T

= B−WHB−BHT W T + W (R + HBHT )W T (2.7)
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where we used B = E(εbε
T
b ), R = E(εoε

T
o ) and E(εbε

T
o ) = E(εoε

T
b ) = 0.

The optimal weight matrix W that minimizes the covariance matrix Pa can be obtained by

setting ∂P
∂W

= 0. That is,

∂P

∂W
= −2BHT + 2W (R + HBHT ) = 0 . (2.8)

We assumed that B is symmetric matrix. Therefore, the optimal W is given by,

W = BHT (R + HBHT )−1 . (2.9)

Therefore the optimal estimate is

x∗a = xb + BHT (R + HBHT )−1(y −H[xb]) (2.10)

Note that using (2.9) in equation (2.7) we find an expression for Pa in terms of W

Pa = B−WHB = (I −WH)B (2.11)

For more details see E. Kalnay 2003 [42].

2.2.2 3D-Variational data assimilation method

The objective of variation data assimilation (VDA) methods is to find an estimate of the state

that fits simultaneously the background field and the observations, given their respective

degree of uncertainty, i.e, the inverse of their covariances, B−1 and R−1 respectively. Such

an estimate is obtained efficiently by minimizing the least squares cost functional. The

variational method gives an optimal estimate of the state variable xa as the maximum a

posteriori (MAP) estimate:

xa = arg max
x

[p(x|xb, y)]

= arg max
x

[p(xb|x)p(y|x)p(x)]

= arg max
x

J(x) (2.12)

where

J(x) = p(xb|x)p(y|x)p(x) (2.13)
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Assume that probability density functions of background and observational errors are

Gaussian distributed. Therefore, they can be written in the following form,

p(xb|x) =
1

(2π)n/2|B|1/2
exp[−1

2
(x− xb)

TB−1(x− xb)] (2.14)

p(y|x) =
1

(2π)n/2|R|1/2
exp[−1

2
(y −H[x])TR−1(y −H[x])] (2.15)

By using the above formula we can write J(x) as

J(x) =
1

(2π)n|B|1/2|R|1/2
exp[−{1

2
(x− xb)

TB−1(x− xb)

+
1

2
(y −H[x])TR−1(y −H[x])}]p(x) (2.16)

For x we assume that the priori information is unknown. For convenience, we assume that

the probability density function is Gaussian distributed with mean µ and covariance P .

Therefore

p(x) =
1

(2π)n/2|P |1/2
exp[−1

2
(x− µ)T P−1(x− µ)] (2.17)

∂ ln p(x)

∂x
= −P−1(x− µ) (2.18)

The lack of information about x implies that infinite variance, P →∞, or P−1 → 0. Thus,

without a priori knowledge on x we have

∂ ln p(x)

∂x
= 0 (2.19)

Therefore, maximizing J(x) is equivalent to maximizing its logarithm or minimizing its

negative logarithm. Since ∂ ln p(x)
∂x

= 0, we can neglect p(x) from the equation (2.16). We can

rewrite the equation (2.12) as

xa = arg min
x
J (x) (2.20)

where

J (x) =
1

2
(x− xb)

TB−1(x− xb)︸ ︷︷ ︸
Jb

+
1

2
(y −H[x])TR−1(y −H[x])︸ ︷︷ ︸

Jo

(2.21)

In order to minimize the cost functional (2.21) we need to have its gradient and Hessian

with respect to the state vector. At the optimal point x∗ of J (x), gradient ∇xJ (x∗) = 0

and the Hessian ∂2J
∂x2 |x∗ is positive definite.
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The gradient ∇xJ (x) of the cost function J (x) can be derived in the following way.

∇xJ (x) = B−1(x− xb)−HTR−1(y −H[x]) (2.22)

At the optimal point x∗ the gradient ∇xJ (x) is zero , i.e.,

∇xJ (x∗) = 0

⇒B−1(x∗ − xb)−HTR−1(y −H[x∗]) = 0

⇒B−1(x∗ − xb)−HTR−1(y −H[x∗ − xb + xb]) = 0

⇒B−1(x∗ − xb)−HTR−1(y −H[xb]−H(x∗ − xb)) = 0

⇒B−1(x∗ − xb)−HTR−1(y −H[xb]) + HTR−1H(x∗ − xb) = 0

⇒(B−1 + HTR−1H)(x∗ − xb) = HTR−1(y −H[xb])

⇒x∗ − xb = (B−1 + HTR−1H)−1HTR−1(y −H[xb])

⇒x∗ = xb + (B−1 + HTR−1H)−1HTR−1(y −H[xb])

Therefore the optimal solution can be obtained from the formula

x∗ = xb + (B−1 + HTR−1H)−1HTR−1(y −H[xb]) (2.23)

By using the formula (2.22) we can find the expression for the Hessian.

∇2
xxJ (x∗) = B−1 + HTR−1H (2.24)

Since B and R are symmetric positive definite, the Hessian evaluated at x∗ is positive definite,

which implies that x∗ furnishes a minimum of the cost functional.

Theorem 2.2.1. The Hessian of the cost function of the variational analysis is equal to the

inverse of the analysis error covariance matrix

A = (J ′′)−1 (2.25)

Proof. The Hessian of the cost function given in (2.21) is obtained by differentiating twice

with respect to the control variable x.

J (x) =
1

2
(x− xb)

TB−1(x− xb) +
1

2
(y −H[x])TR−1(y −H[x])

∇xJ (x) = B−1(x− xb)−HTR−1(y −H[x])

J ′′ = ∇2
xxJ (x) = B−1 + HTR−1H (2.26)
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By setting, ∇xJ (xa) = 0 we have

B−1(xa − xb)−HTR−1(y −H[xa]) = 0

B−1(xa − xt − (xb − xt))−HTR−1(y −H[xt + xa − xt]) = 0

B−1(εa − εb) = HTR−1(y −H[xt]−H[xa − xt]) = 0

B−1εa −B−1εb = HTR−1(εo −H[εa]))

(B−1 + HTR−1H)εa = B−1εb + HTR−1εo

Now,

(B−1 + HTR−1H)εaε
T
a (B−1 + HTR−1H) = (B−1εb + HTR−1εo)(B

−1εb + HTR−1εo)
T

= B−1εbε
T
b B−1 + HTR−1εoε

T
b B−1

+ B−1εbε
T
o R−1H + HTR−1εoε

T
o R−1H

By taking expectation of the result we have,

(B−1 + HTR−1H)E(εaε
T
a )(B−1 + HTR−1H) = B−1E(εbε

T
b )B−1

+ HTR−1E(εoε
T
b )B−1

+ B−1E(εbε
T
o )R−1H

+ HTR−1E(εoε
T
o )R−1H

(B−1 + HTR−1H)A(B−1 + HTR−1H) = B−1BB−1 + HTR−1RR−1H

(B−1 + HTR−1H)A(B−1 + HTR−1H) = B−1 + HTR−1H (2.27)

Where we used A = E(εaε
T
a ), B = E(εbε

T
b ), R = E(εoε

T
o )

and E(εbε
T
o ) = E(εoε

T
b ) = 0 since we assume background and observation errors are

uncorrelated.

Therefore,

A = (B−1 + HTR−1H)−1 (2.28)

From the equation (2.26) and (2.28) we can write

A = (J ′′)−1 (2.29)

See details in F.Bouttier and P.Courtier 1999 [43]
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2.2.3 Physical space analysis system (PSAS)

The PSAS is another Variational Data Assimilation method which is introduced by Da Silva

et. al 1995 [44]. The optimal estimate of the state is obtained by minimizing a cost functional

which is defined in the physical space of the observations. If the size of observation vector y is

much smaller than that of the state vector x, then the dimension in which the minimization is

carried out to solve the PSAS problem is significantly smaller than that for the 3D problem.

Let δx denote the increment to the background field xb to obtain the optimal estimate of

the state vector x such that

x = xb + δx (2.30)

where δx is obtained by solving the following equation

δx = BHT (R + HBHT )−1δy (2.31)

and let δy denote the residual in the observational space, defined by δy = y − H[xb]. The

equation (2.31) can be solved by splitting into two steps:

• First step: w = (R + HBHT )−1δy

• Second step: δx = BHT w

The first step requires calculating the inverse of a matrix that is the most computer intensive.

To avoid this, it can be solved by minimizing the cost function

J(w) =
1

2
wT (R + HBHT )w − wT δy (2.32)

This is an efficient method if the dimension of the observational space is much smaller than

that of the model space.

2.2.4 4D-Variational data assimilation

Four dimensional data assimilation( 4D-Var) seeks the MAP estimate for the state variables

of a numerical model during a certain period that is called an assimilation window. Although

the formulation of 4D-Var is obtained from a simple extension of 3D-Var, there is a

distinguishing advantage of 4D-Var that the full model dynamics is used for analysis. In four

dimensional variational assimilation, an initial condition is sought so that the forecast best
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fits the observations within an assimilation interval. The method requires a time dependent

nonlinear model to obtain the optimal estimate xa
0 ∈ Rn of the initial condition by minimizing

the cost function defined as

J (x0) =
1

2
(x0 − xb)

TB−1(x0 − xb)︸ ︷︷ ︸
Jb

+
1

2

N∑
i=0

(yi −Hi[xi])
TR−1

i (yi −Hi[xi])︸ ︷︷ ︸
Jo

(2.33)

where x0 denotes the initial state at the beginning of the assimilation window, xb is a

prior(background) estimate to the initial state, yi ∈ Rki , i = 0, 1, 2, .., N is the set of

observations made at time ti and xi = M(t0, ti)(x0). The model M is nonlinear and we

assume that the model is perfect. Hi : Rn → Rki is the observation operator that maps the

state space into the observation space at time ti. B is the background error covariance matrix

and Ri is the observational error covariance matrix at time ti. We assume that background

errors and observation errors are uncorrelated with each other. In our case, we take the

error covariance matrices B and Ri to be diagonal. The control variable or the variable with

respect to which the cost function (2.33) is minimized is the initial state of the model x(t0)

within the assimilation window.

Figure 2.1: Schematic representation of 4D-Var. Using information from the previous
forecast (xb ) and available observations within a time interval, a new optimal x0 is obtained
via 4D-Var so that the corrected forecast (analysis trajectory) closely fits the observations.
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Note that the second component of the cost functional, Jo, describes the sum of least

squared differences between each of the observations and the output from the forecast model

over the entire assimilation window. The first term Jb, measured the least squares distance

between the background field and model initial state x(t0) remains the same as the 3D-Var

cost functional.

In order to minimize the cost functional in (2.33) with respect to x0 = x(t0), we need to

calculate the gradient of the cost functional with respect to the control variable i.e. ∇x0J and

ensure that the Hessian of the cost functional evaluated at the minimum is positive definite.

Since the cost functional is convex by construction and the background and observation error

covariance, B and Ri are symmetric positive definite(by definition) the Hessian of the cost

functional is positive definite.
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CHAPTER 3

TARGETING METHODS FOR ADAPTIVE

OBSERVATIONS

3.1 The adjoint sensitivity (AS) approach

The minimum point of the cost function is numerically obtained using large scale uncon-

strained minimization algorithms such as quasi-Newton methods, conjugate gradient method

etc. Those methods are iterative methods and require the gradient of the cost function as

well as its value at each iteration. The adjoint method provides an efficient algorithm to

calculate the gradient of the cost function with respect to control variables. Let us consider

a first order variation of the cost functional J by introducing a small change δx(t0) in the

control variable x(t0)

δJ = J [x(t0) + δx(t0)]− J [x(t0)]

≈ ∂J
∂x(t0)

δx(t0)

= [∇x(t0)J ]T δx(t0) (3.1)

where [∇x(t0)J ]T δx(t0) is the directional derivative which is equivalent to Gateaux derivative

in finite dimension. The gradient of background component Jb of the cost function in (2.33)

with respect to x(t0) is given by

∇x0Jb = B−1(x0 − xb) (3.2)

The gradient of observation term Jo of the cost function in (2.33) with respect to x(t0) is

given by

∇x0Jo =
N∑

i=0

[
∂(yi −Hi[xi])

∂x0

]T

R−1
i (yi −Hi[xi]) (3.3)
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Here yi = y(ti) is the time distributed observations, x0 = x(t0), model solution at each ti,

xi = x(ti) = M0,i(x0), M0,i = M(t0, ti). Let us consider a small perturbation δx0 to the

initial state of the model, then we have

x̄i = M0,i(x0 + δx0) (3.4)

Expanding the right hand side by Taylor series we have

x̄i = M0,i(x0) +
∂M0,i

∂x0

δx0 + O(δx0δx
T
0 )

= M0,i(x0) +M(t0, ti)δx0 + O(δx0δx
T
0 ) (3.5)

Here M(t0, ti) =
∂M0,i

∂x0

δxi = x̄i − xi ≈M(t0, ti)δx0 (3.6)

By using the chain rule in calculus we can write

∂(yi −Hi[xi])

∂x0

= −∂Hi

∂xi

∂xi

∂x0

= −HiM(t0, ti) (3.7)

where

M(t0, ti) = M(t0, t1)M(t1, t2).....M(ti−1, ti)

=

j=i−1∏
j=0

M(tj, tj+1) (3.8)

Therefore, by using the above results, the gradient of the observational cost in (3.3) can be

written as

∇x0Jo =
N∑

i=0

[
∂(yi −Hi[xi])

∂x0

]T

R−1
i (yi −Hi[xi])

= −
N∑

i=0

[HiM(t0, ti)]
TR−1

i (yi −Hi[xi])

= −
N∑

i=0

[M(t0, ti)]
THT

i R−1
i (yi −Hi[xi])

= −
N∑

i=0

MT (t0, ti)H
T
i R−1

i (yi −Hi[xi]) (3.9)

19



where MT (t0, ti) = MT (ti−1, ti)MT (ti−2, ti−1).......MT (t0, t1). The linear operator M(t0, ti)

in (3.5) is called Tangent Linear Model (TLM) and its transpose MT (t0, ti) in equation (3.9)

is called adjoint model (ADM) and it is computationally obtained by transposing each and

every linear statement in the TLM, integrated backward in time. The full gradient of the

cost functional (2.33) is

∇x0J = ∇x0Jb +∇x0Jo

= B−1(x0 − xb)−
N∑

i=0

MT (t0, ti)H
T
i R−1

i (yi −Hi[xi])

= B−1(x0 − xb)−
N∑

i=0

MT
0,iH

T
i R−1

i (yi −Hi[xi]) (3.10)

where

M0,i = M(t0, ti)

The equation (3.10) shows that every iteration of the 4D-Var minimization requires the

computation of the gradient i.e. computing the increment yi − Hi[xi] at the observation

time ti during a forward integration, multiplying them by HT
i R−1

i and integrating these

weighted increments back to the initial time using ADM. Therefore implementation of the

4D-Var algorithm involves a sequence of calls to a minimization algorithm, which uses the

functional and gradient information in an unconstrained minimization iterative mechanism,

which yields the optimum value of initial condition x∗ = x0 thus providing the minimum

value of the cost function J (x∗).

Usually, the forecast model is nonlinear. So the development of the tangent linear and

adjoint models is extremely complicated and time consuming. To make the task easier and

save the time several automatic differentiation software packages have been developed, for

instance, TAMC, ADIFOR etc. that provide forward and reverse sweeps.

3.1.1 Location of adaptive observation by AS

The first approach to identify the adaptive observations is adjoint sensitivity method. In

practice it is of interest to assess the observation impact on the forecast measure J v(xv) on

verification domain at verification time tv. The functional J v is defined (see Daescu and

Navon 2004 [25]) as a scalar measure of the forecast error over the verification domain Dv

J v =
1

2
(xf

v − xt
v)

T P T EP (xf
v − xt

v) (3.11)
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where xf
v = M0,v(x

a
0) and xt

v = M0,v(x
t
0). P is a projection operator on Dv satisfying

P ∗P = P 2 = P and E is a diagonal matrix of the total energy norm.

To select the adaptive observations locations, the gradient of cost functional J v defined

in equation (3.11) is used. The gradient of the function (3.11) at ti is defined as

∇J v(xi) = MT
i,vP

T EP (xf
v − xt

v) (3.12)

where

xi = x(ti)

We use gradient of the function defined in (3.12) to evaluate the sensitivity of the forecast

error with respect to the model state at each targeting instant τk. A large sensitivity value

indicates that small variations in the model state will have a significant impact on the forecast

at the verification time. The adjoint sensitivity field with respect to total energy metric is

defined as

Fv(τk) = ||∇J v(x(τk))||E ∈ Rn (3.13)

where total energy metric is defined as

||x||E =
1

2
x2 (3.14)

Adaptive observation at τk are deployed at the first nk locations xk where Fv(τk) attains

maximum values.

3.2 Observation sensitivity (OS) approach

The Hessian of the cost function J is obtained by differentiating equation (3.10) with respect

to xa
0

∇2
xa
0xa

0
J = B−1 +

N∑
i=0

MT
0,iH

T
i R−1

i HiM0,i (3.15)

By differentiating (3.10) with respect to yi

∇2
yixa

0
J = −R−1

i HiM0,i (3.16)

The theory discussed in Daescu 2008 [38] shows that if the cost function J (x, u) is a twice

continuously differentiable function involving parameter vector (input data) u ∈ Rp , then

the optimal solution x̄ corresponding to the parameter ū that minimizes J is obtained by
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satisfying the condition ∇xJ (x̄, ū) = 0 and ∇2
xxJ (x̄, ū) is positive definite. The implicit

function theorem applied to the first order optimality condition

∇xJ (x̄, ū) = 0 ∈ Rn

guarantees the existence of a vicinity of ū where the optimal solution is a function of data

x = x(u) and the gradient matrix

∇ux = (∇ux1,∇ux2, . . .∇uxn) ∈ Rp×n (3.17)

is expressed as

∇ux(u) = −∇2
uxJ [x(u), x]{∇2

xxJ [x(u), x]}−1 (3.18)

By theorem 2.2.1 we can write

A ≈ {∇2
xa
0xa

0
J }−1 ∈ Rn×n (3.19)

So from the equations (3.16) , (3.18), (3.19) we obtain

∇yi
xa

0 = −∇2
yixa

0
JA

= R−1
i HiM0,iA ∈ Rki×n (3.20)

The gradient of J v defined in (3.11) at verification time tv is

∇xvJ v = P T EP (xf
v − xt

v) (3.21)

Using the chain rule we obtain

∇yi
J v = ∇yi

xa
0∇xa

0
J v ∈ Rki (3.22)

where ∇xa
0
J v is the gradient of J v at initial time obtained by using adjoint model. So, the

equation for ∇xa
0
J v can be written as

∇xa
0
J v = MT

0,v∇xvJ v ∈ Rn (3.23)

∇xa
0
J v represents forecast sensitivity to analysis. By using (3.20), equation (3.22) can be

written as

∇yi
J v = R−1

i HiM0,iA∇xa
0
J v ∈ Rki (3.24)

which provides the forecast sensitivity to the observations.
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3.2.1 Location of adaptive observation by OS

The data assimilation system allows fusing model forecast with distributed observations.

There are several sophisticated data assimilation methods that have already been developed

and implemented. Amongst them, 4D-Var is considered as one of the best data assimilation

methods since it uses concepts of optimal control of partial differential equations. If routine

observations for different time steps are used then the observation sensitivity vector at

those time steps can be calculated. The observation sensitivity vectors can then be used

to determine the location for additional observations. Since it is costly to take additional

observations at all the time steps where routine observations are available, it is important to

determine time and space locations at which to take adaptive observations that will reduce

forecast error significantly. To do that we first calculate L∞ norm of the sensitivity vector

∇yi
J v at each time step where observations are available.

Fv(ti) = ||∇yi
J v||∞ ∈ R (3.25)

We then choose the expected number of time steps τk, k = 1, .., I where Fv(τk) attains the

maximum value.

We define the observation sensitivity field with respect to total energy metric as

Ov(τk) = ||∇yτk
J v||E ∈ Rki (3.26)

We then choose nk adaptive observations at each target instant τk, k = 1, 2, ..., I where

Ov(τk) attains the maximum value.
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CHAPTER 4

DESIGN OF NUMERICAL EXPERIMENTS

The four dimensional data assimilation method requires a significant computational effort to

evaluate the forecast sensitivity to observations where a large scale model is used. This task

is a little easier if a simple nonlinear model is used such as the Burgers equation model to

be described below. The algorithm to compute the observation sensitivity are given below:–

• Calculate model solution xt
v at tv with initial condition xt

0 by

xt
v = M0,v(x

t
0) (4.1)

• Obtain optimal initial condition xa
0 by minimizing the cost functional J defined in

(2.33). Calculate model forecast

xf
v = M0,v(x

a
0) (4.2)

• Compute ∇xvJ v = P T EP (xt
v − xf

v) and use it as initial condition for adjoint model.

• Integrate Adjoint model backward from t0 to tv : ∇xa
0
J v = MT

0,v∇xvJ v

• Solve the linear system for z0 : A−1z0 = ∇xa
0
J v

A−1 is calculated by using second order adjoint model.

• Integrate tangent linear model t0 to ti: zi = M0,iz0

• Mapping on observation space, weighting: ∇yi
J v = R−1

i Hizi
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4.1 Experimental setup

Numerical Experiments are set up with a one-dimensional nonlinear Burgers equation

(Burgers 1948). The equation is given below

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

−3 ≤ x ≤ 3
0 < t ≤ T

(4.3)

with the initial conditions

u(x, 0) =

{
1.0 −3 ≤ x ≤ 0
0.0 0 < x ≤ 3

and boundary condition is

u(−3.0, t) = 1.0 & u(3.0, t) = 0.0

For this combination of initial and boundary conditions (4.3) has an exact solution derived

by using Cole-Hopf transformation (see J.D. Cole 1951 [45], E. Hopf 1950 [46]). The exact

solution is given by

u =

∫∞
−∞[ (x−ξ)

t
]e−0.5RGdξ∫∞

−∞ e−0.5RGdξ
(4.4)

where

G(ξ; x, t) =

∫ ξ

0

u0(ξ
′)dξ′ +

(x− ξ)2

2t

and

R =
1

ν

To discretize the equation we used forward in time and centered in space (FTCS) finite-

difference scheme. The numerical grid comprises of 101 mesh points in space and 300 steps

in time, say, nx = 101 and nt = 300. The time interval is ∆t = 0.01. The Reynolds numbers

that we used are R = 100, R = 200 and R = 300.

The resulting discrete equation is

un+1
j = un

j −
∆t

4∆x
{(un

j+1)
2 − (un

j−1)
2}+

∆t

R∆x2
{un

j+1 − 2un
j + un

j−1} (4.5)

where ∆x is space interval and the solution at each time step is uj ∈ Rnx .
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Figure 4.1: Burgers model solution for R = 100.
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Figure 4.2: Burgers model solution for R = 200.
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Figure 4.3: Burgers model solution for R = 300.

We displayed the model solutions for R = 100, R = 200 and R = 300 in Figures 4.1, 4.2

and 4.3 only at several time steps. We see that the model solution exhibits some oscillations

for all cases. The unphysical oscillation originates due to high Reynolds numbers. We

experienced that when the Reynolds numbers get higher, the numerical solution exhibits

more oscillations.

We define our verification domain so that it contains the oscillations in numerical solution

with larger amplitude at the verification time tv. We obtain that such oscillations are

contained roughly in the interval [1.1, 1.6] at verification time tv = 3. So the spatial domain

Dv = [1.1, 1.6] is our verification domain. In Figures 4.4, 4.5 and 4.6 we display the

verification domain by drawing a rectangular box.
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Figure 4.4: Verification domain which contains oscillations with larger amplitude at verifi-
cation time tv is shown in rectangular box. Figure displays the model solution for R = 100.
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Figure 4.5: Verification domain which contains oscillations with larger amplitude at verifi-
cation time tv is shown in rectangular box. Figure displays the model solution for R = 200.
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Figure 4.6: Verification domain is shown in rectangular box. Figure displays the model
solution for R = 300.

In the equation (2.33) we see that the cost function requires background information

as well as observations. Since we have used Burgers equation model, we assume that the

background term is zero. For the observation term we generated the observation vector

from the model solution initialized with x0 by perturbing with normally distributed random

numbers N(0, σ2). The standard deviation is chosen as σ = .05. The observation errors

are assumed uncorrelated, so the observation error covariance matrices Ri are diagonal.

In our case, all the matrices are the same and the values of diagonal entries are σ2. The

observational data are available at all grid points in spatial dimension. We took the routine

observations at every 5th time step between t0 = 1 and tN = 100, where [t0, tN ] is our

window of data assimilation. We calculated the gradient of the cost function J with respect

to control variable which is required for minimization routines. For our experiment we used

the L-BFGS (limited memory Quasi-Newton) minimization algorithm (Liu and Nocedal

1989 [47]) to solve the nonlinear 4D Var minimization problem with convergence criteria

||∇x0J || ≤ 10−5 where || · || denotes the Euclidean norm in Rn. To calculate the gradient of

the cost functional with respect to control variable we used the adjoint model. We verified

the correctness of the gradient according to the procedure discussed in Navon et al. 1992[22].
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The formula is written as a function of α

φ(α) =
J(x + α∇J)− J(x)

α∇JT∇J
= 1 + O(α)

Therefore the gradient provided by the adjoint model is assumed to be accurate up to

machine accuracy if limα→0 φ(α) = 1. The graph of the value obtained from the alpha test

is displayed in Figure 4.7. The figure shows that the value of the φ(α) ≈ 1 with increasing

number of significant digits as α decreases.
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Figure 4.7: Verification of the first order adjoint.
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4.2 Results

Our main objective is to reduce the forecast error on the verification domain Dv at

verification time tv. To fulfill our objective we defined the cost function in (3.11) over

the verification domain at verification time and studied two different approaches:– adjoint

sensitivity and observation sensitivity and compared them. Adjoint method is rather simple

and straightforward. It just requires the value of the gradient of the cost functional Jv which

is defined in (3.12). On the other hand, calculation of observation sensitivity is not trivial.

It requires the information of the Hessian of the cost function defined in (3.15). To calculate

the Hessian requires the availability of the second order adjoint model which can provide

each column of the Hessian.

4.2.1 Adjoint sensitivity

The adjoint sensitivity vector Fv(xi) ∈ Rnx is calculated by using the formula (3.13) which

requires the gradient of the cost functional J v. The gradient ∇J v(xi) ∈ Rnx is calculated

by the equation (3.12). As the formula requires, we first calculated xf
v and xt

v. We used

numerical model and the given initial condition xt
0 in (4.1) in order to calculate xt

v at tv.

We then calculated xf
v at tv by using (4.2) with optimal initial condition xa

0 obtained by

minimizing the cost function (2.33). We took the difference xf
v −xt

v and used it as the initial

condition to the adjoint model MT . We then calculate the gradient∇J v(xi) ∈ Rnx at each

ti ∈ [t0, tN ]. Once we obtained the gradient, we chose the target instant τk, k = 1, 2, .., I.

In our experiment we found that L∞ norm of the gradient vector at each ti is increasing

as ti is increasing. Thus, we chose every 10th time step starting from initial time step t0

as the target instant τk to place the adaptive observations. We then calculated the optimal

locations for adaptive observation according to the method discussed in section 3.1.1. The

adjoint sensitivity vectors for few time steps are displayed in Figures 4.8, 4.9 and 4.10. The

locations of adaptive observations are shown in Figures 4.11, 4.12 and 4.13. We decided to

choose 5 adaptive observations at each target instant τk.

31



−2 0 2
−1

0

1

2
adjoint sensitivity at t=0.1

x−value

∇J
v (x

i)

−2 0 2
−1

0

1

2

x−value

∇J
v (x

i)

adjoint sensitivity at t=.4

−2 0 2
−1

0

1

2

x−value

∇J
v (x

i)

adjoint sensitivity at t=.7

−2 0 2
−1

0

1

2

x−value

∇J
v (x

i)

adjoint sensitivity at t=1

Figure 4.8: Figure of the adjoint sensitivity vector at different time steps for R = 100.
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Figure 4.9: Figure of the adjoint sensitivity vector at different time steps for R = 200.
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Figure 4.10: Figure of the adjoint sensitivity vector at different time steps for R = 300.
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Figure 4.11: Locations of adaptive observations based on adjoint sensitivity vector at target
instant τk. Figure shows the result for R = 100.
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Figure 4.12: Locations of adaptive observations based on adjoint sensitivity vector at target
instant τk. Figure shows the result for R = 200.
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Figure 4.13: Locations of adaptive observations based on adjoint sensitivity vector at target
instant τk. Figure shows the result for R = 300.
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4.2.2 Observation sensitivity

We calculate the observation sensitivity by using the algorithm mentioned at the beginning

of this chapter. In the first stage we initialize ∇xvJ v given in equation (3.21). This value

is used as initial condition for adjoint model and integrate the model backward to obtain

the gradient ∇xa
0
J v at optimal initial analysis vector xa

0. The minimization process of the

cost function J in 4D Var method provides the optimal analysis initial condition xa
0. Once

we have the gradient at t0 we solve the linear system A−1z0 = ∇xa
0

where A−1 is the

inverse covariance matrix at optimal solution which is equivalent to Hessian matrix. It is

computationally very expensive to calculate Hessian matrix explicitly for a large scale model

but much cheaper for a small scale model. Since our model is one dimensional with 102

variables, we easily calculated the Hessian explicitly . We used a second order adjoint model

to obtain the full Hessian. To obtain each column of the Hessian of the cost function we

used the unit vectors. For obtaining the entries of j th column we used unit vector ej whose

jth entry is 1 and all the other entries are zeros. We obtain that the matrix is symmetric

and positive definite for the three cases tested R = 100, 200, 300.

To prove that the Hessian is positive definite we calculated the eigenvalues of it by using

MATLAB. The Hessian eigenvalues are shown for all the cases in Figures 4.14, 4.15 and

4.16. These figures show that all the eigenvalues are positive so the matrix is positive definite

for each case tested.

To show the Hessian is symmetric for each case we compute d(k) = |h(i, j)−h(j, i)|, where

k = 1, .., n2
x and h(i, j), i, j = 1, .., nx are the elements of the Hessian. Then we calculate L∞

norm of d and obtained that ||d||∞ = 0. It means h(i, j) = h(j, i) which is the condition for

symmetry.

Since the Hessian is symmetric and positive definite, we solved the linear system by

employing Cholesky Decomposition method to obtain upper triangular matrix and then used

backward substitution method to obtain the solution of the system. We then used tangent

linear model Mo,i, linearized observational operator Hi and observation error covariance

matrix R−1
i in order to obtain the observation sensitivity vector ∇yi

J v ∈ Rnx at ti. In our

case we assumed that Hi at ti are unit matrix where routine observations are available (at

every 5th time step between t0 = 1 and tN = 100). As mentioned before, the observation

error covariance matrices Ri are diagonal matrices whose diagonal entries are σ2. So R−1
i

35



10 20 30 40 50 60 70 80 90 100
10

2

10
3

10
4

10
5

10
6

10
7

Eigenvalues of the Hessian matrix

number of Eigenvalues

Ei
ge

nv
alu

es

Figure 4.14: Eigenvalues of the Hessian calculated with Reynolds number R = 100.
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Figure 4.15: Eigenvalues of the Hessian calculated with Reynolds number R = 200.
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Figure 4.16: Eigenvalues of the Hessian calculated with Reynolds number R = 300.

are also diagonal with diagonal entries 1
σ2 . The observation sensitivity vectors ∇yi

J v are

available only at time steps where routine observations are available and zeros at all the

other time steps. Observation sensitivity vectors are displayed in Figures 4.17, 4.18 and

4.19.

It is well known that in general the more observations used in the data assimilation

process, the better the forecast obtained. But sometimes more observations result in a

worse forecast due to non-homogeneous distribution of the observations. For geophysical

models in meteorology and oceanography it is known that there are more observations on

the land and less observations on the ocean, especially in the Southern Hemisphere. It is

expensive to deploy the observational devices over the ocean. But if we can ascertain that

the observations at certain space and time locations have greater impact on the forecast at

verification time, we can attempt to collect observational data by deploying observational

devices only for those space and time locations. In this work we implemented this idea and

we used observation sensitivity method as a guiding metric to obtain appropriate space and

time locations to deploy adaptive observations so that the forecast error is reduced on the

verification domain at tv significantly. We chose the adaptive observation locations on the
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Figure 4.17: Figure displays the observation sensitivity vector for R = 100 at different time
steps.
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Figure 4.18: Figure displays the observation sensitivity vector for R = 200 at different time
steps.
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Figure 4.19: Figure displays the observation sensitivity vector for R = 300 at different time
steps.

basis of the method discussed in section 3.2.1. In this method we first chose target instants

τk, k = 1, .., 10 at which the L∞ norm of ∇yi
J v attains maximum value and then at each τk

we took 5 adaptive observations so that ||∇yτk
J v||E attains a larger value at each τk. The

locations of the adaptive observations are displayed in Figures 4.20, 4.21 and 4.22.
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Figure 4.20: Location of adaptive observations based on observation sensitivity vector for
R = 100.
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Figure 4.21: Location of adaptive observations based on observation sensitivity vector for
R = 200.
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Figure 4.22: Location of adaptive observations based on observation sensitivity vector for
R = 300.

We perform the data assimilation with routine and adaptive observations by using 4D-Var

method. First, we minimize the cost functional with routine observations. The initial guess

provided to the minimization routine is produced by perturbing the given initial condition x0

with Gaussian random number by 20%. At each iteration the minimization routine provides

the initial analysis xa
0 and the corresponding value of cost function J (xa

0) and gradient

∇J (xa
0). We also calculated the cost function J v using the equation (3.11) which requires

xt
v and xf

v . xf
v is calculated using Burgers equation model with xa

0 obtained by minimizing

the cost function in (2.33) whereas xt
v is fixed for all iteration and calculated with given

initial condition xt
0. We then used adaptive observations along with routine observations to

perform the data assimilation with the same method, 4D-Var method. We again calculated

initial analysis vector xa
0, cost function J (xa

0) as well as Jv(x
a
0) at each iteration. The only

difference is that we provided one additional term for adaptive observations to the cost

function in (2.33). The figures are displayed in Figures 4.23, 4.24 and 4.25. We found that

when we used only few adaptive observations the forecast error is reduced significantly. We

also displayed the evolution of cost function in Figures 4.26, 4.27 and 4.28 as well as its

gradient in Figures 4.29, 4.30 and 4.31.
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Figure 4.23: In every iteration we calculate the forecast error reduction at tv over verification
domain which is quantified by J v(xa

0)/J v(x0). The normalized values J v(xa
0)/J v(x0) are

shown on semi-logarithmic scale. Figure shows the result for R = 100.
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Figure 4.24: In every iteration we calculate the forecast error reduction at tv over verification
domain which is quantified by J v(xa

0)/J v(x0). The normalized values J v(xa
0)/J v(x0) are

shown on semi-logarithmic scale. Figure shows the result for R = 200.

42



0 10 20 30 40 50 60 70
10

−3

10
−2

10
−1

10
0

10
1

forecast on verification domain at verification time

lo
g 10

J v(x
a 0))/

J v(x
0)

 

 

only fixed obs

adaptive obs OS

adaptive obs AS

Figure 4.25: In every iteration we calculate the forecast error reduction at tv over verification
domain which is quantified by J v(xa

0)/J v(x0). The normalized values J v(xa
0)/J v(x0) are

shown on semi-logarithmic scale. Figure shows the result for R = 300.
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Figure 4.26: The minimization of the cost function J when both routine and adaptive
observations are assimilated. The normalized values J (xa

0)/J (x0) are shown on semi-
logarithmic scale. Figure shows the cost function at every iteration for R = 100.
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Figure 4.27: The minimization of the cost function J when both routine and adaptive
observations are assimilated. The normalized values J (xa

0)/J (x0) are shown on semi-
logarithmic scale. Figure shows the cost function at every iteration for R = 200.
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Figure 4.28: The minimization of the cost function J when both routine and adaptive
observations are assimilated. The normalized values J (xa

0)/J (x0) are shown on semi-
logarithmic scale. Figure shows the cost function at every iteration for R = 300.
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Figure 4.29: The gradient of the cost function ∇xJ (xa
0) are shown when both routine and

adaptive observations corresponding to AS and OS are assimilated. The normalized values
are shown on semi-logarithmic scale. The figure shows the gradient of the cost function for
R = 100.
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Figure 4.30: The gradient of the cost function ∇xJ (xa
0) are shown when both routine and

adaptive observations corresponding to AS and OS are assimilated. The normalized values
are shown on semi-logarithmic scale. The figure shows the gradient of the cost function for
R = 200.
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Figure 4.31: The gradient of the cost function ∇xJ (xa
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R = 300.
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4.2.3 Comparison of two targeting methods

We begin our analysis by presenting the results obtained from our experiment when routine

observations as well as adaptive observations are being assimilated. During the iterative

process we monitored the distribution of the forecast error over the verification domain

at the verification time after the data assimilation has taken place. First we used only

routine observations for data assimilation and then used adaptive observations with routine

observations. We used both the targeting methods:– adjoint and observation sensitivity

methods for finding optimal sites for adaptive observations. The results for forecast errors

are presented in the Figures 4.23, 4.24 and 4.25. These figures show that the forecast

errors improved significantly when adaptive observations are used. Again we noticed that

observation sensitivity method performs better than the adjoint sensitivity method for all the

three cases tested i.e R = 100, 200, 300. The performance of minimization routine depends

on the Reynolds number. This is evident from the Figures 4.23 4.24 and 4.25 that the OS

method performs superbly for R = 200.

Table 4.1: Performance of minimization routine with different Reynolds numbers when
routine and adaptive observations corresponding to AS and OS are used.

Reynolds number Observations number of iterations

100
Routine 76

Adaptive AS 76
Adaptive OS 78

200
Routine 63

Adaptive AS 56
Adaptive OS 64

300
Routine 57

Adaptive AS 47
Adaptive OS 63
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this work we applied two different targeting methods– adjoint sensitivity and observation

sensitivity to find the optimal sites of observational data that have greater impact on the

forecast error reduction. On the basis of the information provided by these procedures

we chose the adaptive observations space and time locations. These methods have been

previously tested only for targeting adaptive observations distributed at space locations. We

realized that since 4D-var is time dependent and uses time distributed observations, it is

important to find the time location for adaptive observations. We chose the time location

for the case of observation sensitivity on the basis of the largest value of the norm of OS

vector at each targeting instant τk. On the other hand we chose the time location for the

case of adjoint sensitivity at every 10th time step in the assimilation window proceeding

backward from the final target time tN = 100.

In our experiment we found that observation sensitivity approach performed better than

the adjoint sensitivity approach. But there was a computational cost for obtaining a better

forecast i.e., we needed to provide Hessian matrix information. To calculate the Hessian of

the cost function, 4D-Var requires use of second order adjoint. For large scale modeling it is

impossible to compute this matrix explicitly due to the limitations of computer memory. But

the evolved system of linear equations can be solved by using iterative procedure. This may

require matrix vector multiplication which can be provided by using second order adjoint.

In our experiment we saw that a few adaptive observations added to the large number of

existing routine observations can improve the forecast significantly. In future work we want

to use 2D model, for instance, shallow water model to implement the idea of observation

sensitivity method. We may also consider the techniques of reduced order modeling to reduce

the cost for obtaining Hessian information.
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